summaryrefslogtreecommitdiff
path: root/rts/sm/NonMovingAllocate.c
blob: f6d2621f2334c9154e3481e1358a496ff565c0e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2018
 *
 * Non-moving garbage collector and allocator
 *
 * ---------------------------------------------------------------------------*/

#include "Rts.h"
#include "RtsUtils.h"
#include "Storage.h"
#include "GCThread.h"
#include "GCTDecl.h"
#include "GCUtils.h"
#include "Capability.h"
#include "NonMovingAllocate.h"

enum AllocLockMode { NO_LOCK, ALLOC_SPIN_LOCK, SM_LOCK };

static inline unsigned long log2_ceil(unsigned long x);
static struct NonmovingSegment *nonmovingAllocSegment(enum AllocLockMode mode, uint32_t node);
static void nonmovingClearBitmap(struct NonmovingSegment *seg);
static void nonmovingInitSegment(struct NonmovingSegment *seg, uint8_t log_block_size);
static bool advance_next_free(struct NonmovingSegment *seg, const unsigned int blk_count);
static struct NonmovingSegment *nonmovingPopFreeSegment(void);
static struct NonmovingSegment *pop_active_segment(struct NonmovingAllocator *alloca);
static void *nonmovingAllocate_(enum AllocLockMode mode, Capability *cap, StgWord sz);

static inline unsigned long log2_ceil(unsigned long x)
{
    return (sizeof(unsigned long)*8) - __builtin_clzl(x-1);
}

static inline void acquire_alloc_lock(enum AllocLockMode mode) {
    switch (mode) {
        case SM_LOCK:
            ACQUIRE_SM_LOCK;
            break;
        case ALLOC_SPIN_LOCK:
            ACQUIRE_ALLOC_BLOCK_SPIN_LOCK();
            break;
        case NO_LOCK:
            break;
    }
}

static inline void release_alloc_lock(enum AllocLockMode mode) {
    switch (mode) {
        case SM_LOCK:
            RELEASE_SM_LOCK;
            break;
        case ALLOC_SPIN_LOCK:
            RELEASE_ALLOC_BLOCK_SPIN_LOCK();
            break;
        case NO_LOCK:
            break;
    }
}

/*
 * Request a fresh segment from the free segment list or allocate one of the
 * given node.
 *
 * Caller must hold SM_MUTEX (although we take the gc_alloc_block_sync spinlock
 * under the assumption that we are in a GC context).
 */
static struct NonmovingSegment *nonmovingAllocSegment(enum AllocLockMode mode, uint32_t node)
{
    // First try taking something off of the free list
    struct NonmovingSegment *ret;
    ret = nonmovingPopFreeSegment();

    // Nothing in the free list, allocate a new segment...
    if (ret == NULL) {
        acquire_alloc_lock(mode);
        bdescr *bd = allocAlignedGroupOnNode(node, NONMOVING_SEGMENT_BLOCKS);
        // See Note [Live data accounting in nonmoving collector].
        oldest_gen->n_blocks += bd->blocks;
        oldest_gen->n_words  += BLOCK_SIZE_W * bd->blocks;
        release_alloc_lock(mode);

        for (StgWord32 i = 0; i < bd->blocks; ++i) {
            initBdescr(&bd[i], oldest_gen, oldest_gen);
            bd[i].flags = BF_NONMOVING;
        }
        ret = (struct NonmovingSegment *)bd->start;
    }

    // Check alignment
    ASSERT(((uintptr_t)ret % NONMOVING_SEGMENT_SIZE) == 0);
    return ret;
}

static void nonmovingClearBitmap(struct NonmovingSegment *seg)
{
    unsigned int n = nonmovingSegmentBlockCount(seg);
    memset(seg->bitmap, 0, n);
}

static void nonmovingInitSegment(struct NonmovingSegment *seg, uint8_t log_block_size)
{
    bdescr *bd = Bdescr((P_) seg);
    seg->link = NULL;
    seg->todo_link = NULL;
    seg->next_free = 0;
    SET_SEGMENT_STATE(seg, FREE);
    bd->nonmoving_segment.log_block_size = log_block_size;
    bd->nonmoving_segment.next_free_snap = 0;
    bd->u.scan = nonmovingSegmentGetBlock(seg, 0);
    nonmovingClearBitmap(seg);
}

/* Initialize a new capability. Must hold SM_LOCK. */
void nonmovingInitCapability(Capability *cap)
{
    // Initialize current segment array
    struct NonmovingSegment **segs =
        stgMallocBytes(sizeof(struct NonmovingSegment*) * NONMOVING_ALLOCA_CNT, "current segment array");
    for (unsigned int i = 0; i < NONMOVING_ALLOCA_CNT; i++) {
        segs[i] = nonmovingAllocSegment(NO_LOCK, cap->node);
        nonmovingInitSegment(segs[i], NONMOVING_ALLOCA0 + i);
        SET_SEGMENT_STATE(segs[i], CURRENT);
    }
    cap->current_segments = segs;

    // Initialize update remembered set
    cap->upd_rem_set.queue.blocks = NULL;
    nonmovingInitUpdRemSet(&cap->upd_rem_set);
}

// Advance a segment's next_free pointer. Returns true if segment if full.
static bool advance_next_free(struct NonmovingSegment *seg, const unsigned int blk_count)
{
    const uint8_t *bitmap = seg->bitmap;
    ASSERT(blk_count == nonmovingSegmentBlockCount(seg));
#if defined(NAIVE_ADVANCE_FREE)
    // reference implementation
    for (unsigned int i = seg->next_free+1; i < blk_count; i++) {
        if (!bitmap[i]) {
            seg->next_free = i;
            return false;
        }
    }
    seg->next_free = blk_count;
    return true;
#else
    const uint8_t *c = memchr(&bitmap[seg->next_free+1], 0, blk_count - seg->next_free - 1);
    if (c == NULL) {
        seg->next_free = blk_count;
        return true;
    } else {
        seg->next_free = c - bitmap;
        return false;
    }
#endif
}

static struct NonmovingSegment *nonmovingPopFreeSegment(void)
{
    while (true) {
        struct NonmovingSegment *seg = ACQUIRE_LOAD(&nonmovingHeap.free);
        if (seg == NULL) {
            return NULL;
        }
        if (cas((StgVolatilePtr) &nonmovingHeap.free,
                (StgWord) seg,
                (StgWord) seg->link) == (StgWord) seg) {
            __sync_sub_and_fetch(&nonmovingHeap.n_free, 1);
            return seg;
        }
    }
}

static struct NonmovingSegment *pop_active_segment(struct NonmovingAllocator *alloca)
{
    while (true) {
        // Synchronizes with CAS in nonmovingPushActiveSegment
        struct NonmovingSegment *seg = ACQUIRE_LOAD(&alloca->active);
        if (seg == NULL) {
            return NULL;
        }
        struct NonmovingSegment *next = RELAXED_LOAD(&seg->link);
        if (cas((StgVolatilePtr) &alloca->active,
                (StgWord) seg,
                (StgWord) next) == (StgWord) seg) {
            return seg;
        }
    }
}

static void *nonmovingAllocate_(enum AllocLockMode mode, Capability *cap, StgWord sz)
{
    unsigned int log_block_size = log2_ceil(sz * sizeof(StgWord));
    unsigned int block_count = nonmovingBlockCountFromSize(log_block_size);

    // The max we ever allocate is 3276 bytes (anything larger is a large
    // object and not moved) which is covered by allocator 9.
    ASSERT(log_block_size < NONMOVING_ALLOCA0 + NONMOVING_ALLOCA_CNT);

    unsigned int alloca_idx = log_block_size - NONMOVING_ALLOCA0;
    struct NonmovingAllocator *alloca = &nonmovingHeap.allocators[alloca_idx];

    // Allocate into current segment
    struct NonmovingSegment *current = cap->current_segments[alloca_idx];
    ASSERT(current); // current is never NULL
    void *ret = nonmovingSegmentGetBlock_(current, log_block_size, current->next_free);
    ASSERT(GET_CLOSURE_TAG(ret) == 0); // check alignment

    // Advance the current segment's next_free or allocate a new segment if full
    bool full = advance_next_free(current, block_count);
    if (full) {
        // Current segment is full: update live data estimate link it to
        // filled, take an active segment if one exists, otherwise allocate a
        // new segment.

        // Update live data estimate.
        // See Note [Live data accounting in nonmoving collector].
        unsigned int new_blocks = block_count - nonmovingSegmentInfo(current)->next_free_snap;
        unsigned int block_size = 1 << log_block_size;
        atomic_inc(&oldest_gen->live_estimate, new_blocks * block_size / sizeof(W_));

        // push the current segment to the filled list
        nonmovingPushFilledSegment(current);

        // first look for a new segment in the active list
        struct NonmovingSegment *new_current = pop_active_segment(alloca);

        // there are no active segments, allocate new segment
        if (new_current == NULL) {
            new_current = nonmovingAllocSegment(mode, cap->node);
            nonmovingInitSegment(new_current, log_block_size);
        }

        // make it current
        new_current->link = NULL;
        SET_SEGMENT_STATE(new_current, CURRENT);
        cap->current_segments[alloca_idx] = new_current;
    }

    return ret;
}

/* Allocate a block in the nonmoving heap. Will take ALLOC_SPIN_LOCK if block
 * allocation is needed. sz is in words. */
GNUC_ATTR_HOT
void *nonmovingAllocateGC(Capability *cap, StgWord sz)
{
    return nonmovingAllocate_(ALLOC_SPIN_LOCK, cap, sz);
}

/* Allocate a block in the nonmoving heap. Will take SM_LOCK if block
 * allocation is needed. sz is in words. */
GNUC_ATTR_HOT
void *nonmovingAllocate(Capability *cap, StgWord sz)
{
    // Handle "bytes allocated" accounting in the same way we
    // do in Storage.c:allocate. See #23312.
    accountAllocation(cap, sz);
    cap->total_allocated += sz;
    return nonmovingAllocate_(SM_LOCK, cap, sz);
}