1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1995-2002
*
* Support for concurrent non-blocking I/O and thread waiting in the
* non-threaded RTS. In the threaded RTS, this file is not used at
* all, instead we use the IO manager thread implemented in Haskell in
* the base package.
*
* ---------------------------------------------------------------------------*/
#include "rts/PosixSource.h"
#include "Rts.h"
#include "Signals.h"
#include "Schedule.h"
#include "Prelude.h"
#include "RaiseAsync.h"
#include "RtsUtils.h"
#include "Capability.h"
#include "Select.h"
#include "IOManager.h"
#include "Stats.h"
#include "GetTime.h"
# if defined(HAVE_SYS_SELECT_H)
# include <sys/select.h>
# endif
# if defined(HAVE_SYS_TYPES_H)
# include <sys/types.h>
# endif
#include <errno.h>
#include <string.h>
#include "Clock.h"
#if !defined(THREADED_RTS)
// The target time for a threadDelay is stored in a one-word quantity
// in the TSO (tso->block_info.target). On a 32-bit machine we
// therefore can't afford to use nanosecond resolution because it
// would overflow too quickly, so instead we use millisecond
// resolution.
#if SIZEOF_VOID_P == 4
#define LowResTimeToTime(t) (USToTime((t) * 1000))
#define TimeToLowResTimeRoundDown(t) ((LowResTime)(TimeToUS(t) / 1000))
#define TimeToLowResTimeRoundUp(t) ((TimeToUS(t) + 1000-1) / 1000)
#else
#define LowResTimeToTime(t) (t)
#define TimeToLowResTimeRoundDown(t) (t)
#define TimeToLowResTimeRoundUp(t) (t)
#endif
/*
* Return the time since the program started, in LowResTime,
* rounded down.
*/
static LowResTime getLowResTimeOfDay(void)
{
return TimeToLowResTimeRoundDown(getProcessElapsedTime());
}
/*
* For a given microsecond delay, return the target time in LowResTime.
*/
LowResTime getDelayTarget (HsInt us)
{
Time elapsed;
elapsed = getProcessElapsedTime();
// If the desired target would be larger than the maximum Time,
// default to the maximum Time. (#7087)
if (us > TimeToUS(TIME_MAX - elapsed)) {
return TimeToLowResTimeRoundDown(TIME_MAX);
} else {
// round up the target time, because we never want to sleep *less*
// than the desired amount.
return TimeToLowResTimeRoundUp(elapsed + USToTime(us));
}
}
/* There's a clever trick here to avoid problems when the time wraps
* around. Since our maximum delay is smaller than 31 bits of ticks
* (it's actually 31 bits of microseconds), we can safely check
* whether a timer has expired even if our timer will wrap around
* before the target is reached, using the following formula:
*
* (int)((uint)current_time - (uint)target_time) < 0
*
* if this is true, then our time has expired.
* (idea due to Andy Gill).
*/
static bool wakeUpSleepingThreads (LowResTime now)
{
StgTSO *tso;
bool flag = false;
while (MainCapability.iomgr->sleeping_queue != END_TSO_QUEUE) {
tso = MainCapability.iomgr->sleeping_queue;
if (((long)now - (long)tso->block_info.target) < 0) {
break;
}
MainCapability.iomgr->sleeping_queue = tso->_link;
tso->why_blocked = NotBlocked;
tso->_link = END_TSO_QUEUE;
IF_DEBUG(scheduler, debugBelch("Waking up sleeping thread %"
FMT_StgThreadID "\n", tso->id));
// MainCapability: this code is !THREADED_RTS
pushOnRunQueue(&MainCapability,tso);
flag = true;
}
return flag;
}
static void STG_NORETURN
fdOutOfRange (int fd)
{
errorBelch("file descriptor %d out of range for select (0--%d).\n"
"Recompile with -threaded to work around this.",
fd, (int)FD_SETSIZE);
stg_exit(EXIT_FAILURE);
}
/*
* State of individual file descriptor after a 'select()' poll.
*/
enum FdState {
RTS_FD_IS_READY = 0,
RTS_FD_IS_BLOCKING,
RTS_FD_IS_INVALID,
};
static enum FdState fdPollReadState (int fd)
{
int r;
fd_set rfd;
struct timeval now;
FD_ZERO(&rfd);
FD_SET(fd, &rfd);
/* only poll */
now.tv_sec = 0;
now.tv_usec = 0;
for (;;)
{
r = select(fd+1, &rfd, NULL, NULL, &now);
/* the descriptor is sane */
if (r != -1)
break;
switch (errno)
{
case EBADF: return RTS_FD_IS_INVALID;
case EINTR: continue;
default:
sysErrorBelch("select");
stg_exit(EXIT_FAILURE);
}
}
if (r == 0)
return RTS_FD_IS_BLOCKING;
else
return RTS_FD_IS_READY;
}
static enum FdState fdPollWriteState (int fd)
{
int r;
fd_set wfd;
struct timeval now;
FD_ZERO(&wfd);
FD_SET(fd, &wfd);
/* only poll */
now.tv_sec = 0;
now.tv_usec = 0;
for (;;)
{
r = select(fd+1, NULL, &wfd, NULL, &now);
/* the descriptor is sane */
if (r != -1)
break;
switch (errno)
{
case EBADF: return RTS_FD_IS_INVALID;
case EINTR: continue;
default:
sysErrorBelch("select");
stg_exit(EXIT_FAILURE);
}
}
if (r == 0)
return RTS_FD_IS_BLOCKING;
else
return RTS_FD_IS_READY;
}
/* Argument 'wait' says whether to wait for I/O to become available,
* or whether to just check and return immediately. If there are
* other threads ready to run, we normally do the non-waiting variety,
* otherwise we wait (see Schedule.c).
*
* SMP note: must be called with sched_mutex locked.
*
* Windows: select only works on sockets, so this doesn't really work,
* though it makes things better than before. MsgWaitForMultipleObjects
* should really be used, though it only seems to work for read handles,
* not write handles.
*
*/
void
awaitEvent(bool wait)
{
StgTSO *tso, *prev, *next;
fd_set rfd,wfd;
int numFound;
int maxfd = -1;
bool seen_bad_fd = false;
struct timeval tv, *ptv;
LowResTime now;
IF_DEBUG(scheduler,
debugBelch("scheduler: checking for threads blocked on I/O");
if (wait) {
debugBelch(" (waiting)");
}
debugBelch("\n");
);
/* loop until we've woken up some threads. This loop is needed
* because the select timing isn't accurate, we sometimes sleep
* for a while but not long enough to wake up a thread in
* a threadDelay.
*/
do {
now = getLowResTimeOfDay();
if (wakeUpSleepingThreads(now)) {
return;
}
/*
* Collect all of the fd's that we're interested in
*/
FD_ZERO(&rfd);
FD_ZERO(&wfd);
for(tso = MainCapability.iomgr->blocked_queue_hd;
tso != END_TSO_QUEUE;
tso = next) {
next = tso->_link;
/* On older FreeBSDs, FD_SETSIZE is unsigned. Cast it to signed int
* in order to switch off the 'comparison between signed and
* unsigned error message
* Newer versions of FreeBSD have switched to unsigned int:
* https://github.com/freebsd/freebsd/commit/12ae7f74a071f0439763986026525094a7032dfd
* http://fa.freebsd.cvs-all.narkive.com/bCWNHbaC/svn-commit-r265051-head-sys-sys
* So the (int) cast should be removed across the code base once
* GHC requires a version of FreeBSD that has that change in it.
*/
switch (tso->why_blocked) {
case BlockedOnRead:
{
int fd = tso->block_info.fd;
if ((fd >= (int)FD_SETSIZE) || (fd < 0)) {
fdOutOfRange(fd);
}
maxfd = (fd > maxfd) ? fd : maxfd;
FD_SET(fd, &rfd);
continue;
}
case BlockedOnWrite:
{
int fd = tso->block_info.fd;
if ((fd >= (int)FD_SETSIZE) || (fd < 0)) {
fdOutOfRange(fd);
}
maxfd = (fd > maxfd) ? fd : maxfd;
FD_SET(fd, &wfd);
continue;
}
default:
barf("AwaitEvent");
}
}
if (!wait) {
// just poll
tv.tv_sec = 0;
tv.tv_usec = 0;
ptv = &tv;
} else if (MainCapability.iomgr->sleeping_queue != END_TSO_QUEUE) {
/* SUSv2 allows implementations to have an implementation defined
* maximum timeout for select(2). The standard requires
* implementations to silently truncate values exceeding this maximum
* to the maximum. Unfortunately, OSX and the BSD don't comply with
* SUSv2, instead opting to return EINVAL for values exceeding a
* timeout of 1e8.
*
* Select returning an error crashes the runtime in a bad way. To
* play it safe we truncate any timeout to 31 days, as SUSv2 requires
* any implementations maximum timeout to be larger than this.
*
* Truncating the timeout is not an issue, because if nothing
* interesting happens when the timeout expires, we'll see that the
* thread still wants to be blocked longer and simply block on a new
* iteration of select(2).
*/
const time_t max_seconds = 2678400; // 31 * 24 * 60 * 60
Time min = LowResTimeToTime(
MainCapability.iomgr->sleeping_queue->block_info.target
- now
);
tv.tv_sec = TimeToSeconds(min);
if (tv.tv_sec < max_seconds) {
tv.tv_usec = TimeToUS(min) % 1000000;
} else {
tv.tv_sec = max_seconds;
tv.tv_usec = 0;
}
ptv = &tv;
} else {
ptv = NULL;
}
/* Check for any interesting events */
while ((numFound = select(maxfd+1, &rfd, &wfd, NULL, ptv)) < 0) {
if (errno != EINTR) {
if ( errno == EBADF ) {
seen_bad_fd = true;
break;
} else {
sysErrorBelch("select");
stg_exit(EXIT_FAILURE);
}
}
/* We got a signal; could be one of ours. If so, we need
* to start up the signal handler straight away, otherwise
* we could block for a long time before the signal is
* serviced.
*/
#if defined(RTS_USER_SIGNALS)
if (RtsFlags.MiscFlags.install_signal_handlers && signals_pending()) {
startSignalHandlers(&MainCapability);
return; /* still hold the lock */
}
#endif
/* we were interrupted, return to the scheduler immediately.
*/
if (sched_state >= SCHED_INTERRUPTING) {
return; /* still hold the lock */
}
/* check for threads that need waking up
*/
wakeUpSleepingThreads(getLowResTimeOfDay());
/* If new runnable threads have arrived, stop waiting for
* I/O and run them.
*/
if (!emptyRunQueue(&MainCapability)) {
return; /* still hold the lock */
}
}
/* Step through the waiting queue, unblocking every thread that now has
* a file descriptor in a ready state.
*/
prev = NULL;
{
/*
* The queue is being rebuilt in this loop:
* 'blocked_queue_hd' will contain already
* traversed blocked TSOs. As a result you
* can't use functions accessing 'blocked_queue_hd'.
*/
for(tso = MainCapability.iomgr->blocked_queue_hd;
tso != END_TSO_QUEUE;
tso = next) {
next = tso->_link;
int fd;
enum FdState fd_state = RTS_FD_IS_BLOCKING;
switch (tso->why_blocked) {
case BlockedOnRead:
fd = tso->block_info.fd;
if (seen_bad_fd) {
fd_state = fdPollReadState (fd);
} else if (FD_ISSET(fd, &rfd)) {
fd_state = RTS_FD_IS_READY;
}
break;
case BlockedOnWrite:
fd = tso->block_info.fd;
if (seen_bad_fd) {
fd_state = fdPollWriteState (fd);
} else if (FD_ISSET(fd, &wfd)) {
fd_state = RTS_FD_IS_READY;
}
break;
default:
barf("awaitEvent");
}
switch (fd_state) {
case RTS_FD_IS_INVALID:
/*
* Don't let RTS loop on such descriptors,
* pass an IOError to blocked threads (#4934)
*/
IF_DEBUG(scheduler,
debugBelch("Killing blocked thread %" FMT_StgThreadID
" on bad fd=%i\n", tso->id, fd));
raiseAsync(&MainCapability, tso,
(StgClosure *)blockedOnBadFD_closure, false, NULL);
break;
case RTS_FD_IS_READY:
IF_DEBUG(scheduler,
debugBelch("Waking up blocked thread %" FMT_StgThreadID "\n",
tso->id));
tso->why_blocked = NotBlocked;
tso->_link = END_TSO_QUEUE;
pushOnRunQueue(&MainCapability,tso);
break;
case RTS_FD_IS_BLOCKING:
if (prev == NULL)
MainCapability.iomgr->blocked_queue_hd = tso;
else
setTSOLink(&MainCapability, prev, tso);
prev = tso;
break;
}
}
if (prev == NULL)
MainCapability.iomgr->blocked_queue_hd =
MainCapability.iomgr->blocked_queue_tl = END_TSO_QUEUE;
else {
prev->_link = END_TSO_QUEUE;
MainCapability.iomgr->blocked_queue_tl = prev;
}
}
} while (wait && sched_state == SCHED_RUNNING
&& emptyRunQueue(&MainCapability));
}
#endif /* THREADED_RTS */
|