summaryrefslogtreecommitdiff
path: root/eeprom/decode-dimms
blob: 252f010df14adc73da54a2ed88c5b6c668ab3198 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
#!/usr/bin/perl -w
#
# EEPROM data decoder for SDRAM DIMM modules
#
# Copyright 1998, 1999 Philip Edelbrock <phil@netroedge.com>
# modified by Christian Zuckschwerdt <zany@triq.net>
# modified by Burkart Lingner <burkart@bollchen.de>
# Copyright (C) 2005-2013  Jean Delvare <khali@linux-fr.org>
#
#    This program is free software; you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation; either version 2 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program; if not, write to the Free Software
#    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
#    MA 02110-1301 USA.
#
#
# The eeprom driver must be loaded (unless option -x is used). For kernels
# older than 2.6.0, the eeprom driver can be found in the lm-sensors package.
#
# References:
# PC SDRAM Serial Presence
# Detect (SPD) Specification, Intel,
# 1997,1999, Rev 1.2B
#
# Jedec Standards 4.1.x & 4.5.x
# http://www.jedec.org
#

require 5.004;

use strict;
use POSIX qw(ceil);
use Fcntl qw(:DEFAULT :seek);
use File::Basename;
use vars qw($opt_html $opt_bodyonly $opt_side_by_side $opt_merge
	    $opt_igncheck $use_sysfs $use_hexdump $sbs_col_width
	    @vendors %decode_callback $revision @dimm $current %hexdump_cache);

use constant LITTLEENDIAN	=> "little-endian";
use constant BIGENDIAN		=> "big-endian";

$revision = '$Revision$ ($Date$)';
$revision =~ s/\$\w+: (.*?) \$/$1/g;
$revision =~ s/ \([^()]*\)//;

@vendors = (
["AMD", "AMI", "Fairchild", "Fujitsu",
 "GTE", "Harris", "Hitachi", "Inmos",
 "Intel", "I.T.T.", "Intersil", "Monolithic Memories",
 "Mostek", "Freescale (former Motorola)", "National", "NEC",
 "RCA", "Raytheon", "Conexant (Rockwell)", "Seeq",
 "NXP (former Signetics, Philips Semi.)", "Synertek", "Texas Instruments", "Toshiba",
 "Xicor", "Zilog", "Eurotechnique", "Mitsubishi",
 "Lucent (AT&T)", "Exel", "Atmel", "SGS/Thomson",
 "Lattice Semi.", "NCR", "Wafer Scale Integration", "IBM",
 "Tristar", "Visic", "Intl. CMOS Technology", "SSSI",
 "MicrochipTechnology", "Ricoh Ltd.", "VLSI", "Micron Technology",
 "SK Hynix (former Hyundai Electronics)", "OKI Semiconductor", "ACTEL", "Sharp",
 "Catalyst", "Panasonic", "IDT", "Cypress",
 "DEC", "LSI Logic", "Zarlink (former Plessey)", "UTMC",
 "Thinking Machine", "Thomson CSF", "Integrated CMOS (Vertex)", "Honeywell",
 "Tektronix", "Oracle Corporation (former Sun Microsystems)", "Silicon Storage Technology", "ProMos/Mosel Vitelic",
 "Infineon (former Siemens)", "Macronix", "Xerox", "Plus Logic",
 "SunDisk", "Elan Circuit Tech.", "European Silicon Str.", "Apple Computer",
 "Xilinx", "Compaq", "Protocol Engines", "SCI",
 "Seiko Instruments", "Samsung", "I3 Design System", "Klic",
 "Crosspoint Solutions", "Alliance Semiconductor", "Tandem", "Hewlett-Packard",
 "Integrated Silicon Solutions", "Brooktree", "New Media", "MHS Electronic",
 "Performance Semi.", "Winbond Electronic", "Kawasaki Steel", "Bright Micro",
 "TECMAR", "Exar", "PCMCIA", "LG Semi (former Goldstar)",
 "Northern Telecom", "Sanyo", "Array Microsystems", "Crystal Semiconductor",
 "Analog Devices", "PMC-Sierra", "Asparix", "Convex Computer",
 "Quality Semiconductor", "Nimbus Technology", "Transwitch", "Micronas (ITT Intermetall)",
 "Cannon", "Altera", "NEXCOM", "QUALCOMM",
 "Sony", "Cray Research", "AMS(Austria Micro)", "Vitesse",
 "Aster Electronics", "Bay Networks (Synoptic)", "Zentrum or ZMD", "TRW",
 "Thesys", "Solbourne Computer", "Allied-Signal", "Dialog",
 "Media Vision", "Numonyx Corporation (former Level One Communication)"],
["Cirrus Logic", "National Instruments", "ILC Data Device", "Alcatel Mietec",
 "Micro Linear", "Univ. of NC", "JTAG Technologies", "BAE Systems",
 "Nchip", "Galileo Tech", "Bestlink Systems", "Graychip",
 "GENNUM", "VideoLogic", "Robert Bosch", "Chip Express",
 "DATARAM", "United Microelec Corp.", "TCSI", "Smart Modular",
 "Hughes Aircraft", "Lanstar Semiconductor", "Qlogic", "Kingston",
 "Music Semi", "Ericsson Components", "SpaSE", "Eon Silicon Devices",
 "Programmable Micro Corp", "DoD", "Integ. Memories Tech.", "Corollary Inc.",
 "Dallas Semiconductor", "Omnivision", "EIV(Switzerland)", "Novatel Wireless",
 "Zarlink (former Mitel)", "Clearpoint", "Cabletron", "STEC (former Silicon Technology)",
 "Vanguard", "Hagiwara Sys-Com", "Vantis", "Celestica",
 "Century", "Hal Computers", "Rohm Company Ltd.", "Juniper Networks",
 "Libit Signal Processing", "Mushkin Enhanced Memory", "Tundra Semiconductor", "Adaptec Inc.",
 "LightSpeed Semi.", "ZSP Corp.", "AMIC Technology", "Adobe Systems",
 "Dynachip", "PNY Electronics", "Newport Digital", "MMC Networks",
 "T Square", "Seiko Epson", "Broadcom", "Viking Components",
 "V3 Semiconductor", "Flextronics (former Orbit)", "Suwa Electronics", "Transmeta",
 "Micron CMS", "American Computer & Digital Components Inc", "Enhance 3000 Inc", "Tower Semiconductor",
 "CPU Design", "Price Point", "Maxim Integrated Product", "Tellabs",
 "Centaur Technology", "Unigen Corporation", "Transcend Information", "Memory Card Technology",
 "CKD Corporation Ltd.", "Capital Instruments, Inc.", "Aica Kogyo, Ltd.", "Linvex Technology",
 "MSC Vertriebs GmbH", "AKM Company, Ltd.", "Dynamem, Inc.", "NERA ASA",
 "GSI Technology", "Dane-Elec (C Memory)", "Acorn Computers", "Lara Technology",
 "Oak Technology, Inc.", "Itec Memory", "Tanisys Technology", "Truevision",
 "Wintec Industries", "Super PC Memory", "MGV Memory", "Galvantech",
 "Gadzoox Nteworks", "Multi Dimensional Cons.", "GateField", "Integrated Memory System",
 "Triscend", "XaQti", "Goldenram", "Clear Logic",
 "Cimaron Communications", "Nippon Steel Semi. Corp.", "Advantage Memory", "AMCC",
 "LeCroy", "Yamaha Corporation", "Digital Microwave", "NetLogic Microsystems",
 "MIMOS Semiconductor", "Advanced Fibre", "BF Goodrich Data.", "Epigram",
 "Acbel Polytech Inc.", "Apacer Technology", "Admor Memory", "FOXCONN",
 "Quadratics Superconductor", "3COM"],
["Camintonn Corporation", "ISOA Incorporated", "Agate Semiconductor", "ADMtek Incorporated",
 "HYPERTEC", "Adhoc Technologies", "MOSAID Technologies", "Ardent Technologies",
 "Switchcore", "Cisco Systems, Inc.", "Allayer Technologies", "WorkX AG (Wichman)",
 "Oasis Semiconductor", "Novanet Semiconductor", "E-M Solutions", "Power General",
 "Advanced Hardware Arch.", "Inova Semiconductors GmbH", "Telocity", "Delkin Devices",
 "Symagery Microsystems", "C-Port Corporation", "SiberCore Technologies", "Southland Microsystems",
 "Malleable Technologies", "Kendin Communications", "Great Technology Microcomputer", "Sanmina Corporation",
 "HADCO Corporation", "Corsair", "Actrans System Inc.", "ALPHA Technologies",
 "Silicon Laboratories, Inc. (Cygnal)", "Artesyn Technologies", "Align Manufacturing", "Peregrine Semiconductor",
 "Chameleon Systems", "Aplus Flash Technology", "MIPS Technologies", "Chrysalis ITS",
 "ADTEC Corporation", "Kentron Technologies", "Win Technologies", "Tachyon Semiconductor (former ASIC Designs Inc.)",
 "Extreme Packet Devices", "RF Micro Devices", "Siemens AG", "Sarnoff Corporation",
 "Itautec SA (former Itautec Philco SA)", "Radiata Inc.", "Benchmark Elect. (AVEX)", "Legend",
 "SpecTek Incorporated", "Hi/fn", "Enikia Incorporated", "SwitchOn Networks",
 "AANetcom Incorporated", "Micro Memory Bank", "ESS Technology", "Virata Corporation",
 "Excess Bandwidth", "West Bay Semiconductor", "DSP Group", "Newport Communications",
 "Chip2Chip Incorporated", "Phobos Corporation", "Intellitech Corporation", "Nordic VLSI ASA",
 "Ishoni Networks", "Silicon Spice", "Alchemy Semiconductor", "Agilent Technologies",
 "Centillium Communications", "W.L. Gore", "HanBit Electronics", "GlobeSpan",
 "Element 14", "Pycon", "Saifun Semiconductors", "Sibyte, Incorporated",
 "MetaLink Technologies", "Feiya Technology", "I & C Technology", "Shikatronics",
 "Elektrobit", "Megic", "Com-Tier", "Malaysia Micro Solutions",
 "Hyperchip", "Gemstone Communications", "Anadigm (former Anadyne)", "3ParData",
 "Mellanox Technologies", "Tenx Technologies", "Helix AG", "Domosys",
 "Skyup Technology", "HiNT Corporation", "Chiaro", "MDT Technologies GmbH (former MCI Computer GMBH)",
 "Exbit Technology A/S", "Integrated Technology Express", "AVED Memory", "Legerity",
 "Jasmine Networks", "Caspian Networks", "nCUBE", "Silicon Access Networks",
 "FDK Corporation", "High Bandwidth Access", "MultiLink Technology", "BRECIS",
 "World Wide Packets", "APW", "Chicory Systems", "Xstream Logic",
 "Fast-Chip", "Zucotto Wireless", "Realchip", "Galaxy Power",
 "eSilicon", "Morphics Technology", "Accelerant Networks", "Silicon Wave",
 "SandCraft", "Elpida"],
["Solectron", "Optosys Technologies", "Buffalo (former Melco)", "TriMedia Technologies",
 "Cyan Technologies", "Global Locate", "Optillion", "Terago Communications",
 "Ikanos Communications", "Princeton Technology", "Nanya Technology", "Elite Flash Storage",
 "Mysticom", "LightSand Communications", "ATI Technologies", "Agere Systems",
 "NeoMagic", "AuroraNetics", "Golden Empire", "Mushkin",
 "Tioga Technologies", "Netlist", "TeraLogic", "Cicada Semiconductor",
 "Centon Electronics", "Tyco Electronics", "Magis Works", "Zettacom",
 "Cogency Semiconductor", "Chipcon AS", "Aspex Technology", "F5 Networks",
 "Programmable Silicon Solutions", "ChipWrights", "Acorn Networks", "Quicklogic",
 "Kingmax Semiconductor", "BOPS", "Flasys", "BitBlitz Communications",
 "eMemory Technology", "Procket Networks", "Purple Ray", "Trebia Networks",
 "Delta Electronics", "Onex Communications", "Ample Communications", "Memory Experts Intl",
 "Astute Networks", "Azanda Network Devices", "Dibcom", "Tekmos",
 "API NetWorks", "Bay Microsystems", "Firecron Ltd", "Resonext Communications",
 "Tachys Technologies", "Equator Technology", "Concept Computer", "SILCOM",
 "3Dlabs", "c't Magazine", "Sanera Systems", "Silicon Packets",
 "Viasystems Group", "Simtek", "Semicon Devices Singapore", "Satron Handelsges",
 "Improv Systems", "INDUSYS GmbH", "Corrent", "Infrant Technologies",
 "Ritek Corp", "empowerTel Networks", "Hypertec", "Cavium Networks",
 "PLX Technology", "Massana Design", "Intrinsity", "Valence Semiconductor",
 "Terawave Communications", "IceFyre Semiconductor", "Primarion", "Picochip Designs Ltd",
 "Silverback Systems", "Jade Star Technologies", "Pijnenburg Securealink",
 "takeMS - Ultron AG (former Memorysolution GmbH)", "Cambridge Silicon Radio",
 "Swissbit", "Nazomi Communications", "eWave System",
 "Rockwell Collins", "Picocel Co., Ltd.", "Alphamosaic Ltd", "Sandburst",
 "SiCon Video", "NanoAmp Solutions", "Ericsson Technology", "PrairieComm",
 "Mitac International", "Layer N Networks", "MtekVision", "Allegro Networks",
 "Marvell Semiconductors", "Netergy Microelectronic", "NVIDIA", "Internet Machines",
 "Peak Electronics", "Litchfield Communication", "Accton Technology", "Teradiant Networks",
 "Scaleo Chip (former Europe Technologies)", "Cortina Systems", "RAM Components", "Raqia Networks",
 "ClearSpeed", "Matsushita Battery", "Xelerated", "SimpleTech",
 "Utron Technology", "Astec International", "AVM gmbH", "Redux Communications",
 "Dot Hill Systems", "TeraChip"],
["T-RAM Incorporated", "Innovics Wireless", "Teknovus", "KeyEye Communications",
 "Runcom Technologies", "RedSwitch", "Dotcast", "Silicon Mountain Memory",
 "Signia Technologies", "Pixim", "Galazar Networks", "White Electronic Designs",
 "Patriot Scientific", "Neoaxiom Corporation", "3Y Power Technology", "Scaleo Chip (former Europe Technologies)",
 "Potentia Power Systems", "C-guys Incorporated", "Digital Communications Technology Incorporated", "Silicon-Based Technology",
 "Fulcrum Microsystems", "Positivo Informatica Ltd", "XIOtech Corporation", "PortalPlayer",
 "Zhiying Software", "Parker Vision, Inc. (former Direct2Data)", "Phonex Broadband", "Skyworks Solutions",
 "Entropic Communications", "Pacific Force Technology", "Zensys A/S", "Legend Silicon Corp.",
 "sci-worx GmbH", "SMSC (former Oasis Silicon Systems)", "Renesas Electronics (former Renesas Technology)", "Raza Microelectronics",
 "Phyworks", "MediaTek", "Non-cents Productions", "US Modular",
 "Wintegra Ltd", "Mathstar", "StarCore", "Oplus Technologies",
 "Mindspeed", "Just Young Computer", "Radia Communications", "OCZ",
 "Emuzed", "LOGIC Devices", "Inphi Corporation", "Quake Technologies",
 "Vixel", "SolusTek", "Kongsberg Maritime", "Faraday Technology",
 "Altium Ltd.", "Insyte", "ARM Ltd.", "DigiVision",
 "Vativ Technologies", "Endicott Interconnect Technologies", "Pericom", "Bandspeed",
 "LeWiz Communications", "CPU Technology", "Ramaxel Technology", "DSP Group",
 "Axis Communications", "Legacy Electronics", "Chrontel", "Powerchip Semiconductor",
 "MobilEye Technologies", "Excel Semiconductor", "A-DATA Technology", "VirtualDigm",
 "G Skill Intl", "Quanta Computer", "Yield Microelectronics", "Afa Technologies",
 "KINGBOX Technology Co. Ltd.", "Ceva", "iStor Networks", "Advance Modules",
 "Microsoft", "Open-Silicon", "Goal Semiconductor", "ARC International",
 "Simmtec", "Metanoia", "Key Stream", "Lowrance Electronics",
 "Adimos", "SiGe Semiconductor", "Fodus Communications", "Credence Systems Corp.",
 "Genesis Microchip Inc.", "Vihana, Inc.", "WIS Technologies", "GateChange Technologies",
 "High Density Devices AS", "Synopsys", "Gigaram", "Enigma Semiconductor Inc.",
 "Century Micro Inc.", "Icera Semiconductor", "Mediaworks Integrated Systems", "O'Neil Product Development",
 "Supreme Top Technology Ltd.", "MicroDisplay Corporation", "Team Group Inc.", "Sinett Corporation",
 "Toshiba Corporation", "Tensilica", "SiRF Technology", "Bacoc Inc.",
 "SMaL Camera Technologies", "Thomson SC", "Airgo Networks", "Wisair Ltd.",
 "SigmaTel", "Arkados", "Compete IT gmbH Co. KG", "Eudar Technology Inc.",
 "Focus Enhancements", "Xyratex"],
["Specular Networks", "Patriot Memory", "U-Chip Technology Corp.", "Silicon Optix",
 "Greenfield Networks", "CompuRAM GmbH", "Stargen, Inc.", "NetCell Corporation",
 "Excalibrus Technologies Ltd", "SCM Microsystems", "Xsigo Systems, Inc.", "CHIPS & Systems Inc",
 "Tier 1 Multichip Solutions", "CWRL Labs", "Teradici", "Gigaram, Inc.",
 "g2 Microsystems", "PowerFlash Semiconductor", "P.A. Semi, Inc.", "NovaTech Solutions, S.A.",
 "c2 Microsystems, Inc.", "Level5 Networks", "COS Memory AG", "Innovasic Semiconductor",
 "02IC Co. Ltd", "Tabula, Inc.", "Crucial Technology", "Chelsio Communications",
 "Solarflare Communications", "Xambala Inc.", "EADS Astrium", "Terra Semiconductor Inc. (former ATO Semicon Co. Ltd.)",
 "Imaging Works, Inc.", "Astute Networks, Inc.", "Tzero", "Emulex",
 "Power-One", "Pulse~LINK Inc.", "Hon Hai Precision Industry", "White Rock Networks Inc.",
 "Telegent Systems USA, Inc.", "Atrua Technologies, Inc.", "Acbel Polytech Inc.",
 "eRide Inc.","ULi Electronics Inc.", "Magnum Semiconductor Inc.", "neoOne Technology, Inc.",
 "Connex Technology, Inc.", "Stream Processors, Inc.", "Focus Enhancements", "Telecis Wireless, Inc.",
 "uNav Microelectronics", "Tarari, Inc.", "Ambric, Inc.", "Newport Media, Inc.", "VMTS",
 "Enuclia Semiconductor, Inc.", "Virtium Technology Inc.", "Solid State System Co., Ltd.", "Kian Tech LLC",
 "Artimi", "Power Quotient International", "Avago Technologies", "ADTechnology", "Sigma Designs",
 "SiCortex, Inc.", "Ventura Technology Group", "eASIC", "M.H.S. SAS", "Micro Star International",
 "Rapport Inc.", "Makway International", "Broad Reach Engineering Co.",
 "Semiconductor Mfg Intl Corp", "SiConnect", "FCI USA Inc.", "Validity Sensors",
 "Coney Technology Co. Ltd.", "Spans Logic", "Neterion Inc.", "Qimonda",
 "New Japan Radio Co. Ltd.", "Velogix", "Montalvo Systems", "iVivity Inc.", "Walton Chaintech",
 "AENEON", "Lorom Industrial Co. Ltd.", "Radiospire Networks", "Sensio Technologies, Inc.",
 "Nethra Imaging", "Hexon Technology Pte Ltd", "CompuStocx (CSX)", "Methode Electronics, Inc.",
 "Connect One Ltd.", "Opulan Technologies", "Septentrio NV", "Goldenmars Technology Inc.",
 "Kreton Corporation", "Cochlear Ltd.", "Altair Semiconductor", "NetEffect, Inc.",
 "Spansion, Inc.", "Taiwan Semiconductor Mfg", "Emphany Systems Inc.",
 "ApaceWave Technologies", "Mobilygen Corporation", "Tego", "Cswitch Corporation",
 "Haier (Beijing) IC Design Co.", "MetaRAM", "Axel Electronics Co. Ltd.", "Tilera Corporation",
 "Aquantia", "Vivace Semiconductor", "Redpine Signals", "Octalica", "InterDigital Communications",
 "Avant Technology", "Asrock, Inc.", "Availink", "Quartics, Inc.", "Element CXI",
 "Innovaciones Microelectronicas", "VeriSilicon Microelectronics", "W5 Networks"],
["MOVEKING", "Mavrix Technology, Inc.", "CellGuide Ltd.", "Faraday Technology",
 "Diablo Technologies, Inc.", "Jennic", "Octasic", "Molex Incorporated", "3Leaf Networks",
 "Bright Micron Technology", "Netxen", "NextWave Broadband Inc.", "DisplayLink", "ZMOS Technology",
 "Tec-Hill", "Multigig, Inc.", "Amimon", "Euphonic Technologies, Inc.", "BRN Phoenix",
 "InSilica", "Ember Corporation", "Avexir Technologies Corporation", "Echelon Corporation",
 "Edgewater Computer Systems", "XMOS Semiconductor Ltd.", "GENUSION, Inc.", "Memory Corp NV",
 "SiliconBlue Technologies", "Rambus Inc.", "Andes Technology Corporation", "Coronis Systems",
 "Achronix Semiconductor", "Siano Mobile Silicon Ltd.", "Semtech Corporation", "Pixelworks Inc.",
 "Gaisler Research AB", "Teranetics", "Toppan Printing Co. Ltd.", "Kingxcon",
 "Silicon Integrated Systems", "I-O Data Device, Inc.", "NDS Americas Inc.", "Solomon Systech Limited",
 "On Demand Microelectronics", "Amicus Wireless Inc.", "SMARDTV SNC", "Comsys Communication Ltd.",
 "Movidia Ltd.", "Javad GNSS, Inc.", "Montage Technology Group", "Trident Microsystems", "Super Talent",
 "Optichron, Inc.", "Future Waves UK Ltd.", "SiBEAM, Inc.", "Inicore, Inc.", "Virident Systems",
 "M2000, Inc.", "ZeroG Wireless, Inc.", "Gingle Technology Co. Ltd.", "Space Micro Inc.", "Wilocity",
 "Novafora, Inc.", "iKoa Corporation", "ASint Technology", "Ramtron", "Plato Networks Inc.",
 "IPtronics AS", "Infinite-Memories", "Parade Technologies Inc.", "Dune Networks",
 "GigaDevice Semiconductor", "Modu Ltd.", "CEITEC", "Northrop Grumman", "XRONET Corporation",
 "Sicon Semiconductor AB", "Atla Electronics Co. Ltd.", "TOPRAM Technology", "Silego Technology Inc.",
 "Kinglife", "Ability Industries Ltd.", "Silicon Power Computer & Communications",
 "Augusta Technology, Inc.", "Nantronics Semiconductors", "Hilscher Gesellschaft", "Quixant Ltd.",
 "Percello Ltd.", "NextIO Inc.", "Scanimetrics Inc.", "FS-Semi Company Ltd.", "Infinera Corporation",
 "SandForce Inc.", "Lexar Media", "Teradyne Inc.", "Memory Exchange Corp.", "Suzhou Smartek Electronics",
 "Avantium Corporation", "ATP Electronics Inc.", "Valens Semiconductor Ltd", "Agate Logic, Inc.",
 "Netronome", "Zenverge, Inc.", "N-trig Ltd", "SanMax Technologies Inc.", "Contour Semiconductor Inc.",
 "TwinMOS", "Silicon Systems, Inc.", "V-Color Technology Inc.", "Certicom Corporation", "JSC ICC Milandr",
 "PhotoFast Global Inc.", "InnoDisk Corporation", "Muscle Power", "Energy Micro", "Innofidei",
 "CopperGate Communications", "Holtek Semiconductor Inc.", "Myson Century, Inc.", "FIDELIX",
 "Red Digital Cinema", "Densbits Technology", "Zempro", "MoSys", "Provigent", "Triad Semiconductor, Inc."],
["Siklu Communication Ltd.", "A Force Manufacturing Ltd.", "Strontium", "Abilis Systems", "Siglead, Inc.",
 "Ubicom, Inc.", "Unifosa Corporation", "Stretch, Inc.", "Lantiq Deutschland GmbH", "Visipro",
 "EKMemory", "Microelectronics Institute ZTE", "Cognovo Ltd.", "Carry Technology Co. Ltd.", "Nokia",
 "King Tiger Technology", "Sierra Wireless", "HT Micron", "Albatron Technology Co. Ltd.",
 "Leica Geosystems AG", "BroadLight", "AEXEA", "ClariPhy Communications, Inc.", "Green Plug",
 "Design Art Networks", "Mach Xtreme Technology Ltd.", "ATO Solutions Co. Ltd.", "Ramsta",
 "Greenliant Systems, Ltd.", "Teikon", "Antec Hadron", "NavCom Technology, Inc.",
 "Shanghai Fudan Microelectronics", "Calxeda, Inc.", "JSC EDC Electronics", "Kandit Technology Co. Ltd.",
 "Ramos Technology", "Goldenmars Technology", "XeL Technology Inc.", "Newzone Corporation",
 "ShenZhen MercyPower Tech", "Nanjing Yihuo Technology", "Nethra Imaging Inc.", "SiTel Semiconductor BV",
 "SolidGear Corporation", "Topower Computer Ind Co Ltd.", "Wilocity", "Profichip GmbH",
 "Gerad Technologies", "Ritek Corporation", "Gomos Technology Limited", "Memoright Corporation",
 "D-Broad, Inc.", "HiSilicon Technologies", "Syndiant Inc.", "Enverv Inc.", "Cognex",
 "Xinnova Technology Inc.", "Ultron AG", "Concord Idea Corporation", "AIM Corporation",
 "Lifetime Memory Products", "Ramsway", "Recore Systems BV", "Haotian Jinshibo Science Tech",
 "Being Advanced Memory", "Adesto Technologies", "Giantec Semiconductor, Inc.", "HMD Electronics AG",
 "Gloway International (HK)", "Kingcore", "Anucell Technology Holding",
 "Accord Software & Systems Pvt. Ltd.", "Active-Semi Inc.", "Denso Corporation", "TLSI Inc.",
 "Shenzhen Daling Electronic Co. Ltd.", "Mustang", "Orca Systems", "Passif Semiconductor",
 "GigaDevice Semiconductor (Beijing) Inc.", "Memphis Electronic", "Beckhoff Automation GmbH",
 "Harmony Semiconductor Corp (former ProPlus Design Solutions)", "Air Computers SRL", "TMT Memory",
 "Eorex Corporation", "Xingtera", "Netsol", "Bestdon Technology Co. Ltd.", "Baysand Inc.",
 "Uroad Technology Co. Ltd. (former Triple Grow Industrial Ltd.)", "Wilk Elektronik S.A.",
 "AAI", "Harman", "Berg Microelectronics Inc.", "ASSIA, Inc.", "Visiontek Products LLC",
 "OCMEMORY", "Welink Solution Inc.", "Shark Gaming", "Avalanche Technology",
 "R&D Center ELVEES OJSC", "KingboMars Technology Co. Ltd.",
 "High Bridge Solutions Industria Eletronica", "Transcend Technology Co. Ltd.",
 "Everspin Technologies", "Hon-Hai Precision", "Smart Storage Systems", "Toumaz Group",
 "Zentel Electronics Corporation", "Panram International Corporation",
 "Silicon Space Technology"]
);

$use_sysfs = -d '/sys/bus';

# We consider that no data was written to this area of the SPD EEPROM if
# all bytes read 0x00 or all bytes read 0xff
sub spd_written(@)
{
	my $all_00 = 1;
	my $all_ff = 1;

	foreach my $b (@_) {
		$all_00 = 0 unless $b == 0x00;
		$all_ff = 0 unless $b == 0xff;
		return 1 unless $all_00 or $all_ff;
	}

	return 0;
}

sub parity($)
{
	my $n = shift;
	my $parity = 0;

	while ($n) {
		$parity++ if ($n & 1);
		$n >>= 1;
	}

	return ($parity & 1);
}

# New encoding format (as of DDR3) for manufacturer just has a count of
# leading 0x7F rather than all the individual bytes.  The count bytes includes
# parity!
sub manufacturer_ddr3($$)
{
	my ($count, $code) = @_;
	my $manufacturer;

	return "Invalid" if parity($code) != 1;
	return "Unknown" if ($code & 0x7F) - 1 > $vendors[$count & 0x7F];
	$manufacturer = $vendors[$count & 0x7F][($code & 0x7F) - 1];
	$manufacturer =~ s/ \(former .*\)$// if $opt_side_by_side;
	$manufacturer .= "? (Invalid parity)" if parity($count) != 1;
	return $manufacturer;
}

sub manufacturer(@)
{
	my @bytes = @_;
	my $ai = 0;
	my $first;

	return ("Undefined", []) unless spd_written(@bytes);

	while (defined($first = shift(@bytes)) && $first == 0x7F) {
		$ai++;
	}

	return ("Invalid", []) unless defined $first;
	return ("Invalid", [$first, @bytes]) if parity($first) != 1;
	if (parity($ai) == 0) {
		$ai |= 0x80;
	}
	return (manufacturer_ddr3($ai, $first), \@bytes);
}

sub manufacturer_data(@)
{
	my $hex = "";
	my $asc = "";

	return unless spd_written(@_);

	foreach my $byte (@_) {
		$hex .= sprintf("\%02X ", $byte);
		$asc .= ($byte >= 32 && $byte < 127) ? chr($byte) : '?';
	}

	return "$hex(\"$asc\")";
}

sub part_number(@)
{
	my $asc = "";
	my $byte;

	while (defined ($byte = shift) && $byte >= 32 && $byte < 127) {
		$asc .= chr($byte);
	}

	return ($asc eq "") ? "Undefined" : $asc;
}

sub cas_latencies(@)
{
	return "None" unless @_;
	return join ', ', map("${_}T", sort { $b <=> $a } @_);
}

# Real printing functions

sub html_encode($)
{
	my $text = shift;
	$text =~ s/</\&lt;/sg;
	$text =~ s/>/\&gt;/sg;
	$text =~ s/\n/<br>\n/sg;
	return $text;
}

sub same_values(@)
{
	my $value = shift;
	while (@_) {
		return 0 unless $value eq shift;
	}
	return 1;
}

sub real_printl($$) # print a line w/ label and values
{
	my ($label, @values) = @_;
	local $_;
	my $same_values = same_values(@values);

	# If all values are N/A, don't bother printing
	return if $values[0] eq "N/A" and $same_values;

	if ($opt_html) {
		$label = html_encode($label);
		@values = map { html_encode($_) } @values;
		print "<tr><td valign=top>$label</td>";
		if (!$opt_merge) {
			print "<td>$_</td>" foreach @values;
		} elsif ($same_values) {
			print "<td colspan=".(scalar @values).">$values[0]</td>";
		} else {
			# For HTML output, merge adjacent cells even if
			# the whole line cannot be merged.
			my $colcnt = 0;
			while (@values) {
				$colcnt++;
				my $value = shift @values;
				next if (@values && $value eq $values[0]);
				print "<td" . ($colcnt > 1 ? " colspan=$colcnt" : "") .">$value</td>";
				$colcnt = 0;
			}
		}
		print "</tr>\n";
	} else {
		if ($opt_merge && $same_values) {
			splice(@values, 1);
		}

		my $format = "%-47s".(("  %-".$sbs_col_width."s") x (scalar @values - 1))."  %s\n";
		my $maxl = 0; # Keep track of the max number of lines

		# It's a bit tricky because each value may span over more than
		# one line. We can easily extract the values per column, but
		# we need them per line at printing time. So we have to
		# prepare a 2D array with all the individual string fragments.
		my ($col, @lines);
		for ($col = 0; $col < @values; $col++) {
			my @cells = split /\n/, $values[$col];
			$maxl = @cells if @cells > $maxl;
			for (my $l = 0; $l < @cells; $l++) {
				$lines[$l]->[$col] = $cells[$l];
			}
		}

		# Also make sure there are no holes in the array
		for (my $l = 0; $l < $maxl; $l++) {
			for ($col = 0; $col < @values; $col++) {
				$lines[$l]->[$col] = ""
					if not defined $lines[$l]->[$col];
			}
		}

		printf $format, $label, @{shift @lines};
		printf $format, "", @{$_} foreach (@lines);
	}
}

sub printl2($$) # print a line w/ label and value (outside a table)
{
	my ($label, $value) = @_;
	if ($opt_html) {
		$label = html_encode($label);
		$value = html_encode($value);
	}
	print "$label: $value\n";
}

sub real_prints($) # print separator w/ given text
{
	my ($label, $ncol) = @_;
	$ncol = 1 unless $ncol;
	if ($opt_html) {
		$label = html_encode($label);
		print "<tr><td align=center colspan=".(1+$ncol)."><b>$label</b></td></tr>\n";
	} else {
		print "\n---=== $label ===---\n";
	}
}

sub printh($$) # print header w/ given text
{
	my ($header, $sub) = @_;
	if ($opt_html) {
		$header = html_encode($header);
		$sub = html_encode($sub);
		print "<h1>$header</h1>\n";
		print "<p>$sub</p>\n";
	} else {
		print "\n$header\n$sub\n";
	}
}

sub printc($) # print comment
{
	my ($comment) = @_;
	if ($opt_html) {
		$comment = html_encode($comment);
		print "<!-- $comment -->\n";
	} else {
		print "# $comment\n";
	}
}

# Fake printing functions
# These don't actually print anything, instead they store the desired
# output for later processing.

sub printl($$) # print a line w/ label and value
{
	my @output = (\&real_printl, @_);
	push @{$dimm[$current]->{output}}, \@output;
}

sub printl_cond($$$) # same as printl but conditional
{
	my ($cond, $label, $value) = @_;
	return unless $cond || $opt_side_by_side;
	printl($label, $cond ? $value : "N/A");
}

sub prints($) # print separator w/ given text
{
	my @output = (\&real_prints, @_);
	push @{$dimm[$current]->{output}}, \@output;
}

# Helper functions

sub tns1($) # print a time in ns, with 1 decimal digit
{
	return sprintf("%.1f ns", $_[0]);
}

sub tns($) # print a time in ns, with 2 decimal digits
{
	return sprintf("%3.2f ns", $_[0]);
}

sub tns3($) # print a time in ns, with 3 decimal digits
{
	return sprintf("%.3f ns", $_[0]);
}

sub value_or_undefined
{
	my ($value, $unit) = @_;
	return "Undefined!" unless $value;
	$value .= " $unit" if defined $unit;
	return $value;
}

# Common to SDR, DDR and DDR2 SDRAM
sub sdram_voltage_interface_level($)
{
	my @levels = (
		"TTL (5V tolerant)",		#  0
		"LVTTL (not 5V tolerant)",	#  1
		"HSTL 1.5V",			#  2
		"SSTL 3.3V",			#  3
		"SSTL 2.5V",			#  4
		"SSTL 1.8V",			#  5
	);
	
	return ($_[0] < @levels) ? $levels[$_[0]] : "Undefined!";
}

# Common to SDR, DDR and DDR2 SDRAM
sub sdram_module_configuration_type($)
{
	my $byte = $_[0] & 0x07;
	my @edc;

	return "No Parity" if $byte == 0;

	# Data ECC includes Data Parity so don't print both
	push @edc, "Data Parity" if ($byte & 0x03) == 0x01;
	push @edc, "Data ECC" if ($byte & 0x02);
	# New in DDR2 specification
	push @edc, "Address/Command Parity" if ($byte & 0x04);

	return join ", ", @edc;
}

# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_sdr_sdram($)
{
	my $bytes = shift;
	my $temp;
	my ($ctime, $ctime1, $ctime2, $ctime_min);

# SPD revision
	# Starting with SPD revision 1.2, this byte is encoded in BCD
	printl("SPD Revision", $bytes->[62] < 0x12 ? $bytes->[62] :
		($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));

#size computation

	prints("Memory Characteristics");

	my $k = 0;
	my $ii = 0;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
	if (($bytes->[5] <= 8) && ($bytes->[17] <= 8)) {
		 $k = $bytes->[5] * $bytes->[17];
	}

	if ($ii > 0 && $ii <= 12 && $k > 0) {
		printl("Size", ((1 << $ii) * $k) . " MB");
	} else {
		printl("Size", "INVALID: " . $bytes->[3] . "," . $bytes->[4] . "," .
			       $bytes->[5] . "," . $bytes->[17]);
	}

	my @cas;
	for ($ii = 0; $ii < 7; $ii++) {
		push(@cas, $ii + 1) if ($bytes->[18] & (1 << $ii));
	}

	my $trcd;
	my $trp;
	my $tras;
	$ctime_min = $ctime = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;

	$trcd = $bytes->[29];
	$trp = $bytes->[27];
	$tras = $bytes->[30];

	printl("tCL-tRCD-tRP-tRAS",
		$cas[$#cas] . "-" .
		ceil($trcd/$ctime) . "-" .
		ceil($trp/$ctime) . "-" .
		ceil($tras/$ctime));

	if ($bytes->[3] == 0) { $temp = "Undefined!"; }
	elsif ($bytes->[3] == 1) { $temp = "1/16"; }
	elsif ($bytes->[3] == 2) { $temp = "2/17"; }
	elsif ($bytes->[3] == 3) { $temp = "3/18"; }
	else { $temp = $bytes->[3]; }
	printl("Number of Row Address Bits", $temp);

	if ($bytes->[4] == 0) { $temp = "Undefined!"; }
	elsif ($bytes->[4] == 1) { $temp = "1/16"; }
	elsif ($bytes->[4] == 2) { $temp = "2/17"; }
	elsif ($bytes->[4] == 3) { $temp = "3/18"; }
	else { $temp = $bytes->[4]; }
	printl("Number of Col Address Bits", $temp);

	printl("Number of Module Rows", value_or_undefined($bytes->[5]));

	if ($bytes->[7] > 1) { $temp = "Undefined!"; }
	else { $temp = ($bytes->[7] * 256) + $bytes->[6]; }
	printl("Data Width", $temp);

	printl("Voltage Interface Level",
	       sdram_voltage_interface_level($bytes->[8]));

	printl("Module Configuration Type",
	       sdram_module_configuration_type($bytes->[11]));

	printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));

	if ($bytes->[13] & 0x80) { $temp = "Bank2 = 2 x Bank1"; }
	else { $temp = "No Bank2 OR Bank2 = Bank1 width"; }
	printl("Primary SDRAM Component Bank Config", $temp);
	printl("Primary SDRAM Component Widths",
	       value_or_undefined($bytes->[13] & 0x7f));

	if ($bytes->[14] & 0x80) { $temp = "Bank2 = 2 x Bank1"; }
	else { $temp = "No Bank2 OR Bank2 = Bank1 width"; }
	printl("Error Checking SDRAM Component Bank Config", $temp);
	printl("Error Checking SDRAM Component Widths",
	       value_or_undefined($bytes->[14] & 0x7f));

	printl("Min Clock Delay for Back to Back Random Access",
	       value_or_undefined($bytes->[15]));

	my @array;
	for ($ii = 0; $ii < 4; $ii++) {
		push(@array, 1 << $ii) if ($bytes->[16] & (1 << $ii));
	}
	push(@array, "Page") if ($bytes->[16] & 128);
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported Burst Lengths", $temp);

	printl("Number of Device Banks",
	       value_or_undefined($bytes->[17]));

	printl("Supported CAS Latencies", cas_latencies(@cas));

	@array = ();
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[19] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported CS Latencies", $temp);

	@array = ();
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[20] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported WE Latencies", $temp);

	my ($cycle_time, $access_time);

	if (@cas >= 1) {
		$cycle_time = "$ctime ns at CAS ".$cas[$#cas];

		$temp = ($bytes->[10] >> 4) + ($bytes->[10] & 0xf) * 0.1;
		$access_time = "$temp ns at CAS ".$cas[$#cas];
	}

	if (@cas >= 2 && spd_written(@$bytes[23..24])) {
		$temp = $bytes->[23] >> 4;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += 15 if $temp < 4;
			$temp += ($bytes->[23] & 0xf) * 0.1;
			$ctime1 = $temp;
		}
		$cycle_time .= "\n$temp ns at CAS ".$cas[$#cas-1];

		$temp = $bytes->[24] >> 4;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += 15 if $temp < 4;
			$temp += ($bytes->[24] & 0xf) * 0.1;
		}
		$access_time .= "\n$temp ns at CAS ".$cas[$#cas-1];
	}

	if (@cas >= 3 && spd_written(@$bytes[25..26])) {
		$temp = $bytes->[25] >> 2;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += ($bytes->[25] & 0x3) * 0.25;
			$ctime2 = $temp;
		}
		$cycle_time .= "\n$temp ns at CAS ".$cas[$#cas-2];

		$temp = $bytes->[26] >> 2;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += ($bytes->[26] & 0x3) * 0.25;
		}
		$access_time .= "\n$temp ns at CAS ".$cas[$#cas-2];
	}

	printl_cond(defined $cycle_time, "Cycle Time", $cycle_time);
	printl_cond(defined $access_time, "Access Time", $access_time);

	prints("Attributes");
	$temp = "";
	if ($bytes->[21] & 1) { $temp .= "Buffered Address/Control Inputs\n"; }
	if ($bytes->[21] & 2) { $temp .= "Registered Address/Control Inputs\n"; }
	if ($bytes->[21] & 4) { $temp .= "On card PLL (clock)\n"; }
	if ($bytes->[21] & 8) { $temp .= "Buffered DQMB Inputs\n"; }
	if ($bytes->[21] & 16) { $temp .= "Registered DQMB Inputs\n"; }
	if ($bytes->[21] & 32) { $temp .= "Differential Clock Input\n"; }
	if ($bytes->[21] & 64) { $temp .= "Redundant Row Address\n"; }
	if ($bytes->[21] & 128) { $temp .= "Undefined (bit 7)\n"; }
	printl_cond($bytes->[21], "SDRAM Module Attributes", $temp);

# standard DDR speeds
	prints("Timings at Standard Speeds");
	foreach $ctime (7.5, 10, 15) {
		my $best_cas;

		# Find min CAS latency at this speed
		if (defined $ctime2 && $ctime >= $ctime2) {
			$best_cas = $cas[$#cas-2];
		} elsif (defined $ctime1 && $ctime >= $ctime1) {
			$best_cas = $cas[$#cas-1];
		} else {
			$best_cas = $cas[$#cas];
		}

		printl_cond($ctime >= $ctime_min,
			    "tCL-tRCD-tRP-tRAS as PC" . int(1000 / $ctime),
			    ddr_core_timings($best_cas, $ctime,
					     $trcd, $trp, $tras));
	}

	$temp = "";
	if ($bytes->[22] & 1) { $temp .= "Supports Early RAS# Recharge\n"; }
	if ($bytes->[22] & 2) { $temp .= "Supports Auto-Precharge\n"; }
	if ($bytes->[22] & 4) { $temp .= "Supports Precharge All\n"; }
	if ($bytes->[22] & 8) { $temp .= "Supports Write1/Read Burst\n"; }
	if ($bytes->[22] & 16) { $temp .= "Lower VCC Tolerance: 5%\n"; }
	else { $temp .= "Lower VCC Tolerance: 10%\n"; }
	if ($bytes->[22] & 32) { $temp .= "Upper VCC Tolerance: 5%\n"; }
	else { $temp .= "Upper VCC Tolerance: 10%\n"; }
	if ($bytes->[22] & 64) { $temp .= "Undefined (bit 6)\n"; }
	if ($bytes->[22] & 128) { $temp .= "Undefined (bit 7)\n"; }
	printl("SDRAM Device Attributes (General)", $temp);

	prints("Timing Parameters");
	printl("Minimum Row Precharge Time",
	       value_or_undefined($bytes->[27], "ns"));

	printl("Row Active to Row Active Min",
	       value_or_undefined($bytes->[28], "ns"));

	printl("RAS to CAS Delay",
	       value_or_undefined($bytes->[29], "ns"));

	printl("Min RAS Pulse Width",
	       value_or_undefined($bytes->[30], "ns"));

	$temp = "";
	if ($bytes->[31] & 1) { $temp .= "4 MByte\n"; }
	if ($bytes->[31] & 2) { $temp .= "8 MByte\n"; }
	if ($bytes->[31] & 4) { $temp .= "16 MByte\n"; }
	if ($bytes->[31] & 8) { $temp .= "32 MByte\n"; }
	if ($bytes->[31] & 16) { $temp .= "64 MByte\n"; }
	if ($bytes->[31] & 32) { $temp .= "128 MByte\n"; }
	if ($bytes->[31] & 64) { $temp .= "256 MByte\n"; }
	if ($bytes->[31] & 128) { $temp .= "512 MByte\n"; }
	if ($bytes->[31] == 0) { $temp .= "(Undefined! -- None Reported!)\n"; }
	printl("Row Densities", $temp);

	$temp = (($bytes->[32] & 0x7f) >> 4) + ($bytes->[32] & 0xf) * 0.1;
	printl_cond(($bytes->[32] & 0xf) <= 9,
		    "Command and Address Signal Setup Time",
		    (($bytes->[32] >> 7) ? -$temp : $temp) . " ns");

	$temp = (($bytes->[33] & 0x7f) >> 4) + ($bytes->[33] & 0xf) * 0.1;
	printl_cond(($bytes->[33] & 0xf) <= 9,
		    "Command and Address Signal Hold Time",
		    (($bytes->[33] >> 7) ? -$temp : $temp) . " ns");

	$temp = (($bytes->[34] & 0x7f) >> 4) + ($bytes->[34] & 0xf) * 0.1;
	printl_cond(($bytes->[34] & 0xf) <= 9, "Data Signal Setup Time",
		    (($bytes->[34] >> 7) ? -$temp : $temp) . " ns");

	$temp = (($bytes->[35] & 0x7f) >> 4) + ($bytes->[35] & 0xf) * 0.1;
	printl_cond(($bytes->[35] & 0xf) <= 9, "Data Signal Hold Time",
		    (($bytes->[35] >> 7) ? -$temp : $temp) . " ns");
}

sub as_ddr($$)
{
	my ($gen, $ctime) = @_;

	return " as DDR" . ($gen == 1 ? "" : $gen) . "-" .
	       int(2000 / $ctime);
}

sub ddr_core_timings($$$$$)
{
	my ($cas, $ctime, $trcd, $trp, $tras) = @_;

	return $cas . "-" . ceil($trcd/$ctime) . "-" . ceil($trp/$ctime) .
		"-" . ceil($tras/$ctime);
}

# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_ddr_sdram($)
{
	my $bytes = shift;
	my $temp;
	my ($ctime, $ctime1, $ctime2, $ctime_min, $ctime_max);

# SPD revision
	printl_cond($bytes->[62] != 0xff, "SPD Revision",
		    ($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));

# speed
	prints("Memory Characteristics");

	$ctime_min = $ctime = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;
	my $ddrclk = 2 * (1000 / $ctime);
	my $tbits = ($bytes->[7] * 256) + $bytes->[6];
	if (($bytes->[11] == 2) || ($bytes->[11] == 1)) { $tbits = $tbits - 8; }
	my $pcclk = int ($ddrclk * $tbits / 8);
	$pcclk += 100 if ($pcclk % 100) >= 50; # Round properly
	$pcclk = $pcclk - ($pcclk % 100);
	$ddrclk = int ($ddrclk);
	printl("Maximum module speed", "$ddrclk MHz (PC${pcclk})");

#size computation
	my $k = 0;
	my $ii = 0;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
	if (($bytes->[5] <= 8) && ($bytes->[17] <= 8)) {
		 $k = $bytes->[5] * $bytes->[17];
	}

	if ($ii > 0 && $ii <= 12 && $k > 0) {
		printl("Size", ((1 << $ii) * $k) . " MB");
	} else {
		printl("Size", "INVALID: " . $bytes->[3] . ", " . $bytes->[4] . ", " .
			       $bytes->[5] . ", " . $bytes->[17]);
	}

	printl("Banks x Rows x Columns x Bits",
	       join(' x ', $bytes->[17], $bytes->[3], $bytes->[4], $bytes->[6]));
	printl("Ranks", $bytes->[5]);

	printl("Voltage Interface Level",
	       sdram_voltage_interface_level($bytes->[8]));

	printl("Module Configuration Type",
	       sdram_module_configuration_type($bytes->[11]));

	printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));

	my $highestCAS = 0;
	my %cas;
	for ($ii = 0; $ii < 7; $ii++) {
		if ($bytes->[18] & (1 << $ii)) {
			$highestCAS = 1+$ii*0.5;
			$cas{$highestCAS}++;
		}
	}

	my $trcd;
	my $trp;
	my $tras;

	$trcd = ($bytes->[29] >> 2) + (($bytes->[29] & 3) * 0.25);
	$trp = ($bytes->[27] >> 2) + (($bytes->[27] & 3) * 0.25);
	$tras = $bytes->[30];

# latencies
	printl("Supported CAS Latencies", cas_latencies(keys %cas));

	my @array;
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[19] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported CS Latencies", $temp);

	@array = ();
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[20] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported WE Latencies", $temp);

# timings
	my ($cycle_time, $access_time, $core_timings);

	if (exists $cas{$highestCAS}) {
		$core_timings = ddr_core_timings($highestCAS, $ctime,
			$trcd, $trp, $tras) . as_ddr(1, $ctime);

		$cycle_time = "$ctime ns at CAS $highestCAS";
		$access_time = (($bytes->[10] >> 4) * 0.1 + ($bytes->[10] & 0xf) * 0.01)
			     . " ns at CAS $highestCAS";
	}

	if (exists $cas{$highestCAS-0.5} && spd_written(@$bytes[23..24])) {
		$ctime1 = ($bytes->[23] >> 4) + ($bytes->[23] & 0xf) * 0.1;
		$core_timings .= "\n".ddr_core_timings($highestCAS-0.5, $ctime1,
			$trcd, $trp, $tras) . as_ddr(1, $ctime1);

		$cycle_time .= "\n$ctime1 ns at CAS ".($highestCAS-0.5);
		$access_time .= "\n".(($bytes->[24] >> 4) * 0.1 + ($bytes->[24] & 0xf) * 0.01)
			      . " ns at CAS ".($highestCAS-0.5);
	}

	if (exists $cas{$highestCAS-1} && spd_written(@$bytes[25..26])) {
		$ctime2 = ($bytes->[25] >> 4) + ($bytes->[25] & 0xf) * 0.1,
		$core_timings .= "\n".ddr_core_timings($highestCAS-1, $ctime2,
			$trcd, $trp, $tras) . as_ddr(1, $ctime2);

		$cycle_time .= "\n$ctime2 ns at CAS ".($highestCAS-1);
		$access_time .= "\n".(($bytes->[26] >> 4) * 0.1 + ($bytes->[26] & 0xf) * 0.01)
			      . " ns at CAS ".($highestCAS-1);
	}

	$ctime_max = $bytes->[43] == 0xff ? 0 : $bytes->[43]/4;

	printl_cond(defined $core_timings, "tCL-tRCD-tRP-tRAS", $core_timings);
	printl_cond(defined $cycle_time, "Minimum Cycle Time", $cycle_time);
	printl_cond(defined $access_time, "Maximum Access Time", $access_time);
	printl_cond($bytes->[43] & 0xfc,
		    "Maximum Cycle Time (tCK max)",
		    $bytes->[43] == 0xff ? "No minimum frequency" :
		    $bytes->[43] == 0 ? "" : # Wouldn't be displayed, prevent div by 0
		    tns1($ctime_max)." (DDR-".int(8000 / $bytes->[43]).")");

# standard DDR speeds
	prints("Timings at Standard Speeds");
	foreach $ctime (5, 6, 7.5, 10) {
		my $best_cas;

		# Find min CAS latency at this speed
		if (defined $ctime2 && $ctime >= $ctime2) {
			$best_cas = $highestCAS-1;
		} elsif (defined $ctime1 && $ctime >= $ctime1) {
			$best_cas = $highestCAS-0.5;
		} else {
			$best_cas = $highestCAS;
		}

		printl_cond($ctime >= $ctime_min && ($ctime_max < 1 || $ctime <= $ctime_max),
			    "tCL-tRCD-tRP-tRAS" . as_ddr(1, $ctime),
			    ddr_core_timings($best_cas, $ctime,
					     $trcd, $trp, $tras));
	}

# more timing information
	prints("Timing Parameters");
	printl_cond($bytes->[32] != 0xff,
		    "Address/Command Setup Time Before Clock",
		    tns(ddr2_sdram_atime($bytes->[32])));
	printl_cond($bytes->[33] != 0xff,
		    "Address/Command Hold Time After Clock",
		    tns(ddr2_sdram_atime($bytes->[33])));
	printl_cond($bytes->[34] != 0xff,
		    "Data Input Setup Time Before Clock",
		    tns(ddr2_sdram_atime($bytes->[34])));
	printl_cond($bytes->[35] != 0xff,
		    "Data Input Hold Time After Clock",
		    tns(ddr2_sdram_atime($bytes->[35])));
	printl("Minimum Row Precharge Delay (tRP)", tns($trp));
	printl_cond($bytes->[28] & 0xfc,
		    "Minimum Row Active to Row Active Delay (tRRD)",
		    tns($bytes->[28]/4));
	printl("Minimum RAS# to CAS# Delay (tRCD)", tns($trcd));
	printl("Minimum RAS# Pulse Width (tRAS)", tns($tras));
	printl_cond($bytes->[41] && $bytes->[41] != 0xff,
		    "Minimum Active to Active/AR Time (tRC)",
		    tns($bytes->[41]));
	printl_cond($bytes->[42],
		    "Minimum AR to Active/AR Command Period (tRFC)",
		    tns($bytes->[42]));
	printl_cond($bytes->[44],
		    "Maximum DQS to DQ Skew (tDQSQ)",
		    tns($bytes->[44]/100));
	printl_cond(($bytes->[45] & 0xf0) && $bytes->[45] != 0xff,
		    "Maximum Read Data Hold Skew (tQHS)",
		    tns(ddr2_sdram_atime($bytes->[45])));

# module attributes
	prints("Module Attributes");
	if (($bytes->[47] & 0x03) == 0x01) { $temp = "1.125\" to 1.25\""; }
	elsif (($bytes->[47] & 0x03) == 0x02) { $temp = "1.7\""; }
	else { $temp = "Other"; }
	printl_cond($bytes->[47] & 0x03, "Module Height", $temp);
}

sub ddr2_sdram_ctime($)
{
	my $byte = shift;
	my $ctime;

	$ctime = $byte >> 4;
	if (($byte & 0xf) <= 9) { $ctime += ($byte & 0xf) * 0.1; }
	elsif (($byte & 0xf) == 10) { $ctime += 0.25; }
	elsif (($byte & 0xf) == 11) { $ctime += 0.33; }
	elsif (($byte & 0xf) == 12) { $ctime += 0.66; }
	elsif (($byte & 0xf) == 13) { $ctime += 0.75; }

	return $ctime;
}

sub ddr2_sdram_atime($)
{
	my $byte = shift;
	my $atime;

	$atime = ($byte >> 4) * 0.1 + ($byte & 0xf) * 0.01;

	return $atime;
}

# Base, high-bit, 3-bit fraction code
sub ddr2_sdram_rtime($$$)
{
	my ($rtime, $msb, $ext) = @_;
	my @table = (0, .25, .33, .50, .66, .75);

	return $rtime + $msb * 256 + $table[$ext];
}

sub ddr2_module_types($)
{
	my $byte = shift;
	my @types = qw(RDIMM UDIMM SO-DIMM Micro-DIMM Mini-RDIMM Mini-UDIMM);
	my @widths = (133.35, 133.25, 67.6, 45.5, 82.0, 82.0);
	my @suptypes;
	local $_;

	foreach (0..5) {
		push @suptypes, "$types[$_] ($widths[$_] mm)"
			if ($byte & (1 << $_));
	}

	return @suptypes;
}

# Common to SDR, DDR and DDR2 SDRAM
sub ddr2_refresh_rate($)
{
	my $byte = shift;
	my @refresh = qw(Normal Reduced Reduced Extended Extended Extended);
	my @refresht = (15.625, 3.9, 7.8, 31.3, 62.5, 125);

	return "$refresh[$byte & 0x7f] ($refresht[$byte & 0x7f] us)".
	       ($byte & 0x80 ? " - Self Refresh" : "");
}

# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_ddr2_sdram($)
{
	my $bytes = shift;
	my $temp;
	my ($ctime, $ctime1, $ctime2, $ctime_min, $ctime_max);

# SPD revision
	printl_cond($bytes->[62] != 0xff, "SPD Revision",
		    ($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));

# speed
	prints("Memory Characteristics");

	$ctime_min = $ctime = ddr2_sdram_ctime($bytes->[9]);
	my $ddrclk = 2 * (1000 / $ctime);
	my $tbits = ($bytes->[7] * 256) + $bytes->[6];
	if ($bytes->[11] & 0x03) { $tbits = $tbits - 8; }
	my $pcclk = int ($ddrclk * $tbits / 8);
	# Round down to comply with Jedec
	$pcclk = $pcclk - ($pcclk % 100);
	$ddrclk = int ($ddrclk);
	printl("Maximum module speed", "$ddrclk MHz (PC2-${pcclk})");

#size computation
	my $k = 0;
	my $ii = 0;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
	$k = (($bytes->[5] & 0x7) + 1) * $bytes->[17];

	if($ii > 0 && $ii <= 12 && $k > 0) {
		printl("Size", ((1 << $ii) * $k) . " MB");
	} else {
		printl("Size", "INVALID: " . $bytes->[3] . "," . $bytes->[4] . "," .
			       $bytes->[5] . "," . $bytes->[17]);
	}

	printl("Banks x Rows x Columns x Bits",
	       join(' x ', $bytes->[17], $bytes->[3], $bytes->[4], $bytes->[6]));
	printl("Ranks", ($bytes->[5] & 7) + 1);

	printl("SDRAM Device Width", $bytes->[13]." bits");

	my @heights = ('< 25.4', '25.4', '25.4 - 30.0', '30.0', '30.5', '> 30.5');
	printl("Module Height", $heights[$bytes->[5] >> 5]." mm");

	my @suptypes = ddr2_module_types($bytes->[20]);
	printl("Module Type".(@suptypes > 1 ? 's' : ''), join(', ', @suptypes));

	printl("DRAM Package", $bytes->[5] & 0x10 ? "Stack" : "Planar");

	printl("Voltage Interface Level",
	       sdram_voltage_interface_level($bytes->[8]));

	printl("Module Configuration Type",
	       sdram_module_configuration_type($bytes->[11]));

	printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));

	my @burst;
	push @burst, 4 if ($bytes->[16] & 4);
	push @burst, 8 if ($bytes->[16] & 8);
	$burst[0] = 'None' if !@burst;
	printl("Supported Burst Lengths", join(', ', @burst));

	my $highestCAS = 0;
	my %cas;
	for ($ii = 2; $ii < 7; $ii++) {
		if ($bytes->[18] & (1 << $ii)) {
			$highestCAS = $ii;
			$cas{$highestCAS}++;
		}
	}

	my $trcd;
	my $trp;
	my $tras;

	$trcd = ($bytes->[29] >> 2) + (($bytes->[29] & 3) * 0.25);
	$trp = ($bytes->[27] >> 2) + (($bytes->[27] & 3) * 0.25);
	$tras = $bytes->[30];

# latencies
	printl("Supported CAS Latencies (tCL)", cas_latencies(keys %cas));

# timings
	my ($cycle_time, $access_time, $core_timings);

	if (exists $cas{$highestCAS}) {
		$core_timings = ddr_core_timings($highestCAS, $ctime,
			$trcd, $trp, $tras) . as_ddr(2, $ctime);

		$cycle_time = tns($ctime) . " at CAS $highestCAS (tCK min)";
		$access_time = tns(ddr2_sdram_atime($bytes->[10]))
			     . " at CAS $highestCAS (tAC)";
	}

	if (exists $cas{$highestCAS-1} && spd_written(@$bytes[23..24])) {
		$ctime1 = ddr2_sdram_ctime($bytes->[23]);
		$core_timings .= "\n".ddr_core_timings($highestCAS-1, $ctime1,
			$trcd, $trp, $tras) . as_ddr(2, $ctime1);

		$cycle_time .= "\n".tns($ctime1)
			     . " at CAS ".($highestCAS-1);
		$access_time .= "\n".tns(ddr2_sdram_atime($bytes->[24]))
			      . " at CAS ".($highestCAS-1);
	}

	if (exists $cas{$highestCAS-2} && spd_written(@$bytes[25..26])) {
		$ctime2 = ddr2_sdram_ctime($bytes->[25]);
		$core_timings .= "\n".ddr_core_timings($highestCAS-2, $ctime2,
			$trcd, $trp, $tras) . as_ddr(2, $ctime2);

		$cycle_time .= "\n".tns($ctime2)
			     . " at CAS ".($highestCAS-2);
		$access_time .= "\n".tns(ddr2_sdram_atime($bytes->[26]))
			      . " at CAS ".($highestCAS-2);
	}

	$ctime_max = ddr2_sdram_ctime($bytes->[43]);

	printl_cond(defined $core_timings, "tCL-tRCD-tRP-tRAS", $core_timings);
	printl_cond(defined $cycle_time, "Minimum Cycle Time", $cycle_time);
	printl_cond(defined $access_time, "Maximum Access Time", $access_time);
	printl_cond(($bytes->[43] & 0xf0) && $bytes->[43] != 0xff,
		    "Maximum Cycle Time (tCK max)",
		    $ctime_max == 0 ? "" : # Wouldn't be displayed, prevent div by 0
		    tns($ctime_max)." (DDR2-".int(2000 / $ctime_max).")");

# standard DDR2 speeds
	prints("Timings at Standard Speeds");
	foreach $ctime (1.875, 2.5, 3, 3.75, 5) {
		my $best_cas;

		# Find min CAS latency at this speed
		if (defined $ctime2 && $ctime >= $ctime2) {
			$best_cas = $highestCAS-2;
		} elsif (defined $ctime1 && $ctime >= $ctime1) {
			$best_cas = $highestCAS-1;
		} else {
			$best_cas = $highestCAS;
		}

		printl_cond($ctime >= $ctime_min && $ctime <= $ctime_max,
			    "tCL-tRCD-tRP-tRAS" . as_ddr(2,$ctime),
			    ddr_core_timings($best_cas, $ctime,
					     $trcd, $trp, $tras));
	}

# more timing information
	prints("Timing Parameters");
	# According to the JEDEC standard, the four timings below can't be less
	# than 0.1 ns, however we've seen memory modules code such values so
	# handle them properly.
	printl_cond($bytes->[32] && $bytes->[32] != 0xff,
		    "Address/Command Setup Time Before Clock (tIS)",
		    tns(ddr2_sdram_atime($bytes->[32])));
	printl_cond($bytes->[33] && $bytes->[33] != 0xff,
		    "Address/Command Hold Time After Clock (tIH)",
		    tns(ddr2_sdram_atime($bytes->[33])));
	printl_cond($bytes->[34] && $bytes->[34] != 0xff,
		    "Data Input Setup Time Before Strobe (tDS)",
		    tns(ddr2_sdram_atime($bytes->[34])));
	printl_cond($bytes->[35] && $bytes->[35] != 0xff,
		    "Data Input Hold Time After Strobe (tDH)",
		    tns(ddr2_sdram_atime($bytes->[35])));

	printl("Minimum Row Precharge Delay (tRP)", tns($trp));
	printl_cond($bytes->[28] & 0xfc,
		    "Minimum Row Active to Row Active Delay (tRRD)",
		    tns($bytes->[28]/4));
	printl("Minimum RAS# to CAS# Delay (tRCD)", tns($trcd));
	printl("Minimum RAS# Pulse Width (tRAS)", tns($tras));
	printl_cond($bytes->[36] & 0xfc,
		    "Write Recovery Time (tWR)",
		    tns($bytes->[36]/4));
	printl_cond($bytes->[37] & 0xfc,
		    "Minimum Write to Read CMD Delay (tWTR)",
		    tns($bytes->[37]/4));
	printl_cond($bytes->[38] & 0xfc,
		    "Minimum Read to Pre-charge CMD Delay (tRTP)",
		    tns($bytes->[38]/4));

	printl_cond($bytes->[41] && $bytes->[41] != 0xff,
		    "Minimum Active to Auto-refresh Delay (tRC)",
		    tns(ddr2_sdram_rtime($bytes->[41], 0,
					 ($bytes->[40] >> 4) & 7)));
	printl_cond($bytes->[42],
		    "Minimum Recovery Delay (tRFC)",
		    tns(ddr2_sdram_rtime($bytes->[42], $bytes->[40] & 1,
					 ($bytes->[40] >> 1) & 7)));

	printl_cond($bytes->[44], "Maximum DQS to DQ Skew (tDQSQ)",
		    tns($bytes->[44]/100));
	printl_cond($bytes->[45], "Maximum Read Data Hold Skew (tQHS)",
		    tns($bytes->[45]/100));
	printl_cond($bytes->[46], "PLL Relock Time", $bytes->[46] . " us");
}

# Return combined time in ns
sub ddr3_mtb_ftb($$$$)
{
	my ($byte1, $byte2, $mtb, $ftb) = @_;

	# byte1 is unsigned in ns, but byte2 is signed in ps
	$byte2 -= 0x100 if $byte2 & 0x80;

	return $byte1 * $mtb + $byte2 * $ftb / 1000;
}

sub ddr3_reference_card($$)
{
	my ($rrc, $ext) = @_;
	my $alphabet = "ABCDEFGHJKLMNPRTUVWY";
	my $ref = $rrc & 0x1f;
	my $revision = $ext >> 5;
	my $ref_card;

	return "ZZ" if $ref == 0x1f;
	$ref += 0x1f if $rrc & 0x80;
	$revision = (($rrc >> 5) & 0x03) if $revision == 0;

	if ($ref < length($alphabet)) {
		# One letter reference card
		$ref_card = substr($alphabet, $ref, 1);
	} else {
		# Two letter reference card
		my $ref1 = int($ref / (length($alphabet)));
		$ref -= length($alphabet) * $ref1;
		$ref_card = substr($alphabet, $ref1, 1) .
			    substr($alphabet, $ref, 1);
	}

	return "$ref_card revision $revision";
}

sub ddr3_revision_number($)
{
	my $h = $_[0] >> 4;
	my $l = $_[0] & 0x0f;

	# Decode as suggested by JEDEC Standard 21-C
	return sprintf("%d", $l) if $h == 0;
	return sprintf("%d.%d", $h, $l) if $h < 0xa;
	return sprintf("%c%d", ord('A') + $h - 0xa, $l);
}

sub ddr3_device_type($)
{
	my $byte = shift;
	my $type = $byte & 0x80 ? "Non-Standard" : "Standard Monolithic";
	my $die_count = ($byte >> 4) & 0x07;
	my $loading = ($byte >> 2) & 0x03;

	if ($die_count == 1) {
		$type .= "\nSingle die";
	} elsif ($die_count == 2) {
		$type .= "\n2 die";
	} elsif ($die_count == 3) {
		$type .= "\n4 die";
	} elsif ($die_count == 4) {
		$type .= "\n8 die";
	}

	if ($loading == 1) {
		$type .= "\nMulti load stack";
	} elsif ($loading == 2) {
		$type .= "\nSingle load stack";
	}

	return $type;
}

use constant DDR3_UNBUFFERED	=> 1;
use constant DDR3_REGISTERED	=> 2;
use constant DDR3_CLOCKED	=> 3;
use constant DDR3_LOAD_REDUCED	=> 4;

# Parameter: EEPROM bytes 0-127 (using 3-76)
sub decode_ddr3_sdram($)
{
	my $bytes = shift;
	my $temp;
	my $ctime;
	my ($ftb, $mtb);
	my $ii;

	my @module_types = (
		{ type => "Undefined",		width => "Unknown"	},
		{ type => "RDIMM",		width => "133.35 mm",	family => DDR3_REGISTERED },
		{ type => "UDIMM",		width => "133.35 mm",	family => DDR3_UNBUFFERED },
		{ type => "SO-DIMM",		width => "67.6 mm",	family => DDR3_UNBUFFERED },
		{ type => "Micro-DIMM",		width => "TBD",		family => DDR3_UNBUFFERED },
		{ type => "Mini-RDIMM",		width => "82.0 mm",	family => DDR3_REGISTERED },
		{ type => "Mini-UDIMM",		width => "82.0 mm",	family => DDR3_UNBUFFERED },
		{ type => "Mini-CDIMM",		width => "67.6 mm",	family => DDR3_CLOCKED },
		{ type => "72b-SO-UDIMM",	width => "67.6 mm",	family => DDR3_UNBUFFERED },
		{ type => "72b-SO-RDIMM",	width => "67.6 mm",	family => DDR3_REGISTERED },
		{ type => "72b-SO-CDIMM",	width => "67.6 mm",	family => DDR3_CLOCKED },
		{ type => "LRDIMM",		width => "133.35 mm",	family => DDR3_LOAD_REDUCED },
		{ type => "16b-SO-DIMM",	width => "67.6 mm",	family => DDR3_UNBUFFERED },
		{ type => "32b-SO-DIMM",	width => "67.6 mm",	family => DDR3_UNBUFFERED },
	);

	printl("Module Type", ($bytes->[3] <= $#module_types) ?
					$module_types[$bytes->[3]]->{type} :
					sprintf("Reserved (0x%.2X)", $bytes->[3]));

# time bases
	if (($bytes->[9] & 0x0f) == 0 || $bytes->[11] == 0) {
		print STDERR "Invalid time base divisor, can't decode\n";
		return;
	}
	$ftb = ($bytes->[9] >> 4) / ($bytes->[9] & 0x0f);
	$mtb = $bytes->[10] / $bytes->[11];

# speed
	prints("Memory Characteristics");

	$ctime = ddr3_mtb_ftb($bytes->[12], $bytes->[34], $mtb, $ftb);
	# Starting with DDR3-1866, vendors may start approximating the
	# minimum cycle time. Try to guess what they really meant so
	# that the reported speed matches the standard.
	for ($ii = 7; $ii < 15; $ii++) {
		if ($ctime > 7.5/$ii - $ftb/1000 && $ctime < 7.5/$ii + $ftb/1000) {
			$ctime = 7.5/$ii;
			last;
		}
	}

	my $ddrclk = 2 * (1000 / $ctime);
	my $tbits = 1 << (($bytes->[8] & 7) + 3);
	my $pcclk = int ($ddrclk * $tbits / 8);
	# Round down to comply with Jedec
	$pcclk = $pcclk - ($pcclk % 100);
	$ddrclk = int ($ddrclk);
	printl("Maximum module speed", "$ddrclk MHz (PC3-${pcclk})");

# Size computation

	my $cap =  ($bytes->[4]       & 15) + 28;
	$cap   +=  ($bytes->[8]       & 7)  + 3;
	$cap   -=  ($bytes->[7]       & 7)  + 2;
	$cap   -= 20 + 3;
	my $k   = (($bytes->[7] >> 3) & 31) + 1;
	printl("Size", ((1 << $cap) * $k) . " MB");

	printl("Banks x Rows x Columns x Bits",
	       join(' x ', 1 << ((($bytes->[4] >> 4) &  7) +  3),
			   ((($bytes->[5] >> 3) & 31) + 12),
			   ( ($bytes->[5]       &  7) +  9),
			   ( 1 << (($bytes->[8] &  7) + 3)) ));
	printl("Ranks", $k);

	printl("SDRAM Device Width", (1 << (($bytes->[7] & 7) + 2))." bits");

	printl("Bus Width Extension", ($bytes->[8] & 24)." bits");

	my $taa;
	my $trcd;
	my $trp;
	my $tras;

	$taa  = ddr3_mtb_ftb($bytes->[16], $bytes->[35], $mtb, $ftb);
	$trcd = ddr3_mtb_ftb($bytes->[18], $bytes->[36], $mtb, $ftb);
	$trp  = ddr3_mtb_ftb($bytes->[20], $bytes->[37], $mtb, $ftb);
	$tras = ((($bytes->[21] & 0x0f) << 8) + $bytes->[22]) * $mtb;

	printl("tCL-tRCD-tRP-tRAS", ddr_core_timings(ceil($taa / $ctime), $ctime, $trcd, $trp, $tras));

# latencies
	my $highestCAS = 0;
	my %cas;
	my $cas_sup = ($bytes->[15] << 8) + $bytes->[14];
	for ($ii = 0; $ii < 15; $ii++) {
		if ($cas_sup & (1 << $ii)) {
			$highestCAS = $ii + 4;
			$cas{$highestCAS}++;
		}
	}
	printl("Supported CAS Latencies (tCL)", cas_latencies(keys %cas));

# standard DDR3 speeds
	prints("Timings at Standard Speeds");
	foreach my $ctime_at_speed (7.5/8, 7.5/7, 1.25, 1.5, 1.875, 2.5) {
		my $best_cas = 0;

		# Find min CAS latency at this speed
		for ($ii = 14; $ii >= 0; $ii--) {
			next unless ($cas_sup & (1 << $ii));
			if (ceil($taa / $ctime_at_speed) <= $ii + 4) {
				$best_cas = $ii + 4;
			}
		}

		printl_cond($best_cas && $ctime_at_speed >= $ctime,
			    "tCL-tRCD-tRP-tRAS" . as_ddr(3, $ctime_at_speed),
			    ddr_core_timings($best_cas, $ctime_at_speed,
					     $trcd, $trp, $tras));
	}

# more timing information
	prints("Timing Parameters");

	printl("Minimum Cycle Time (tCK)", tns3($ctime));
	printl("Minimum CAS Latency Time (tAA)", tns3($taa));
	printl("Minimum Write Recovery time (tWR)", tns3($bytes->[17] * $mtb));
	printl("Minimum RAS# to CAS# Delay (tRCD)", tns3($trcd));
	printl("Minimum Row Active to Row Active Delay (tRRD)",
		tns3($bytes->[19] * $mtb));
	printl("Minimum Row Precharge Delay (tRP)", tns3($trp));
	printl("Minimum Active to Precharge Delay (tRAS)", tns3($tras));
	printl("Minimum Active to Auto-Refresh Delay (tRC)",
		tns3(ddr3_mtb_ftb((($bytes->[21] & 0xf0) << 4) + $bytes->[23], $bytes->[38], $mtb, $ftb)));
	printl("Minimum Recovery Delay (tRFC)",
		tns3((($bytes->[25] << 8) + $bytes->[24]) * $mtb));
	printl("Minimum Write to Read CMD Delay (tWTR)",
		tns3($bytes->[26] * $mtb));
	printl("Minimum Read to Pre-charge CMD Delay (tRTP)",
		tns3($bytes->[27] * $mtb));
	printl("Minimum Four Activate Window Delay (tFAW)",
		tns3(((($bytes->[28] & 15) << 8) + $bytes->[29]) * $mtb));

# miscellaneous stuff
	prints("Optional Features");

	my $volts = "1.5V";
	if ($bytes->[6] & 1) {
		$volts .= " tolerant";
	}
	if ($bytes->[6] & 2) {
		$volts .= ", 1.35V ";
	}
	if ($bytes->[6] & 4) {
		$volts .= ", 1.2X V";
	}
	printl("Operable voltages", $volts);
	printl("RZQ/6 supported?", ($bytes->[30] & 1) ? "Yes" : "No");
	printl("RZQ/7 supported?", ($bytes->[30] & 2) ? "Yes" : "No");
	printl("DLL-Off Mode supported?", ($bytes->[30] & 128) ? "Yes" : "No");
	printl("Operating temperature range", sprintf "0-%dC",
		($bytes->[31] & 1) ? 95 : 85);
	printl("Refresh Rate in extended temp range",
		($bytes->[31] & 2) ? "2X" : "1X");
	printl("Auto Self-Refresh?", ($bytes->[31] & 4) ? "Yes" : "No");
	printl("On-Die Thermal Sensor readout?",
		($bytes->[31] & 8) ? "Yes" : "No");
	printl("Partial Array Self-Refresh?",
		($bytes->[31] & 128) ? "Yes" : "No");
	printl("Module Thermal Sensor",
		($bytes->[32] & 128) ? "Yes" : "No");
	printl("SDRAM Device Type", ddr3_device_type($bytes->[33]));

	# Following bytes are type-specific, so don't continue if type
	# isn't known.
	return if $bytes->[3] == 0 || $bytes->[3] > $#module_types;

	if ($module_types[$bytes->[3]]->{family} == DDR3_UNBUFFERED ||
	    $module_types[$bytes->[3]]->{family} == DDR3_REGISTERED ||
	    $module_types[$bytes->[3]]->{family} == DDR3_CLOCKED ||
	    $module_types[$bytes->[3]]->{family} == DDR3_LOAD_REDUCED) {
		prints("Physical Characteristics");
		printl("Module Height", (($bytes->[60] & 31) + 15) . " mm");
		printl("Module Thickness", sprintf("%d mm front, %d mm back",
						($bytes->[61] & 15) + 1,
						(($bytes->[61] >> 4) & 15) +1));
		printl("Module Width", $module_types[$bytes->[3]]->{width});
		printl("Module Reference Card", ddr3_reference_card($bytes->[62], $bytes->[60]));

		printl_cond($module_types[$bytes->[3]]->{family} == DDR3_UNBUFFERED,
			    "Rank 1 Mapping", $bytes->[63] & 0x01 ? "Mirrored" : "Standard");
	}

	if ($module_types[$bytes->[3]]->{family} == DDR3_REGISTERED) {
		prints("Registered DIMM");

		my @rows = ("Undefined", 1, 2, 4);
		printl("# DRAM Rows", $rows[($bytes->[63] >> 2) & 3]);
		printl("# Registers", $rows[$bytes->[63] & 3]);
		printl("Register manufacturer",
			manufacturer_ddr3($bytes->[65], $bytes->[66]));
		printl("Register device type",
				(($bytes->[68] & 7) == 0) ? "SSTE32882" :
					"Undefined");
		printl_cond($bytes->[67] != 0xff,
			    "Register revision", ddr3_revision_number($bytes->[67]));
		printl("Heat spreader", $bytes->[64] & 0x80 ? "Yes" : "No");
	}

	if ($module_types[$bytes->[3]]->{family} == DDR3_LOAD_REDUCED) {
		prints("Load Reduced DIMM");

		my @rows = ("Undefined", 1, 2, "Reserved");
		printl("# DRAM Rows", $rows[($bytes->[63] >> 2) & 3]);
		my @mirroring = ("None", "Odd ranks", "Reserved", "Reserved");
		printl("Mirroring", $mirroring[$bytes->[63] & 3]);
		printl("Rank Numbering", $bytes->[63] & 0x20 ? "Even only" : "Contiguous");
		printl("Buffer Orientation", $bytes->[63] & 0x10 ? "Horizontal" : "Vertical");
		printl("Register manufacturer",
			manufacturer_ddr3($bytes->[65], $bytes->[66]));
		printl_cond($bytes->[64] != 0xff,
			    "Buffer Revision", ddr3_revision_number($bytes->[64]));
		printl("Heat spreader", $bytes->[63] & 0x80 ? "Yes" : "No");
	}

}

# Parameter: EEPROM bytes 0-127 (using 4-5)
sub decode_direct_rambus($)
{
	my $bytes = shift;

#size computation
	prints("Memory Characteristics");

	my $ii;

	$ii = ($bytes->[4] & 0x0f) + ($bytes->[4] >> 4) + ($bytes->[5] & 0x07) - 13;

	if ($ii > 0 && $ii < 16) {
		printl("Size", (1 << $ii) . " MB");
	} else {
		printl("Size", sprintf("INVALID: 0x%02x, 0x%02x",
				       $bytes->[4], $bytes->[5]));
	}
}

# Parameter: EEPROM bytes 0-127 (using 3-5)
sub decode_rambus($)
{
	my $bytes = shift;

#size computation
	prints("Memory Characteristics");

	my $ii;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[3] >> 4) + ($bytes->[5] & 0x07) - 13;

	if ($ii > 0 && $ii < 16) {
		printl("Size", (1 << $ii) . " MB");
	} else {
		printl("Size", "INVALID: " . sprintf("0x%02x, 0x%02x",
					       $bytes->[3], $bytes->[5]));
	}
}

%decode_callback = (
	"SDR SDRAM"	=> \&decode_sdr_sdram,
	"DDR SDRAM"	=> \&decode_ddr_sdram,
	"DDR2 SDRAM"	=> \&decode_ddr2_sdram,
	"DDR3 SDRAM"	=> \&decode_ddr3_sdram,
	"Direct Rambus"	=> \&decode_direct_rambus,
	"Rambus"	=> \&decode_rambus,
);

# Parameter: Manufacturing year/week bytes
sub manufacture_date($$)
{
	my ($year, $week) = @_;

	# In theory the year and week are in BCD format, but
	# this is not always true in practice :(
	if (($year & 0xf0) <= 0x90 && ($year & 0x0f) <= 0x09
	 && ($week & 0xf0) <= 0x90 && ($week & 0x0f) <= 0x09) {
		# Note that this heuristic will break in year 2080
		return sprintf("%d%02X-W%02X",
				$year >= 0x80 ? 19 : 20, $year, $week);
	# Fallback to binary format if it seems to make sense
	} elsif ($year <= 99 && $week >= 1 && $week <= 53) {
		return sprintf("%d%02d-W%02d",
				$year >= 80 ? 19 : 20, $year, $week);
	} else {
		return sprintf("0x%02X%02X", $year, $week);
	}
}

sub printl_mfg_location_code($)
{
	my $code = shift;
	my $letter = chr($code);

	# Try the location code as ASCII first, as earlier specifications
	# suggested this. As newer specifications don't mention it anymore,
	# we still fall back to binary.
	printl_cond(spd_written($code), "Manufacturing Location Code",
		    $letter =~ m/^[\w\d]$/ ? $letter : sprintf("0x%.2X", $code));
}

sub printl_mfg_assembly_serial(@)
{
	printl_cond(spd_written(@_), "Assembly Serial Number",
		    sprintf("0x%02X%02X%02X%02X", @_));
}

# Parameter: EEPROM bytes 0-175 (using 117-149)
sub decode_ddr3_mfg_data($)
{
	my $bytes = shift;

	prints("Manufacturer Data");

	printl("Module Manufacturer",
	       manufacturer_ddr3($bytes->[117], $bytes->[118]));

	printl_cond(spd_written(@{$bytes}[148..149]),
		    "DRAM Manufacturer",
		    manufacturer_ddr3($bytes->[148], $bytes->[149]));

	printl_mfg_location_code($bytes->[119]);

	printl_cond(spd_written(@{$bytes}[120..121]),
		    "Manufacturing Date",
		    manufacture_date($bytes->[120], $bytes->[121]));

	printl_mfg_assembly_serial(@{$bytes}[122..125]);

	printl("Part Number", part_number(@{$bytes}[128..145]));

	printl_cond(spd_written(@{$bytes}[146..147]),
		    "Revision Code",
		    sprintf("0x%02X%02X", $bytes->[146], $bytes->[147]));
}

# Parameter: EEPROM bytes 0-127 (using 64-98)
sub decode_manufacturing_information($)
{
	my $bytes = shift;
	my ($temp, $extra);

	prints("Manufacturing Information");

	# $extra is a reference to an array containing up to
	# 7 extra bytes from the Manufacturer field. Sometimes
	# these bytes are filled with interesting data.
	($temp, $extra) = manufacturer(@{$bytes}[64..71]);
	printl("Manufacturer", $temp);
	$temp = manufacturer_data(@{$extra});
	printl_cond(defined $temp, "Custom Manufacturer Data", $temp);

	printl_mfg_location_code($bytes->[72]);

	printl("Part Number", part_number(@{$bytes}[73..90]));

	printl_cond(spd_written(@{$bytes}[91..92]), "Revision Code",
		    sprintf("0x%02X%02X", @{$bytes}[91..92]));

	printl_cond(spd_written(@{$bytes}[93..94]), "Manufacturing Date",
	       manufacture_date($bytes->[93], $bytes->[94]));

	printl_mfg_assembly_serial(@{$bytes}[95..98]);
}

# Parameter: EEPROM bytes 0-127 (using 126-127)
sub decode_intel_spec_freq($)
{
	my $bytes = shift;
	my $temp;

	prints("Intel Specification");

	if ($bytes->[126] == 0x66) { $temp = "66 MHz"; }
	elsif ($bytes->[126] == 100) { $temp = "100 MHz or 133 MHz"; }
	elsif ($bytes->[126] == 133) { $temp = "133 MHz"; }
	else { $temp = "Undefined!"; }
	printl("Frequency", $temp);

	$temp = "";
	if ($bytes->[127] & 1) { $temp .= "Intel Concurrent Auto-precharge\n"; }
	if ($bytes->[127] & 2) { $temp .= "CAS Latency = 2\n"; }
	if ($bytes->[127] & 4) { $temp .= "CAS Latency = 3\n"; }
	if ($bytes->[127] & 8) { $temp .= "Junction Temp A (100 degrees C)\n"; }
	else { $temp .= "Junction Temp B (90 degrees C)\n"; }
	if ($bytes->[127] & 16) { $temp .= "CLK 3 Connected\n"; }
	if ($bytes->[127] & 32) { $temp .= "CLK 2 Connected\n"; }
	if ($bytes->[127] & 64) { $temp .= "CLK 1 Connected\n"; }
	if ($bytes->[127] & 128) { $temp .= "CLK 0 Connected\n"; }
	if (($bytes->[127] & 192) == 192) { $temp .= "Double-sided DIMM\n"; }
	elsif (($bytes->[127] & 192) != 0) { $temp .= "Single-sided DIMM\n"; }
	printl("Details for 100 MHz Support", $temp);
}

# Read various hex dump style formats: hexdump, hexdump -C, i2cdump, eeprog
# note that normal 'hexdump' format on a little-endian system byte-swaps
# words, using hexdump -C is better.
sub read_hexdump($)
{
	my $addr = 0;
	my $repstart = 0;
	my @bytes;
	my $header = 1;
	my $word = 0;

	# Look in the cache first
	return @{$hexdump_cache{$_[0]}} if exists $hexdump_cache{$_[0]};

	open F, '<', $_[0] or die "Unable to open: $_[0]";
	while (<F>) {
		chomp;
		if (/^\*$/) {
			$repstart = $addr;
			next;
		}
		/^(?:0000 )?([a-f\d]{2,8}):?\s+((:?[a-f\d]{4}\s*){8}|(:?[a-f\d]{2}\s*){16})/i ||
		/^(?:0000 )?([a-f\d]{2,8}):?\s*$/i;
		next if (!defined $1 && $header);		# skip leading unparsed lines

		defined $1 or die "Unable to parse input";
		$header = 0;

		$addr = hex $1;
		if ($repstart) {
			@bytes[$repstart .. ($addr-1)] =
				(@bytes[($repstart-16)..($repstart-1)]) x (($addr-$repstart)/16);
			$repstart = 0;
		}
		last unless defined $2;
		foreach (split(/\s+/, $2)) {
			if (/^(..)(..)$/) {
			        $word |= 1;
				if ($use_hexdump eq LITTLEENDIAN) {
					$bytes[$addr++] = hex($2);
					$bytes[$addr++] = hex($1);
				} else {
					$bytes[$addr++] = hex($1);
					$bytes[$addr++] = hex($2);
				}
			} else {
				$bytes[$addr++] = hex($_);
			}
		}
	}
	close F;
	$header and die "Unable to parse any data from hexdump '$_[0]'";
	$word and printc("Using $use_hexdump 16-bit hex dump");

	# Cache the data for later use
	$hexdump_cache{$_[0]} = \@bytes;
	return @bytes;
}

# Returns the (total, used) number of bytes in the EEPROM,
# assuming it is a non-Rambus SPD EEPROM.
sub spd_sizes($)
{
	my $bytes = shift;

	if ($bytes->[2] >= 9) {
		# For FB-DIMM and newer, decode number of bytes written
		my $spd_len = ($bytes->[0] >> 4) & 7;
		my $size = 64 << ($bytes->[0] & 15);
		if ($spd_len == 0) {
			return ($size, 128);
		} elsif ($spd_len == 1) {
			return ($size, 176);
		} elsif ($spd_len == 2) {
			return ($size, 256);
		} else {
			return (64, 64);
		}
	} else {
		my $size;
		if ($bytes->[1] <= 14) {
			$size = 1 << $bytes->[1];
		} elsif ($bytes->[1] == 0) {
			$size = "RFU";
		} else { $size = "ERROR!" }

		return ($size, ($bytes->[0] < 64) ? 64 : $bytes->[0]);
	}
}

# Read bytes from SPD-EEPROM
# Note: offset must be a multiple of 16!
sub readspd($$$)
{
	my ($offset, $size, $dimm_i) = @_;
	my @bytes;
	if ($use_hexdump) {
		@bytes = read_hexdump($dimm_i);
		return @bytes[$offset..($offset + $size - 1)];
	} elsif ($use_sysfs) {
		# Kernel 2.6 with sysfs
		sysopen(HANDLE, "$dimm_i/eeprom", O_RDONLY)
			or die "Cannot open $dimm_i/eeprom";
		binmode HANDLE;
		sysseek(HANDLE, $offset, SEEK_SET)
			or die "Cannot seek $dimm_i/eeprom";
		sysread(HANDLE, my $eeprom, $size)
			or die "Cannot read $dimm_i/eeprom";
		close HANDLE;
		@bytes = unpack("C*", $eeprom);
	} else {
		# Kernel 2.4 with procfs
		for my $i (0 .. ($size-1)/16) {
			my $hexoff = sprintf('%02x', $offset + $i * 16);
			push @bytes, split(" ", `cat $dimm_i/$hexoff`);
		}
	}
	return @bytes;
}

# Calculate and verify checksum of first 63 bytes
sub checksum($)
{
	my $bytes = shift;
	my $dimm_checksum = 0;
	local $_;

	$dimm_checksum += $bytes->[$_] foreach (0 .. 62);
	$dimm_checksum &= 0xff;

	return ("EEPROM Checksum of bytes 0-62",
		($bytes->[63] == $dimm_checksum) ? 1 : 0,
		sprintf('0x%02X', $bytes->[63]),
		sprintf('0x%02X', $dimm_checksum));
}

# Calculate and verify CRC
sub check_crc($)
{
	my $bytes = shift;
	my $crc = 0;
	my $crc_cover = $bytes->[0] & 0x80 ? 116 : 125;
	my $crc_ptr = 0;
	my $crc_bit;

	while ($crc_ptr <= $crc_cover) {
		$crc = $crc ^ ($bytes->[$crc_ptr] << 8);
		for ($crc_bit = 0; $crc_bit < 8; $crc_bit++) {
			if ($crc & 0x8000) {
				$crc = ($crc << 1) ^ 0x1021;
			} else {
				$crc = $crc << 1
			}
		}
		$crc_ptr++;
	}
	$crc &= 0xffff;

	my $dimm_crc = ($bytes->[127] << 8) | $bytes->[126];
	return ("EEPROM CRC of bytes 0-$crc_cover",
		($dimm_crc == $crc) ? 1 : 0,
		sprintf("0x%04X", $dimm_crc),
		sprintf("0x%04X", $crc));
}

# Parse command-line
foreach (@ARGV) {
	if ($_ eq '-h' || $_ eq '--help') {
		print "Usage: $0 [-c] [-f [-b]] [-x|-X file [files..]]\n",
			"       $0 -h\n\n",
			"  -f, --format            Print nice html output\n",
			"  -b, --bodyonly          Don't print html header\n",
			"                          (useful for postprocessing the output)\n",
			"      --side-by-side      Display all DIMMs side-by-side if possible\n",
			"      --merge-cells       Merge neighbour cells with identical values\n",
			"                          (side-by-side output only, default)\n",
			"      --no-merge-cells    Don't merge neighbour cells with identical values\n",
			"                          (side-by-side output only)\n",
			"  -c, --checksum          Decode completely even if checksum fails\n",
			"  -x,                     Read data from hexdump files\n",
			"  -X,                     Same as -x except treat multibyte hex\n",
			"                          data as little endian\n",
			"  -h, --help              Display this usage summary\n";
		print <<"EOF";

Hexdumps can be the output from hexdump, hexdump -C, i2cdump, eeprog and
likely many other progams producing hex dumps of one kind or another.  Note
that the default output of "hexdump" will be byte-swapped on little-endian
systems and you must use -X instead of -x, otherwise the dump will not be
parsed correctly.  It is better to use "hexdump -C", which is not ambiguous.
EOF
		exit;
	}

	if ($_ eq '-f' || $_ eq '--format') {
		$opt_html = 1;
		next;
	}
	if ($_ eq '-b' || $_ eq '--bodyonly') {
		$opt_bodyonly = 1;
		next;
	}
	if ($_ eq '--side-by-side') {
		$opt_side_by_side = 1;
		next;
	}
	if ($_ eq '--merge-cells') {
		$opt_merge = 1;
		next;
	}
	if ($_ eq '--no-merge-cells') {
		$opt_merge = 0;
		next;
	}
	if ($_ eq '-c' || $_ eq '--checksum') {
		$opt_igncheck = 1;
		next;
	}
	if ($_ eq '-x') {
		$use_hexdump = BIGENDIAN;
		next;
	}
	if ($_ eq '-X') {
		$use_hexdump = LITTLEENDIAN;
		next;
	}

	if (m/^-/) {
		print STDERR "Unrecognized option $_\n";
		exit;
	}

	push @dimm, { eeprom => basename($_), file => $_ } if $use_hexdump;
}

# Default values
$opt_merge = 1 unless defined $opt_merge;

# From a sysfs device path and an attribute name, return the attribute
# value, or undef (stolen from sensors-detect)
sub sysfs_device_attribute
{
	my ($device, $attr) = @_;
	my $value;

	open(local *FILE, "$device/$attr") or return "";
	$value = <FILE>;
	close(FILE);
	return unless defined $value;

	chomp($value);
	return $value;
}

sub get_dimm_list
{
	my (@dirs, $dir, $opened, $file, @files);

	if ($use_sysfs) {
		@dirs = ('/sys/bus/i2c/drivers/eeprom', '/sys/bus/i2c/drivers/at24');
	} else {
		@dirs = ('/proc/sys/dev/sensors');
	}

	foreach $dir (@dirs) {
		next unless opendir(local *DIR, $dir);
		$opened++;
		while (defined($file = readdir(DIR))) {
			if ($use_sysfs) {
				# We look for I2C devices like 0-0050 or 2-0051
				next unless $file =~ /^\d+-[\da-f]+$/i;
				next unless -d "$dir/$file";

				# Device name must be eeprom (driver eeprom)
				# or spd (driver at24)
				my $attr = sysfs_device_attribute("$dir/$file", "name");
				next unless defined $attr &&
					    ($attr eq "eeprom" || $attr eq "spd");
			} else {
				next unless $file =~ /^eeprom-/;
			}
			push @files, { eeprom => "$file",
				       file => "$dir/$file" };
		}
		close(DIR);
	}

	if (!$opened) {
		print STDERR "No EEPROM found, try loading the eeprom or at24 module\n";
		exit;
	}

	return sort { $a->{file} cmp $b->{file} } @files;
}

# @dimm is a list of hashes. There's one hash for each EEPROM we found.
# Each hash has the following keys:
#  * eeprom: Name of the eeprom data file
#  * file: Full path to the eeprom data file
#  * bytes: The EEPROM data (array)
#  * is_rambus: Whether this is a RAMBUS DIMM or not (boolean)
#  * chk_label: The label to display for the checksum or CRC
#  * chk_valid: Whether the checksum or CRC is valid or not (boolean)
#  * chk_spd: The checksum or CRC value found in the EEPROM
#  * chk_calc: The checksum or CRC computed from the EEPROM data
# Keys are added over time.
@dimm = get_dimm_list() unless $use_hexdump;

for my $i (0 .. $#dimm) {
	my @bytes = readspd(0, 128, $dimm[$i]->{file});
	$dimm[$i]->{bytes} = \@bytes;
	$dimm[$i]->{is_rambus} = $bytes[0] < 4;		# Simple heuristic
	if ($dimm[$i]->{is_rambus} || $bytes[2] < 9) {
		($dimm[$i]->{chk_label}, $dimm[$i]->{chk_valid},
		 $dimm[$i]->{chk_spd}, $dimm[$i]->{chk_calc}) =
			checksum(\@bytes);
	} else {
		($dimm[$i]->{chk_label}, $dimm[$i]->{chk_valid},
		 $dimm[$i]->{chk_spd}, $dimm[$i]->{chk_calc}) =
			check_crc(\@bytes);
	}
}

# Checksum or CRC validation
if (!$opt_igncheck) {
	for (my $i = 0; $i < @dimm; ) {
		if ($dimm[$i]->{chk_valid}) {
			$i++;
		} else {
			splice(@dimm, $i, 1);
		}
	}
}


if ($opt_html && !$opt_bodyonly) {
	print "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 3.2 Final//EN\">\n",
	      "<html><head>\n",
		  "\t<meta HTTP-EQUIV=\"Content-Type\" CONTENT=\"text/html; charset=iso-8859-1\">\n",
		  "\t<title>PC DIMM Serial Presence Detect Tester/Decoder Output</title>\n",
		  "</head><body>\n";
}

printc("decode-dimms version $revision");
printh('Memory Serial Presence Detect Decoder',
'By Philip Edelbrock, Christian Zuckschwerdt, Burkart Lingner,
Jean Delvare, Trent Piepho and others');

# Process the valid entries
for $current (0 .. $#dimm) {
	my @bytes = @{$dimm[$current]->{bytes}};

	if ($opt_side_by_side) {
		printl("Decoding EEPROM", $dimm[$current]->{eeprom});
	}

	if (!$use_hexdump) {
		if ($dimm[$current]->{file} =~ /-([\da-f]+)$/i) {
			my $dimm_num = hex($1) - 0x50 + 1;
			if ($dimm_num >= 1 && $dimm_num <= 8) {
				printl("Guessing DIMM is in", "bank $dimm_num");
			}
		}
	}

# Decode first 3 bytes (0-2)
	prints("SPD EEPROM Information");

	printl($dimm[$current]->{chk_label}, ($dimm[$current]->{chk_valid} ?
		sprintf("OK (%s)", $dimm[$current]->{chk_calc}) :
		sprintf("Bad\n(found %s, calculated %s)",
			$dimm[$current]->{chk_spd}, $dimm[$current]->{chk_calc})));

	my $temp;
	if ($dimm[$current]->{is_rambus}) {
		if ($bytes[0] == 1) { $temp = "0.7"; }
		elsif ($bytes[0] == 2) { $temp = "1.0"; }
		elsif ($bytes[0] == 0) { $temp = "Invalid"; }
		else { $temp = "Reserved"; }
		printl("SPD Revision", $temp);
	} else {
		my ($spd_size, $spd_used) = spd_sizes(\@bytes);
		printl("# of bytes written to SDRAM EEPROM", $spd_used);
		printl("Total number of bytes in EEPROM", $spd_size);

		# If there's more data than what we've read, let's
		# read it now.  DDR3 will need this data.
		if ($spd_used > @bytes) {
			push (@bytes,
			      readspd(@bytes, $spd_used - @bytes,
				      $dimm[$current]->{file}));
		}
	}

	my $type = sprintf("Unknown (0x%02x)", $bytes[2]);
	if ($dimm[$current]->{is_rambus}) {
		if ($bytes[2] == 1) { $type = "Direct Rambus"; }
		elsif ($bytes[2] == 17) { $type = "Rambus"; }
	} else {
		my @type_list = (
			"Reserved", "FPM DRAM",		# 0, 1
			"EDO", "Pipelined Nibble",	# 2, 3
			"SDR SDRAM", "Multiplexed ROM",	# 4, 5
			"DDR SGRAM", "DDR SDRAM",	# 6, 7
			"DDR2 SDRAM", "FB-DIMM",	# 8, 9
			"FB-DIMM Probe", "DDR3 SDRAM",	# 10, 11
		);
		if ($bytes[2] < @type_list) {
			$type = $type_list[$bytes[2]];
		}
	}
	printl("Fundamental Memory type", $type);

# Decode next 61 bytes (3-63, depend on memory type)
	$decode_callback{$type}->(\@bytes)
		if exists $decode_callback{$type};

	if ($type eq "DDR3 SDRAM") {
		# Decode DDR3-specific manufacturing data in bytes
		# 117-149
		decode_ddr3_mfg_data(\@bytes)
	} else {
		# Decode next 35 bytes (64-98, common to most
		# memory types)
		decode_manufacturing_information(\@bytes);
	}

# Next 27 bytes (99-125) are manufacturer specific, can't decode

# Last 2 bytes (126-127) are reserved, Intel used them as an extension
	if ($type eq "SDR SDRAM") {
		decode_intel_spec_freq(\@bytes);
	}
}

# Side-by-side output format is only possible if all DIMMs have a similar
# output structure
if ($opt_side_by_side) {
	for $current (1 .. $#dimm) {
		my @ref_output = @{$dimm[0]->{output}};
		my @test_output = @{$dimm[$current]->{output}};
		my $line;

		if (scalar @ref_output != scalar @test_output) {
			$opt_side_by_side = 0;
			last;
		}

		for ($line = 0; $line < @ref_output; $line++) {
			my ($ref_func, $ref_label, @ref_dummy) = @{$ref_output[$line]};
			my ($test_func, $test_label, @test_dummy) = @{$test_output[$line]};

			if ($ref_func != $test_func || $ref_label ne $test_label) {
				$opt_side_by_side = 0;
				last;
			}
		}
	}

	if (!$opt_side_by_side) {
		printc("Side-by-side output only possible if all DIMMS are similar\n");

		# Discard "Decoding EEPROM" entry from all outputs
		for $current (0 .. $#dimm) {
			shift(@{$dimm[$current]->{output}});
		}
	}
}

# Check if all dimms have the same value for a given line
sub line_has_same_values($)
{
	my $line = shift;
	my $value = $dimm[0]->{output}->[$line]->[2];

	# Skip lines with no values (headers)
	return 1 unless defined $value;

	for my $other (1 .. $#dimm) {
		return 0 unless $value eq $dimm[$other]->{output}->[$line]->[2];
	}

	return 1;
}

# Find out the longest value string to adjust the column width
sub find_col_width($)
{
	my $width = shift;

	return $width unless $opt_side_by_side && !$opt_html;

	my $line;
	my $line_nr = @{$dimm[0]->{output}};

	for ($line = 0; $line < $line_nr; $line++) {
		next if $opt_merge && line_has_same_values($line);

		my @strings;

		for my $current (0 .. $#dimm) {
			my $value = $dimm[$current]->{output}->[$line]->[2];
			push @strings, split("\n", $value) if defined $value;
		}

		foreach my $line2 (@strings) {
			my $len = length($line2);
			$width = $len if $len > $width;
		}
	}

	return $width;
}

$sbs_col_width = find_col_width(15);

# Print the decoded information for all DIMMs
for $current (0 .. $#dimm) {
	if ($opt_side_by_side) {
		print "\n\n";
	} else {
		print "<b><u>" if $opt_html;
		printl2("\n\nDecoding EEPROM", $dimm[$current]->{file});
		print "</u></b>" if $opt_html;
	}
	print "<table border=1>\n" if $opt_html;

	my @output = @{$dimm[$current]->{output}};
	for (my $line = 0; $line < @output; $line++) {
		my ($func, @param) = @{$output[$line]};

		if ($opt_side_by_side) {
			foreach ($current+1 .. $#dimm) {
				my @xoutput = @{$dimm[$_]->{output}};
				if (@{$xoutput[$line]} == 3) {
					# Line with data, stack all values
					push @param, @{$xoutput[$line]}[2];
				} else {
					# Separator, make it span
					push @param, scalar @dimm;
				}
			}
		}

		$func->(@param);
	}

	print "</table>\n" if $opt_html;
	last if $opt_side_by_side;
}
printl2("\n\nNumber of SDRAM DIMMs detected and decoded", scalar @dimm);

print "</body></html>\n" if ($opt_html && !$opt_bodyonly);