1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 2000-2012
*
* RTS Object Linker
*
* ---------------------------------------------------------------------------*/
#include "Rts.h"
#include "sm/OSMem.h"
#include "RtsUtils.h"
#include "linker/M32Alloc.h"
#include "LinkerInternals.h"
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
/*
Note [Compile Time Trickery]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This file implements two versions of each of the `m32_*` functions. At the top
of the file there is the real implementation (compiled in when
`RTS_LINKER_USE_MMAP` is true) and a dummy implementation that exists only to
satisfy the compiler and which should never be called. If any of these dummy
implementations are called the program will abort.
The rationale for this is to allow the calling code to be written without using
the C pre-processor (CPP) `#if` hackery. The value of `RTS_LINKER_USE_MMAP` is
known at compile time, code like:
if (RTS_LINKER_USE_MMAP)
m32_allocator_init();
will be compiled to call to `m32_allocator_init` if `RTS_LINKER_USE_MMAP` is
true and will be optimised away to nothing if `RTS_LINKER_USE_MMAP` is false.
However, regardless of the value of `RTS_LINKER_USE_MMAP` the compiler will
still check the call for syntax and correct function parameter types.
*/
#if RTS_LINKER_USE_MMAP == 1
/*
Note [M32 Allocator]
~~~~~~~~~~~~~~~~~~~~
A memory allocator that allocates only pages in the 32-bit range (lower 2GB).
This is useful on 64-bit platforms to ensure that addresses of allocated
objects can be referenced with a 32-bit relative offset.
Initially, the linker used `mmap` to allocate a page per object. Hence it
wasted a lot of space for small objects (see #9314). With this allocator, we
try to fill pages as much as we can for small objects.
The interface
-------------
The allocator exposes three operations:
* m32_allocator_new creates a new allocator; an allocator may be configured
to allocate code (readable/executable) pages or data (readable/writeable)
pages.
* m32_alloc uses an allocator to allocated a (aligned) bit of memory
*
* m32_allocator_flush is used to indicate that the pages allocated thusfar
have been filled. This will protect the pages.
* m32_allocator_free is used to free the allocator and the pages it has
allocated.
How does it work?
-----------------
The allocator manages two kinds of allocations:
* small allocations, which are allocated into a set of "nursery" pages
(recorded in m32_allocator_t.pages; the size of the set is <= M32_MAX_PAGES)
* large allocations are those larger than a page and are mapped directly
Each page (or the first page of a large allocation) begins with a m32_page_t
header, which records various information depending upon what stage of its
life-cycle it is in:
* in the case of a page in the small-allocation nursery: the number of bytes
allocated into the page thusfar
* in the case of a filled page:
* the size of the mapping (PAGE_SIZE in the case
of a nursery page, or greater in the case of a page arising from a large
allocation)
Allocation (in the case of a small request) consists of walking the nursery to
find a page that will accommodate the request. If none exists then we allocate a
new nursery page (flushing an existing one to the filled list if the nursery is
full).
The allocator maintains two linked lists of filled pages, both linked together
with m32_page_t.link:
* unprotected_pages records pages that have been filled but have not yet been
protected (e.g. due to a call to m32_allocator_flush)
* protect_pages records pages that have been filled and protected
m32_allocator_flush does two things:
* it flushes all pages from the nursery
* it protects the pages in m32_allocator_t.unprotected_list (and formerly in
the nursery) and moves them
to protected_list.
For large objects, the remaining space at the end of the last page is left
unused by the allocator. It can be used with care as it will be freed with the
associated large object. GHC linker uses this feature/hack, hence changing the
implementation of the M32 allocator must be done with care (i.e. do not try to
improve the allocator to avoid wasting this space without modifying the linker
code accordingly).
To avoid unnecessary mapping/unmapping we maintain a global list of free pages
(which can grow up to M32_MAX_FREE_PAGE_POOL_SIZE long). Pages on this list
have the usual m32_page_t header and are linked together with
m32_page_t.free_page.next. When run out of free pages we allocate a chunk of
M32_MAP_PAGES to both avoid fragmenting our address space and amortize the
runtime cost of the mapping.
The allocator is *not* thread-safe.
*/
#define ROUND_UP(x,size) ((x + size - 1) & ~(size - 1))
#define ROUND_DOWN(x,size) (x & ~(size - 1))
/****************************************************************************
* M32 ALLOCATOR (see Note [M32 Allocator]
***************************************************************************/
/* How many open pages each allocator will keep around? */
#define M32_MAX_PAGES 32
/* How many pages should we map at once when re-filling the free page pool? */
#define M32_MAP_PAGES 32
/* Upper bound on the number of pages to keep in the free page pool */
#define M32_MAX_FREE_PAGE_POOL_SIZE 64
/**
* Page header
*
* Every page (or large allocation) allocated with m32 has one of these at its
* start.
*/
struct m32_page_t {
union {
// Pages (or large allocations) that have been filled and are in either the
// unprotected_list or protected_list are linked together with this field.
struct {
uint32_t size;
uint32_t next; // this is a m32_page_t*, truncated to 32-bits. This is safe
// as we are only allocating in the bottom 32-bits
} filled_page;
// Pages in the small-allocation nursery encode their current allocation
// offset here.
size_t current_size;
// Pages in the global free page pool are linked via this field.
struct {
struct m32_page_t *next;
} free_page;
};
};
static void
m32_filled_page_set_next(struct m32_page_t *page, struct m32_page_t *next)
{
if (next > (struct m32_page_t *) 0xffffffff) {
barf("m32_filled_page_set_next: Page not in lower 32-bits");
}
page->filled_page.next = (uint32_t) (uintptr_t) next;
}
static struct m32_page_t *
m32_filled_page_get_next(struct m32_page_t *page)
{
return (struct m32_page_t *) (uintptr_t) page->filled_page.next;
}
/**
* Allocator
*
* Currently an allocator is just a set of pages being filled. The maximum
* number of pages can be configured with M32_MAX_PAGES.
*/
struct m32_allocator_t {
bool executable;
// List of pages that have been filled but not yet protected.
struct m32_page_t *unprotected_list;
// List of pages that have been filled and protected.
struct m32_page_t *protected_list;
// Pages in the small-allocation nursery
struct m32_page_t *pages[M32_MAX_PAGES];
};
/**
* Global free page pool
*
* We keep a small pool of free pages around to avoid fragmentation.
*/
struct m32_page_t *m32_free_page_pool = NULL;
unsigned int m32_free_page_pool_size = 0;
// TODO
/**
* Free a page or, if possible, place it in the free page pool.
*/
static void
m32_release_page(struct m32_page_t *page)
{
if (m32_free_page_pool_size < M32_MAX_FREE_PAGE_POOL_SIZE) {
page->free_page.next = m32_free_page_pool;
m32_free_page_pool = page;
m32_free_page_pool_size ++;
} else {
munmapForLinker((void *) page, getPageSize(), "m32_release_page");
}
}
/**
* Allocate a page from the free page pool or operating system. No guarantee is
* made regarding the state of the m32_page_t fields.
*/
static struct m32_page_t *
m32_alloc_page(void)
{
if (m32_free_page_pool_size == 0) {
/*
* Free page pool is empty; refill it with a new batch of M32_MAP_PAGES
* pages.
*/
const size_t pgsz = getPageSize();
uint8_t *chunk = mmapAnonForLinker(pgsz * M32_MAP_PAGES);
if (chunk > (uint8_t *) 0xffffffff) {
barf("m32_alloc_page: failed to get allocation in lower 32-bits");
}
#define GET_PAGE(i) ((struct m32_page_t *) (chunk + (i) * pgsz))
for (int i=0; i < M32_MAP_PAGES; i++) {
struct m32_page_t *page = GET_PAGE(i);
page->free_page.next = GET_PAGE(i+1);
}
GET_PAGE(M32_MAP_PAGES-1)->free_page.next = m32_free_page_pool;
m32_free_page_pool = (struct m32_page_t *) chunk;
m32_free_page_pool_size += M32_MAP_PAGES;
#undef GET_PAGE
}
struct m32_page_t *page = m32_free_page_pool;
m32_free_page_pool = page->free_page.next;
m32_free_page_pool_size --;
return page;
}
/**
* Initialize the allocator structure
* This is the real implementation. There is another dummy implementation below.
* See the note titled "Compile Time Trickery" at the top of this file.
*/
m32_allocator *
m32_allocator_new(bool executable)
{
m32_allocator *alloc =
stgMallocBytes(sizeof(m32_allocator), "m32_new_allocator");
memset(alloc, 0, sizeof(struct m32_allocator_t));
alloc->executable = executable;
return alloc;
}
/**
* Unmap all pages on the given list.
*/
static void
m32_allocator_unmap_list(struct m32_page_t *head)
{
while (head != NULL) {
struct m32_page_t *next = m32_filled_page_get_next(head);
munmapForLinker((void *) head, head->filled_page.size, "m32_allocator_unmap_list");
head = next;
}
}
/**
* Free an m32_allocator and the pages that it has allocated.
*/
void m32_allocator_free(m32_allocator *alloc)
{
/* free filled pages */
m32_allocator_unmap_list(alloc->unprotected_list);
m32_allocator_unmap_list(alloc->protected_list);
/* free partially-filled pages */
const size_t pgsz = getPageSize();
for (int i=0; i < M32_MAX_PAGES; i++) {
if (alloc->pages[i]) {
munmapForLinker(alloc->pages[i], pgsz, "m32_allocator_free");
}
}
stgFree(alloc);
}
/**
* Push a page onto the given filled page list.
*/
static void
m32_allocator_push_filled_list(struct m32_page_t **head, struct m32_page_t *page)
{
m32_filled_page_set_next(page, *head);
*head = page;
}
/**
* Release the allocator's reference to pages on the "filling" list. This
* should be called when it is believed that no more allocations will be needed
* from the allocator to ensure that empty pages waiting to be filled aren't
* unnecessarily held.
*
* If this allocator is for executable allocations this is where we mark the
* filled pages as executable (and no longer writable).
*
* This is the real implementation. There is another dummy implementation below.
* See the note titled "Compile Time Trickery" at the top of this file.
*/
void
m32_allocator_flush(m32_allocator *alloc) {
for (int i=0; i<M32_MAX_PAGES; i++) {
if (alloc->pages[i] == NULL) {
continue;
} else if (alloc->pages[i]->current_size == sizeof(struct m32_page_t)) {
// the page is empty, free it
m32_release_page(alloc->pages[i]);
} else {
// the page contains data, move it to the unprotected list
m32_allocator_push_filled_list(&alloc->unprotected_list, alloc->pages[i]);
}
alloc->pages[i] = NULL;
}
// Write-protect pages if this is an executable-page allocator.
if (alloc->executable) {
struct m32_page_t *page = alloc->unprotected_list;
while (page != NULL) {
struct m32_page_t *next = m32_filled_page_get_next(page);
m32_allocator_push_filled_list(&alloc->protected_list, page);
mmapForLinkerMarkExecutable(page, page->filled_page.size);
page = next;
}
alloc->unprotected_list = NULL;
}
}
/**
* Return true if the allocation request should be considered "large".
*/
static bool
m32_is_large_object(size_t size, size_t alignment)
{
return size >= getPageSize() - ROUND_UP(sizeof(struct m32_page_t), alignment);
}
/**
* Allocate `size` bytes of memory with the given alignment.
*
* This is the real implementation. There is another dummy implementation below.
* See the note titled "Compile Time Trickery" at the top of this file.
*/
void *
m32_alloc(struct m32_allocator_t *alloc, size_t size, size_t alignment)
{
size_t pgsz = getPageSize();
if (m32_is_large_object(size,alignment)) {
// large object
size_t alsize = ROUND_UP(sizeof(struct m32_page_t), alignment);
struct m32_page_t *page = mmapAnonForLinker(alsize+size);
if (page == NULL) {
sysErrorBelch("m32_alloc: Failed to map pages for %zd bytes", size);
return NULL;
} else if (page > (struct m32_page_t *) 0xffffffff) {
debugBelch("m32_alloc: warning: Allocation of %zd bytes resulted in pages above 4GB (%p)",
size, page);
}
page->filled_page.size = alsize + size;
m32_allocator_push_filled_list(&alloc->unprotected_list, (struct m32_page_t *) page);
return (char*) page + alsize;
}
// small object
// Try to find a page that can contain it
int empty = -1;
int most_filled = -1;
int i;
for (i=0; i<M32_MAX_PAGES; i++) {
// empty page
if (alloc->pages[i] == NULL) {
empty = empty == -1 ? i : empty;
continue;
}
// page can contain the buffer?
size_t alsize = ROUND_UP(alloc->pages[i]->current_size, alignment);
if (size <= pgsz - alsize) {
void * addr = (char*)alloc->pages[i] + alsize;
alloc->pages[i]->current_size = alsize + size;
return addr;
}
// is this the most filled page we've seen so far?
if (most_filled == -1
|| alloc->pages[most_filled]->current_size < alloc->pages[i]->current_size)
{
most_filled = i;
}
}
// If we haven't found an empty page, flush the most filled one
if (empty == -1) {
m32_allocator_push_filled_list(&alloc->unprotected_list, alloc->pages[most_filled]);
alloc->pages[most_filled] = NULL;
empty = most_filled;
}
// Allocate a new page
struct m32_page_t *page = m32_alloc_page();
if (page == NULL) {
return NULL;
}
alloc->pages[empty] = page;
// Add header size and padding
alloc->pages[empty]->current_size =
size+ROUND_UP(sizeof(struct m32_page_t),alignment);
return (char*)page + ROUND_UP(sizeof(struct m32_page_t),alignment);
}
#elif RTS_LINKER_USE_MMAP == 0
// The following implementations of these functions should never be called. If
// they are, there is a bug at the call site.
// See the note titled "Compile Time Trickery" at the top of this file.
m32_allocator *
m32_allocator_new(bool executable STG_UNUSED)
{
barf("%s: RTS_LINKER_USE_MMAP is %d", __func__, RTS_LINKER_USE_MMAP);
}
void m32_allocator_free(m32_allocator *alloc STG_UNUSED)
{
barf("%s: RTS_LINKER_USE_MMAP is %d", __func__, RTS_LINKER_USE_MMAP);
}
void
m32_allocator_flush(m32_allocator *alloc STG_UNUSED)
{
barf("%s: RTS_LINKER_USE_MMAP is %d", __func__, RTS_LINKER_USE_MMAP);
}
void *
m32_alloc(m32_allocator *alloc STG_UNUSED,
size_t size STG_UNUSED,
size_t alignment STG_UNUSED)
{
barf("%s: RTS_LINKER_USE_MMAP is %d", __func__, RTS_LINKER_USE_MMAP);
}
#else
#error RTS_LINKER_USE_MMAP should be either `0` or `1`.
#endif
|