1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2004
*
* API for invoking Haskell functions via the RTS
*
* To understand the structure of the RTS headers, see the wiki:
* https://gitlab.haskell.org/ghc/ghc/wikis/commentary/source-tree/includes
*
* --------------------------------------------------------------------------*/
#pragma once
#if defined(__cplusplus)
extern "C" {
#endif
#include "HsFFI.h"
#include "rts/Time.h"
#include "rts/Types.h"
/*
* Running the scheduler
*/
typedef enum {
NoStatus, /* not finished yet */
Success, /* completed successfully */
Killed, /* uncaught exception */
Interrupted, /* stopped in response to a call to interruptStgRts */
HeapExhausted /* out of memory */
} SchedulerStatus;
typedef struct StgClosure_ *HaskellObj;
/*
* An abstract type representing the token returned by rts_lock() and
* used when allocating objects and threads in the RTS.
*/
typedef struct Capability_ Capability;
/*
* An abstract type representing the token returned by rts_pause().
*/
typedef struct PauseToken_ PauseToken;
/*
* From a PauseToken, get a Capability token used when allocating objects and
* threads in the RTS.
*/
Capability *pauseTokenCapability(PauseToken *pauseToken);
/*
* The public view of a Capability: we can be sure it starts with
* these two components (but it may have more private fields).
*/
typedef struct CapabilityPublic_ {
StgFunTable f;
StgRegTable r;
} CapabilityPublic;
/* N.B. this needs the Capability declaration above. */
#include "rts/EventLogWriter.h"
/* ----------------------------------------------------------------------------
RTS configuration settings, for passing to hs_init_ghc()
------------------------------------------------------------------------- */
typedef enum {
RtsOptsNone, // +RTS causes an error
RtsOptsIgnore, // Ignore command line arguments
RtsOptsIgnoreAll, // Ignore command line and Environment arguments
RtsOptsSafeOnly, // safe RTS options allowed; others cause an error
RtsOptsAll // all RTS options allowed
} RtsOptsEnabledEnum;
struct GCDetails_;
// The RtsConfig struct is passed (by value) to hs_init_ghc(). The
// reason for using a struct is extensibility: we can add more
// fields to this later without breaking existing client code.
typedef struct {
// Whether to interpret +RTS options on the command line
RtsOptsEnabledEnum rts_opts_enabled;
// Whether to give RTS flag suggestions
HsBool rts_opts_suggestions;
// additional RTS options
const char *rts_opts;
// True if GHC was not passed -no-hs-main
HsBool rts_hs_main;
// Whether to retain CAFs (default: false)
HsBool keep_cafs;
// Writer a for eventlog.
const EventLogWriter *eventlog_writer;
// Called before processing command-line flags, so that default
// settings for RtsFlags can be provided.
void (* defaultsHook) (void);
// Called just before exiting
void (* onExitHook) (void);
// Called on a stack overflow, before exiting
void (* stackOverflowHook) (W_ stack_size);
// Called on heap overflow, before exiting
void (* outOfHeapHook) (W_ request_size, W_ heap_size);
// Called when malloc() fails, before exiting
void (* mallocFailHook) (W_ request_size /* in bytes */, const char *msg);
// Called for every GC
void (* gcDoneHook) (const struct GCDetails_ *stats);
// Called when GC sync takes too long (+RTS --long-gc-sync=<time>)
void (* longGCSync) (uint32_t this_cap, Time time_ns);
void (* longGCSyncEnd) (Time time_ns);
} RtsConfig;
// Clients should start with defaultRtsConfig and then customise it.
// Bah, I really wanted this to be a const struct value, but it seems
// you can't do that in C (it generates code).
extern const RtsConfig defaultRtsConfig;
/* -----------------------------------------------------------------------------
Statistics
-------------------------------------------------------------------------- */
//
// Stats about a single GC
//
typedef struct GCDetails_ {
// The generation number of this GC
uint32_t gen;
// Number of threads used in this GC
uint32_t threads;
// Number of bytes allocated since the previous GC
uint64_t allocated_bytes;
// Total amount of live data in the heap (includes large + compact data).
// Updated after every GC. Data in uncollected generations (in minor GCs)
// are considered live.
uint64_t live_bytes;
// Total amount of live data in large objects
uint64_t large_objects_bytes;
// Total amount of live data in compact regions
uint64_t compact_bytes;
// Total amount of slop (wasted memory)
uint64_t slop_bytes;
// Total amount of memory in use by the RTS
uint64_t mem_in_use_bytes;
// Total amount of data copied during this GC
uint64_t copied_bytes;
// Memory lost due to block fragmentation
uint64_t block_fragmentation_bytes;
// In parallel GC, the max amount of data copied by any one thread
uint64_t par_max_copied_bytes;
// In parallel GC, the amount of balanced data copied by all threads
uint64_t par_balanced_copied_bytes;
// The time elapsed during synchronisation before GC
Time sync_elapsed_ns;
// The CPU time used during GC itself
Time cpu_ns;
// The time elapsed during GC itself
Time elapsed_ns;
//
// Concurrent garbage collector
//
// The CPU time used during the post-mark pause phase of the concurrent
// nonmoving GC.
Time nonmoving_gc_sync_cpu_ns;
// The time elapsed during the post-mark pause phase of the concurrent
// nonmoving GC.
Time nonmoving_gc_sync_elapsed_ns;
// The total CPU time used by the nonmoving GC.
Time nonmoving_gc_cpu_ns;
// The total time elapsed during which there is a nonmoving GC active.
Time nonmoving_gc_elapsed_ns;
} GCDetails;
//
// Stats about the RTS currently, and since the start of execution
//
typedef struct _RTSStats {
// -----------------------------------
// Cumulative stats about memory use
// Total number of GCs
uint32_t gcs;
// Total number of major (oldest generation) GCs
uint32_t major_gcs;
// Total bytes allocated
uint64_t allocated_bytes;
// Maximum live data (including large objects + compact regions) in the
// heap. Updated after a major GC.
uint64_t max_live_bytes;
// Maximum live data in large objects
uint64_t max_large_objects_bytes;
// Maximum live data in compact regions
uint64_t max_compact_bytes;
// Maximum slop
uint64_t max_slop_bytes;
// Maximum memory in use by the RTS
uint64_t max_mem_in_use_bytes;
// Sum of live bytes across all major GCs. Divided by major_gcs
// gives the average live data over the lifetime of the program.
uint64_t cumulative_live_bytes;
// Sum of copied_bytes across all GCs
uint64_t copied_bytes;
// Sum of copied_bytes across all parallel GCs
uint64_t par_copied_bytes;
// Sum of par_max_copied_bytes across all parallel GCs
uint64_t cumulative_par_max_copied_bytes;
// Sum of par_balanced_copied_byes across all parallel GCs.
uint64_t cumulative_par_balanced_copied_bytes;
// -----------------------------------
// Cumulative stats about time use
// (we use signed values here because due to inaccuracies in timers
// the values can occasionally go slightly negative)
// Total CPU time used by the init phase
Time init_cpu_ns;
// Total elapsed time used by the init phase
Time init_elapsed_ns;
// Total CPU time used by the mutator
Time mutator_cpu_ns;
// Total elapsed time used by the mutator
Time mutator_elapsed_ns;
// Total CPU time used by the GC
Time gc_cpu_ns;
// Total elapsed time used by the GC
Time gc_elapsed_ns;
// Total CPU time (at the previous GC)
Time cpu_ns;
// Total elapsed time (at the previous GC)
Time elapsed_ns;
// -----------------------------------
// Stats about the most recent GC
GCDetails gc;
// -----------------------------------
// Internal Counters
uint64_t any_work;
// The number of times a GC thread has iterated it's outer loop across all
// parallel GCs
uint64_t scav_find_work;
uint64_t max_n_todo_overflow;
// ----------------------------------
// Concurrent garbage collector
// The total CPU time used during the post-mark pause phase of the
// concurrent nonmoving GC.
Time nonmoving_gc_sync_cpu_ns;
// The total time elapsed during the post-mark pause phase of the
// concurrent nonmoving GC.
Time nonmoving_gc_sync_elapsed_ns;
// The maximum time elapsed during the post-mark pause phase of the
// concurrent nonmoving GC.
Time nonmoving_gc_sync_max_elapsed_ns;
// The total CPU time used by the nonmoving GC.
Time nonmoving_gc_cpu_ns;
// The total time elapsed during which there is a nonmoving GC active.
Time nonmoving_gc_elapsed_ns;
// The maximum time elapsed during any nonmoving GC cycle.
Time nonmoving_gc_max_elapsed_ns;
} RTSStats;
void getRTSStats (RTSStats *s);
int getRTSStatsEnabled (void);
// Returns the total number of bytes allocated since the start of the program.
// TODO: can we remove this?
uint64_t getAllocations (void);
/* ----------------------------------------------------------------------------
Starting up and shutting down the Haskell RTS.
------------------------------------------------------------------------- */
/* DEPRECATED, use hs_init() or hs_init_ghc() instead */
extern void startupHaskell ( int argc, char *argv[],
void (*init_root)(void) );
/* DEPRECATED, use hs_exit() instead */
extern void shutdownHaskell ( void );
/* Like hs_init(), but allows rtsopts. For more complicated usage,
* use hs_init_ghc. */
extern void hs_init_with_rtsopts (int *argc, char **argv[]);
/*
* GHC-specific version of hs_init() that allows specifying whether
* +RTS ... -RTS options are allowed or not (default: only "safe"
* options are allowed), and allows passing an option string that is
* to be interpreted by the RTS only, not passed to the program.
*/
extern void hs_init_ghc (int *argc, char **argv[], // program arguments
RtsConfig rts_config); // RTS configuration
extern void shutdownHaskellAndExit (int exitCode, int fastExit)
STG_NORETURN;
#if !defined(mingw32_HOST_OS)
extern void shutdownHaskellAndSignal (int sig, int fastExit)
STG_NORETURN;
#endif
extern void getProgArgv ( int *argc, char **argv[] );
extern void setProgArgv ( int argc, char *argv[] );
extern void getFullProgArgv ( int *argc, char **argv[] );
extern void setFullProgArgv ( int argc, char *argv[] );
extern void freeFullProgArgv ( void ) ;
/* exit() override */
extern void (*exitFn)(int);
/* Note [Locking and Pausing the RTS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You have to surround all access to the RtsAPI with rts_lock/rts_unlock or
with rts_pause/rts_resume.
# rts_lock / rts_unlock
Use `rts_lock` to acquire a token which may be used to call other RtsAPI
functions and call `rts_unlock` to return the token. When locked, garbage
collection will not occur. As long as 1 or more capabilities are not locked,
haskell threads will continue to execute. If you want to pause execution of
all haskell threads then use rts_pause/rts_resume instead.
The implementation of `rts_lock` acquires a capability for this thread. Hence,
at most n locks can be held simultaneously, where n is the number of
capabilities. It is an error to call `rts_lock` when the rts is already
paused by the current OS thread (see rts_pause/rts_resume below).
# rts_pause / rts_resume
Use `rts_pause` to pause execution of all Haskell threads and `rts_resume` to
resume them. The implementation acquires all capabilities. `rts_resume`
must be called on the same thread as `rts_pause`. `rts_pause`, much like
rts_lock, returns a token. A `Capability` can be extracted from that token using
`pauseTokenCapability()`. The `Capability` can then be used to call other RtsAPI
functions.
* With the RTS paused, garbage collections will not occur and haskell threads
will not execute, allocate, nor mutate their stacks.
* Non-Haskell (i.e. non-worker) threads such as those running safe FFI calls
will NOT be paused and can still mutate pinned mutable data such as pinned
`MutableByteArray#`s.
* You may call `rts_pause` from within a non-worker OS thread.
* You may call `rts_pause` from within a *safe* FFI call. In this case, make
sure to call `rts_resume` within the same FFI call or the RTS will deadlock.
* Calling `rts_pause` from an *unsafe* FFI call will cause an error.
* On return, the rts will be fully paused: all haskell threads are stopped
and all capabilities are acquired by the current OS thread.
* Calling `rts_pause` in between rts_lock/rts_unlock on the same thread will
cause an error.
* Calling `rts_pause` results in an error if the RTS is already paused by the
current OS thread.
* Only one OS thread at a time can keep the rts paused.
* `rts_pause` will block while another thread is pausing the RTS, and
continue when the current thread is given exclusive permission to pause the
RTS.
## Note on implementation.
Thread safety is achieved almost entirely by the mechanism of acquiring and
releasing Capabilities, resulting in a sort of mutex / critical section pattern.
This has the following consequences:
* There are at most `n_capabilities` threads currently in a
rts_lock/rts_unlock section.
* There is at most 1 threads in a rts_pause/rts_resume section. In that case
there will be no threads in a rts_lock/rts_unlock section.
* rts_pause and rts_lock may block in order to enforce the above 2
invariants.
*/
// Acquires a token which may be used to create new objects and evaluate them.
// See Note [Locking and Pausing the RTS] for correct usage.
Capability *rts_lock (void);
// releases the token acquired with rts_lock().
// See Note [Locking and Pausing the RTS] for correct usage.
void rts_unlock (Capability *token);
// If you are in a context where you know you have a current capability but
// do not know what it is, then use this to get it. Basically this only
// applies to "unsafe" foreign calls (as unsafe foreign calls are made with
// the capability held).
//
// WARNING: There is *no* guarantee this returns anything sensible (eg NULL)
// when there is no current capability.
Capability *rts_unsafeGetMyCapability (void);
/* ----------------------------------------------------------------------------
Which cpu should the OS thread and Haskell thread run on?
1. Run the current thread on the given capability:
rts_setInCallCapability(cap, 0);
2. Run the current thread on the given capability and set the cpu affinity
for this thread:
rts_setInCallCapability(cap, 1);
3. Run the current thread on the given numa node:
rts_pinThreadToNumaNode(node);
4. Run the current thread on the given capability and on the given numa node:
rts_setInCallCapability(cap, 0);
rts_pinThreadToNumaNode(cap);
------------------------------------------------------------------------- */
// Specify the Capability that the current OS thread should run on when it calls
// into Haskell. The actual capability will be calculated as the supplied
// value modulo the number of enabled Capabilities.
//
// If affinity is non-zero, the current thread will be bound to
// specific CPUs according to the prevailing affinity policy for the
// specified capability, set by either +RTS -qa or +RTS --numa.
void rts_setInCallCapability (int preferred_capability, int affinity);
// Specify the CPU Node that the current OS thread should run on when it calls
// into Haskell. The argument can be either a node number or capability number.
// The actual node will be calculated as the supplied value modulo the number
// of numa nodes.
void rts_pinThreadToNumaNode (int node);
/* ----------------------------------------------------------------------------
Building Haskell objects from C datatypes.
------------------------------------------------------------------------- */
HaskellObj rts_mkChar ( Capability *, HsChar c );
HaskellObj rts_mkInt ( Capability *, HsInt i );
HaskellObj rts_mkInt8 ( Capability *, HsInt8 i );
HaskellObj rts_mkInt16 ( Capability *, HsInt16 i );
HaskellObj rts_mkInt32 ( Capability *, HsInt32 i );
HaskellObj rts_mkInt64 ( Capability *, HsInt64 i );
HaskellObj rts_mkWord ( Capability *, HsWord w );
HaskellObj rts_mkWord8 ( Capability *, HsWord8 w );
HaskellObj rts_mkWord16 ( Capability *, HsWord16 w );
HaskellObj rts_mkWord32 ( Capability *, HsWord32 w );
HaskellObj rts_mkWord64 ( Capability *, HsWord64 w );
HaskellObj rts_mkPtr ( Capability *, HsPtr a );
HaskellObj rts_mkFunPtr ( Capability *, HsFunPtr a );
HaskellObj rts_mkFloat ( Capability *, HsFloat f );
HaskellObj rts_mkDouble ( Capability *, HsDouble f );
HaskellObj rts_mkStablePtr ( Capability *, HsStablePtr s );
HaskellObj rts_mkBool ( Capability *, HsBool b );
HaskellObj rts_mkString ( Capability *, char *s );
HaskellObj rts_apply ( Capability *, HaskellObj, HaskellObj );
/* ----------------------------------------------------------------------------
Deconstructing Haskell objects
------------------------------------------------------------------------- */
HsChar rts_getChar ( HaskellObj );
HsInt rts_getInt ( HaskellObj );
HsInt8 rts_getInt8 ( HaskellObj );
HsInt16 rts_getInt16 ( HaskellObj );
HsInt32 rts_getInt32 ( HaskellObj );
HsInt64 rts_getInt64 ( HaskellObj );
HsWord rts_getWord ( HaskellObj );
HsWord8 rts_getWord8 ( HaskellObj );
HsWord16 rts_getWord16 ( HaskellObj );
HsWord32 rts_getWord32 ( HaskellObj );
HsWord64 rts_getWord64 ( HaskellObj );
HsPtr rts_getPtr ( HaskellObj );
HsFunPtr rts_getFunPtr ( HaskellObj );
HsFloat rts_getFloat ( HaskellObj );
HsDouble rts_getDouble ( HaskellObj );
HsStablePtr rts_getStablePtr ( HaskellObj );
HsBool rts_getBool ( HaskellObj );
/* ----------------------------------------------------------------------------
Evaluating Haskell expressions
The versions ending in '_' allow you to specify an initial stack size.
Note that these calls may cause Garbage Collection, so all HaskellObj
references are rendered invalid by these calls.
All of these functions take a (Capability **) - there is a
Capability pointer both input and output. We use an inout
parameter because this is less error-prone for the client than a
return value - the client could easily forget to use the return
value, whereas incorrectly using an inout parameter will usually
result in a type error.
------------------------------------------------------------------------- */
void rts_eval (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_eval_ (/* inout */ Capability **,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret);
void rts_evalIO (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_evalStableIOMain (/* inout */ Capability **,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret);
void rts_evalStableIO (/* inout */ Capability **,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret);
void rts_evalLazyIO (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_evalLazyIO_ (/* inout */ Capability **,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret);
void rts_inCall (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_checkSchedStatus (char* site, Capability *);
SchedulerStatus rts_getSchedStatus (Capability *cap);
// Halt execution of all Haskell threads.
// See Note [Locking and Pausing the RTS] for correct usage.
PauseToken *rts_pause (void);
// Counterpart of rts_pause: Continue from a pause.
// See Note [Locking and Pausing the RTS] for correct usage.
// [in] pauseToken: the token returned by rts_pause.
void rts_resume (PauseToken *pauseToken);
// Returns true if the rts is paused. See rts_pause() and rts_resume().
bool rts_isPaused(void);
// List all live threads. The RTS must be paused and this must be called on the
// same thread that called rts_pause().
typedef void (*ListThreadsCb)(void *user, StgTSO *);
void rts_listThreads(ListThreadsCb cb, void *user);
// List all non-thread GC roots. The RTS must be paused and this must be called
// on the same thread that called rts_pause().
typedef void (*ListRootsCb)(void *user, StgClosure *);
void rts_listMiscRoots(ListRootsCb cb, void *user);
/*
* The RTS allocates some thread-local data when you make a call into
* Haskell using one of the rts_eval() functions. This data is not
* normally freed until hs_exit(). If you want to free it earlier
* than this, perhaps because the thread is about to exit, then call
* rts_done() from the thread.
*
* It is safe to make more rts_eval() calls after calling rts_done(),
* but the next one will cause allocation of the thread-local memory
* again.
*/
void rts_done (void);
/* --------------------------------------------------------------------------
Wrapper closures
These are used by foreign export and foreign import "wrapper" stubs.
----------------------------------------------------------------------- */
// When producing Windows DLLs the we need to know which symbols are in the
// local package/DLL vs external ones.
//
// Note that RtsAPI.h is also included by foreign export stubs in
// the base package itself.
//
#if defined(COMPILING_WINDOWS_DLL) && !defined(COMPILING_BASE_PACKAGE)
__declspec(dllimport) extern StgWord base_GHCziTopHandler_runIO_closure[];
__declspec(dllimport) extern StgWord base_GHCziTopHandler_runNonIO_closure[];
#else
extern StgWord base_GHCziTopHandler_runIO_closure[];
extern StgWord base_GHCziTopHandler_runNonIO_closure[];
#endif
#define runIO_closure base_GHCziTopHandler_runIO_closure
#define runNonIO_closure base_GHCziTopHandler_runNonIO_closure
/* ------------------------------------------------------------------------ */
#if defined(__cplusplus)
}
#endif
|