summaryrefslogtreecommitdiff
path: root/js/src/assembler/assembler/ARMv7Assembler.h
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/assembler/assembler/ARMv7Assembler.h')
-rw-r--r--js/src/assembler/assembler/ARMv7Assembler.h1926
1 files changed, 1926 insertions, 0 deletions
diff --git a/js/src/assembler/assembler/ARMv7Assembler.h b/js/src/assembler/assembler/ARMv7Assembler.h
new file mode 100644
index 0000000..60e201c
--- /dev/null
+++ b/js/src/assembler/assembler/ARMv7Assembler.h
@@ -0,0 +1,1926 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * vim: set ts=8 sw=4 et tw=79:
+ *
+ * ***** BEGIN LICENSE BLOCK *****
+ * Copyright (C) 2009 Apple Inc. All rights reserved.
+ * Copyright (C) 2010 University of Szeged
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ***** END LICENSE BLOCK ***** */
+
+#ifndef ARMAssembler_h
+#define ARMAssembler_h
+
+#include "assembler/wtf/Platform.h"
+
+#if ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)
+
+#include "AssemblerBuffer.h"
+#include "assembler/wtf/Assertions.h"
+#include "assembler/wtf/Vector.h"
+#include <stdint.h>
+
+namespace JSC {
+
+namespace ARMRegisters {
+ typedef enum {
+ r0,
+ r1,
+ r2,
+ r3,
+ r4,
+ r5,
+ r6,
+ r7, wr = r7, // thumb work register
+ r8,
+ r9, sb = r9, // static base
+ r10, sl = r10, // stack limit
+ r11, fp = r11, // frame pointer
+ r12, ip = r12,
+ r13, sp = r13,
+ r14, lr = r14,
+ r15, pc = r15,
+ } RegisterID;
+
+ // s0 == d0 == q0
+ // s4 == d2 == q1
+ // etc
+ typedef enum {
+ s0 = 0,
+ s1 = 1,
+ s2 = 2,
+ s3 = 3,
+ s4 = 4,
+ s5 = 5,
+ s6 = 6,
+ s7 = 7,
+ s8 = 8,
+ s9 = 9,
+ s10 = 10,
+ s11 = 11,
+ s12 = 12,
+ s13 = 13,
+ s14 = 14,
+ s15 = 15,
+ s16 = 16,
+ s17 = 17,
+ s18 = 18,
+ s19 = 19,
+ s20 = 20,
+ s21 = 21,
+ s22 = 22,
+ s23 = 23,
+ s24 = 24,
+ s25 = 25,
+ s26 = 26,
+ s27 = 27,
+ s28 = 28,
+ s29 = 29,
+ s30 = 30,
+ s31 = 31,
+ d0 = 0 << 1,
+ d1 = 1 << 1,
+ d2 = 2 << 1,
+ d3 = 3 << 1,
+ d4 = 4 << 1,
+ d5 = 5 << 1,
+ d6 = 6 << 1,
+ d7 = 7 << 1,
+ d8 = 8 << 1,
+ d9 = 9 << 1,
+ d10 = 10 << 1,
+ d11 = 11 << 1,
+ d12 = 12 << 1,
+ d13 = 13 << 1,
+ d14 = 14 << 1,
+ d15 = 15 << 1,
+ d16 = 16 << 1,
+ d17 = 17 << 1,
+ d18 = 18 << 1,
+ d19 = 19 << 1,
+ d20 = 20 << 1,
+ d21 = 21 << 1,
+ d22 = 22 << 1,
+ d23 = 23 << 1,
+ d24 = 24 << 1,
+ d25 = 25 << 1,
+ d26 = 26 << 1,
+ d27 = 27 << 1,
+ d28 = 28 << 1,
+ d29 = 29 << 1,
+ d30 = 30 << 1,
+ d31 = 31 << 1,
+ q0 = 0 << 2,
+ q1 = 1 << 2,
+ q2 = 2 << 2,
+ q3 = 3 << 2,
+ q4 = 4 << 2,
+ q5 = 5 << 2,
+ q6 = 6 << 2,
+ q7 = 7 << 2,
+ q8 = 8 << 2,
+ q9 = 9 << 2,
+ q10 = 10 << 2,
+ q11 = 11 << 2,
+ q12 = 12 << 2,
+ q13 = 13 << 2,
+ q14 = 14 << 2,
+ q15 = 15 << 2,
+ q16 = 16 << 2,
+ q17 = 17 << 2,
+ q18 = 18 << 2,
+ q19 = 19 << 2,
+ q20 = 20 << 2,
+ q21 = 21 << 2,
+ q22 = 22 << 2,
+ q23 = 23 << 2,
+ q24 = 24 << 2,
+ q25 = 25 << 2,
+ q26 = 26 << 2,
+ q27 = 27 << 2,
+ q28 = 28 << 2,
+ q29 = 29 << 2,
+ q30 = 30 << 2,
+ q31 = 31 << 2,
+ } FPRegisterID;
+}
+
+class ARMv7Assembler;
+class ARMThumbImmediate {
+ friend class ARMv7Assembler;
+
+ typedef uint8_t ThumbImmediateType;
+ static const ThumbImmediateType TypeInvalid = 0;
+ static const ThumbImmediateType TypeEncoded = 1;
+ static const ThumbImmediateType TypeUInt16 = 2;
+
+ typedef union {
+ int16_t asInt;
+ struct {
+ unsigned imm8 : 8;
+ unsigned imm3 : 3;
+ unsigned i : 1;
+ unsigned imm4 : 4;
+ };
+ // If this is an encoded immediate, then it may describe a shift, or a pattern.
+ struct {
+ unsigned shiftValue7 : 7;
+ unsigned shiftAmount : 5;
+ };
+ struct {
+ unsigned immediate : 8;
+ unsigned pattern : 4;
+ };
+ } ThumbImmediateValue;
+
+ // byte0 contains least significant bit; not using an array to make client code endian agnostic.
+ typedef union {
+ int32_t asInt;
+ struct {
+ uint8_t byte0;
+ uint8_t byte1;
+ uint8_t byte2;
+ uint8_t byte3;
+ };
+ } PatternBytes;
+
+ ALWAYS_INLINE static void countLeadingZerosPartial(uint32_t& value, int32_t& zeros, const int N)
+ {
+ if (value & ~((1 << N) - 1)) /* check for any of the top N bits (of 2N bits) are set */
+ value >>= N; /* if any were set, lose the bottom N */
+ else /* if none of the top N bits are set, */
+ zeros += N; /* then we have identified N leading zeros */
+ }
+
+ static int32_t countLeadingZeros(uint32_t value)
+ {
+ if (!value)
+ return 32;
+
+ int32_t zeros = 0;
+ countLeadingZerosPartial(value, zeros, 16);
+ countLeadingZerosPartial(value, zeros, 8);
+ countLeadingZerosPartial(value, zeros, 4);
+ countLeadingZerosPartial(value, zeros, 2);
+ countLeadingZerosPartial(value, zeros, 1);
+ return zeros;
+ }
+
+ ARMThumbImmediate()
+ : m_type(TypeInvalid)
+ {
+ m_value.asInt = 0;
+ }
+
+ ARMThumbImmediate(ThumbImmediateType type, ThumbImmediateValue value)
+ : m_type(type)
+ , m_value(value)
+ {
+ }
+
+ ARMThumbImmediate(ThumbImmediateType type, uint16_t value)
+ : m_type(TypeUInt16)
+ {
+ // Make sure this constructor is only reached with type TypeUInt16;
+ // this extra parameter makes the code a little clearer by making it
+ // explicit at call sites which type is being constructed
+ ASSERT_UNUSED(type, type == TypeUInt16);
+
+ m_value.asInt = value;
+ }
+
+public:
+ static ARMThumbImmediate makeEncodedImm(uint32_t value)
+ {
+ ThumbImmediateValue encoding;
+ encoding.asInt = 0;
+
+ // okay, these are easy.
+ if (value < 256) {
+ encoding.immediate = value;
+ encoding.pattern = 0;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ int32_t leadingZeros = countLeadingZeros(value);
+ // if there were 24 or more leading zeros, then we'd have hit the (value < 256) case.
+ ASSERT(leadingZeros < 24);
+
+ // Given a number with bit fields Z:B:C, where count(Z)+count(B)+count(C) == 32,
+ // Z are the bits known zero, B is the 8-bit immediate, C are the bits to check for
+ // zero. count(B) == 8, so the count of bits to be checked is 24 - count(Z).
+ int32_t rightShiftAmount = 24 - leadingZeros;
+ if (value == ((value >> rightShiftAmount) << rightShiftAmount)) {
+ // Shift the value down to the low byte position. The assign to
+ // shiftValue7 drops the implicit top bit.
+ encoding.shiftValue7 = value >> rightShiftAmount;
+ // The endoded shift amount is the magnitude of a right rotate.
+ encoding.shiftAmount = 8 + leadingZeros;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ PatternBytes bytes;
+ bytes.asInt = value;
+
+ if ((bytes.byte0 == bytes.byte1) && (bytes.byte0 == bytes.byte2) && (bytes.byte0 == bytes.byte3)) {
+ encoding.immediate = bytes.byte0;
+ encoding.pattern = 3;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ if ((bytes.byte0 == bytes.byte2) && !(bytes.byte1 | bytes.byte3)) {
+ encoding.immediate = bytes.byte0;
+ encoding.pattern = 1;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ if ((bytes.byte1 == bytes.byte3) && !(bytes.byte0 | bytes.byte2)) {
+ encoding.immediate = bytes.byte0;
+ encoding.pattern = 2;
+ return ARMThumbImmediate(TypeEncoded, encoding);
+ }
+
+ return ARMThumbImmediate();
+ }
+
+ static ARMThumbImmediate makeUInt12(int32_t value)
+ {
+ return (!(value & 0xfffff000))
+ ? ARMThumbImmediate(TypeUInt16, (uint16_t)value)
+ : ARMThumbImmediate();
+ }
+
+ static ARMThumbImmediate makeUInt12OrEncodedImm(int32_t value)
+ {
+ // If this is not a 12-bit unsigned it, try making an encoded immediate.
+ return (!(value & 0xfffff000))
+ ? ARMThumbImmediate(TypeUInt16, (uint16_t)value)
+ : makeEncodedImm(value);
+ }
+
+ // The 'make' methods, above, return a !isValid() value if the argument
+ // cannot be represented as the requested type. This methods is called
+ // 'get' since the argument can always be represented.
+ static ARMThumbImmediate makeUInt16(uint16_t value)
+ {
+ return ARMThumbImmediate(TypeUInt16, value);
+ }
+
+ bool isValid()
+ {
+ return m_type != TypeInvalid;
+ }
+
+ // These methods rely on the format of encoded byte values.
+ bool isUInt3() { return !(m_value.asInt & 0xfff8); }
+ bool isUInt4() { return !(m_value.asInt & 0xfff0); }
+ bool isUInt5() { return !(m_value.asInt & 0xffe0); }
+ bool isUInt6() { return !(m_value.asInt & 0xffc0); }
+ bool isUInt7() { return !(m_value.asInt & 0xff80); }
+ bool isUInt8() { return !(m_value.asInt & 0xff00); }
+ bool isUInt9() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xfe00); }
+ bool isUInt10() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xfc00); }
+ bool isUInt12() { return (m_type == TypeUInt16) && !(m_value.asInt & 0xf000); }
+ bool isUInt16() { return m_type == TypeUInt16; }
+ uint8_t getUInt3() { ASSERT(isUInt3()); return m_value.asInt; }
+ uint8_t getUInt4() { ASSERT(isUInt4()); return m_value.asInt; }
+ uint8_t getUInt5() { ASSERT(isUInt5()); return m_value.asInt; }
+ uint8_t getUInt6() { ASSERT(isUInt6()); return m_value.asInt; }
+ uint8_t getUInt7() { ASSERT(isUInt7()); return m_value.asInt; }
+ uint8_t getUInt8() { ASSERT(isUInt8()); return m_value.asInt; }
+ uint8_t getUInt9() { ASSERT(isUInt9()); return m_value.asInt; }
+ uint8_t getUInt10() { ASSERT(isUInt10()); return m_value.asInt; }
+ uint16_t getUInt12() { ASSERT(isUInt12()); return m_value.asInt; }
+ uint16_t getUInt16() { ASSERT(isUInt16()); return m_value.asInt; }
+
+ bool isEncodedImm() { return m_type == TypeEncoded; }
+
+private:
+ ThumbImmediateType m_type;
+ ThumbImmediateValue m_value;
+};
+
+
+typedef enum {
+ SRType_LSL,
+ SRType_LSR,
+ SRType_ASR,
+ SRType_ROR,
+
+ SRType_RRX = SRType_ROR
+} ARMShiftType;
+
+class ARMv7Assembler;
+class ShiftTypeAndAmount {
+ friend class ARMv7Assembler;
+
+public:
+ ShiftTypeAndAmount()
+ {
+ m_u.type = (ARMShiftType)0;
+ m_u.amount = 0;
+ }
+
+ ShiftTypeAndAmount(ARMShiftType type, unsigned amount)
+ {
+ m_u.type = type;
+ m_u.amount = amount & 31;
+ }
+
+ unsigned lo4() { return m_u.lo4; }
+ unsigned hi4() { return m_u.hi4; }
+
+private:
+ union {
+ struct {
+ unsigned lo4 : 4;
+ unsigned hi4 : 4;
+ };
+ struct {
+ unsigned type : 2;
+ unsigned amount : 5;
+ };
+ } m_u;
+};
+
+
+/*
+Some features of the Thumb instruction set are deprecated in ARMv7. Deprecated features affecting
+instructions supported by ARMv7-M are as follows:
+• use of the PC as <Rd> or <Rm> in a 16-bit ADD (SP plus register) instruction
+• use of the SP as <Rm> in a 16-bit ADD (SP plus register) instruction
+• use of the SP as <Rm> in a 16-bit CMP (register) instruction
+• use of MOV (register) instructions in which <Rd> is the SP or PC and <Rm> is also the SP or PC.
+• use of <Rn> as the lowest-numbered register in the register list of a 16-bit STM instruction with base
+register writeback
+*/
+
+class ARMv7Assembler {
+public:
+ ~ARMv7Assembler()
+ {
+ ASSERT(m_jumpsToLink.isEmpty());
+ }
+
+ typedef ARMRegisters::RegisterID RegisterID;
+ typedef ARMRegisters::FPRegisterID FPRegisterID;
+
+ // (HS, LO, HI, LS) -> (AE, B, A, BE)
+ // (VS, VC) -> (O, NO)
+ typedef enum {
+ ConditionEQ,
+ ConditionNE,
+ ConditionHS,
+ ConditionLO,
+ ConditionMI,
+ ConditionPL,
+ ConditionVS,
+ ConditionVC,
+ ConditionHI,
+ ConditionLS,
+ ConditionGE,
+ ConditionLT,
+ ConditionGT,
+ ConditionLE,
+ ConditionAL,
+
+ ConditionCS = ConditionHS,
+ ConditionCC = ConditionLO,
+ } Condition;
+
+ class JmpSrc {
+ friend class ARMv7Assembler;
+ friend class ARMInstructionFormatter;
+ public:
+ JmpSrc()
+ : m_offset(-1)
+ {
+ }
+
+ private:
+ JmpSrc(int offset)
+ : m_offset(offset)
+ {
+ }
+
+ int m_offset;
+ };
+
+ class JmpDst {
+ friend class ARMv7Assembler;
+ friend class ARMInstructionFormatter;
+ public:
+ JmpDst()
+ : m_offset(-1)
+ , m_used(false)
+ {
+ }
+
+ bool isUsed() const { return m_used; }
+ void used() { m_used = true; }
+ private:
+ JmpDst(int offset)
+ : m_offset(offset)
+ , m_used(false)
+ {
+ ASSERT(m_offset == offset);
+ }
+
+ int m_offset : 31;
+ int m_used : 1;
+ };
+
+private:
+
+ struct LinkRecord {
+ LinkRecord(intptr_t from, intptr_t to)
+ : from(from)
+ , to(to)
+ {
+ }
+
+ intptr_t from;
+ intptr_t to;
+ };
+
+ // ARMv7, Appx-A.6.3
+ bool BadReg(RegisterID reg)
+ {
+ return (reg == ARMRegisters::sp) || (reg == ARMRegisters::pc);
+ }
+
+ bool isSingleRegister(FPRegisterID reg)
+ {
+ // Check that the high bit isn't set (q16+), and that the low bit isn't (s1, s3, etc).
+ return !(reg & ~31);
+ }
+
+ bool isDoubleRegister(FPRegisterID reg)
+ {
+ // Check that the high bit isn't set (q16+), and that the low bit isn't (s1, s3, etc).
+ return !(reg & ~(31 << 1));
+ }
+
+ bool isQuadRegister(FPRegisterID reg)
+ {
+ return !(reg & ~(31 << 2));
+ }
+
+ uint32_t singleRegisterNum(FPRegisterID reg)
+ {
+ ASSERT(isSingleRegister(reg));
+ return reg;
+ }
+
+ uint32_t doubleRegisterNum(FPRegisterID reg)
+ {
+ ASSERT(isDoubleRegister(reg));
+ return reg >> 1;
+ }
+
+ uint32_t quadRegisterNum(FPRegisterID reg)
+ {
+ ASSERT(isQuadRegister(reg));
+ return reg >> 2;
+ }
+
+ uint32_t singleRegisterMask(FPRegisterID rd, int highBitsShift, int lowBitShift)
+ {
+ uint32_t rdNum = singleRegisterNum(rd);
+ uint32_t rdMask = (rdNum >> 1) << highBitsShift;
+ if (rdNum & 1)
+ rdMask |= 1 << lowBitShift;
+ return rdMask;
+ }
+
+ uint32_t doubleRegisterMask(FPRegisterID rd, int highBitShift, int lowBitsShift)
+ {
+ uint32_t rdNum = doubleRegisterNum(rd);
+ uint32_t rdMask = (rdNum & 0xf) << lowBitsShift;
+ if (rdNum & 16)
+ rdMask |= 1 << highBitShift;
+ return rdMask;
+ }
+
+ typedef enum {
+ OP_ADD_reg_T1 = 0x1800,
+ OP_ADD_S_reg_T1 = 0x1800,
+ OP_SUB_reg_T1 = 0x1A00,
+ OP_SUB_S_reg_T1 = 0x1A00,
+ OP_ADD_imm_T1 = 0x1C00,
+ OP_ADD_S_imm_T1 = 0x1C00,
+ OP_SUB_imm_T1 = 0x1E00,
+ OP_SUB_S_imm_T1 = 0x1E00,
+ OP_MOV_imm_T1 = 0x2000,
+ OP_CMP_imm_T1 = 0x2800,
+ OP_ADD_imm_T2 = 0x3000,
+ OP_ADD_S_imm_T2 = 0x3000,
+ OP_SUB_imm_T2 = 0x3800,
+ OP_SUB_S_imm_T2 = 0x3800,
+ OP_AND_reg_T1 = 0x4000,
+ OP_EOR_reg_T1 = 0x4040,
+ OP_TST_reg_T1 = 0x4200,
+ OP_CMP_reg_T1 = 0x4280,
+ OP_ORR_reg_T1 = 0x4300,
+ OP_MVN_reg_T1 = 0x43C0,
+ OP_ADD_reg_T2 = 0x4400,
+ OP_MOV_reg_T1 = 0x4600,
+ OP_BLX = 0x4700,
+ OP_BX = 0x4700,
+ OP_STR_reg_T1 = 0x5000,
+ OP_LDR_reg_T1 = 0x5800,
+ OP_LDRH_reg_T1 = 0x5A00,
+ OP_LDRB_reg_T1 = 0x5C00,
+ OP_STR_imm_T1 = 0x6000,
+ OP_LDR_imm_T1 = 0x6800,
+ OP_LDRB_imm_T1 = 0x7800,
+ OP_LDRH_imm_T1 = 0x8800,
+ OP_STR_imm_T2 = 0x9000,
+ OP_LDR_imm_T2 = 0x9800,
+ OP_ADD_SP_imm_T1 = 0xA800,
+ OP_ADD_SP_imm_T2 = 0xB000,
+ OP_SUB_SP_imm_T1 = 0xB080,
+ OP_BKPT = 0xBE00,
+ OP_IT = 0xBF00,
+ OP_NOP_T1 = 0xBF00,
+ } OpcodeID;
+
+ typedef enum {
+ OP_AND_reg_T2 = 0xEA00,
+ OP_TST_reg_T2 = 0xEA10,
+ OP_ORR_reg_T2 = 0xEA40,
+ OP_ASR_imm_T1 = 0xEA4F,
+ OP_LSL_imm_T1 = 0xEA4F,
+ OP_LSR_imm_T1 = 0xEA4F,
+ OP_ROR_imm_T1 = 0xEA4F,
+ OP_MVN_reg_T2 = 0xEA6F,
+ OP_EOR_reg_T2 = 0xEA80,
+ OP_ADD_reg_T3 = 0xEB00,
+ OP_ADD_S_reg_T3 = 0xEB10,
+ OP_SUB_reg_T2 = 0xEBA0,
+ OP_SUB_S_reg_T2 = 0xEBB0,
+ OP_CMP_reg_T2 = 0xEBB0,
+ OP_B_T4a = 0xF000,
+ OP_AND_imm_T1 = 0xF000,
+ OP_TST_imm = 0xF010,
+ OP_ORR_imm_T1 = 0xF040,
+ OP_MOV_imm_T2 = 0xF040,
+ OP_MVN_imm = 0xF060,
+ OP_EOR_imm_T1 = 0xF080,
+ OP_ADD_imm_T3 = 0xF100,
+ OP_ADD_S_imm_T3 = 0xF110,
+ OP_CMN_imm = 0xF110,
+ OP_SUB_imm_T3 = 0xF1A0,
+ OP_SUB_S_imm_T3 = 0xF1B0,
+ OP_CMP_imm_T2 = 0xF1B0,
+ OP_ADD_imm_T4 = 0xF200,
+ OP_MOV_imm_T3 = 0xF240,
+ OP_SUB_imm_T4 = 0xF2A0,
+ OP_MOVT = 0xF2C0,
+ OP_NOP_T2a = 0xF3AF,
+ OP_LDRB_imm_T3 = 0xF810,
+ OP_LDRB_reg_T2 = 0xF810,
+ OP_LDRH_reg_T2 = 0xF830,
+ OP_LDRH_imm_T3 = 0xF830,
+ OP_STR_imm_T4 = 0xF840,
+ OP_STR_reg_T2 = 0xF840,
+ OP_LDR_imm_T4 = 0xF850,
+ OP_LDR_reg_T2 = 0xF850,
+ OP_LDRB_imm_T2 = 0xF890,
+ OP_LDRH_imm_T2 = 0xF8B0,
+ OP_STR_imm_T3 = 0xF8C0,
+ OP_LDR_imm_T3 = 0xF8D0,
+ OP_LSL_reg_T2 = 0xFA00,
+ OP_LSR_reg_T2 = 0xFA20,
+ OP_ASR_reg_T2 = 0xFA40,
+ OP_ROR_reg_T2 = 0xFA60,
+ OP_SMULL_T1 = 0xFB80,
+ } OpcodeID1;
+
+ typedef enum {
+ OP_B_T4b = 0x9000,
+ OP_NOP_T2b = 0x8000,
+ } OpcodeID2;
+
+ struct FourFours {
+ FourFours(unsigned f3, unsigned f2, unsigned f1, unsigned f0)
+ {
+ m_u.f0 = f0;
+ m_u.f1 = f1;
+ m_u.f2 = f2;
+ m_u.f3 = f3;
+ }
+
+ union {
+ unsigned value;
+ struct {
+ unsigned f0 : 4;
+ unsigned f1 : 4;
+ unsigned f2 : 4;
+ unsigned f3 : 4;
+ };
+ } m_u;
+ };
+
+ class ARMInstructionFormatter;
+
+ // false means else!
+ bool ifThenElseConditionBit(Condition condition, bool isIf)
+ {
+ return isIf ? (condition & 1) : !(condition & 1);
+ }
+ uint8_t ifThenElse(Condition condition, bool inst2if, bool inst3if, bool inst4if)
+ {
+ int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
+ | (ifThenElseConditionBit(condition, inst3if) << 2)
+ | (ifThenElseConditionBit(condition, inst4if) << 1)
+ | 1;
+ ASSERT((condition != ConditionAL) || (mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+ uint8_t ifThenElse(Condition condition, bool inst2if, bool inst3if)
+ {
+ int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
+ | (ifThenElseConditionBit(condition, inst3if) << 2)
+ | 2;
+ ASSERT((condition != ConditionAL) || (mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+ uint8_t ifThenElse(Condition condition, bool inst2if)
+ {
+ int mask = (ifThenElseConditionBit(condition, inst2if) << 3)
+ | 4;
+ ASSERT((condition != ConditionAL) || (mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+
+ uint8_t ifThenElse(Condition condition)
+ {
+ int mask = 8;
+ ASSERT((condition != ConditionAL) || (mask & (mask - 1)));
+ return (condition << 4) | mask;
+ }
+
+public:
+
+ void add(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+
+ if (rn == ARMRegisters::sp) {
+ if (!(rd & 8) && imm.isUInt10()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_ADD_SP_imm_T1, rd, imm.getUInt10() >> 2);
+ return;
+ } else if ((rd == ARMRegisters::sp) && imm.isUInt9()) {
+ m_formatter.oneWordOp9Imm7(OP_ADD_SP_imm_T2, imm.getUInt9() >> 2);
+ return;
+ }
+ } else if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_ADD_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ if (imm.isEncodedImm())
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_imm_T3, rn, rd, imm);
+ else {
+ ASSERT(imm.isUInt12());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_imm_T4, rn, rd, imm);
+ }
+ }
+
+ void add(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ADD_reg_T3, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // NOTE: In an IT block, add doesn't modify the flags register.
+ void add(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (rd == rn)
+ m_formatter.oneWordOp8RegReg143(OP_ADD_reg_T2, rm, rd);
+ else if (rd == rm)
+ m_formatter.oneWordOp8RegReg143(OP_ADD_reg_T2, rn, rd);
+ else if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_reg_T1, rm, rn, rd);
+ else
+ add(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ // Not allowed in an IT (if then) block.
+ void add_S(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_S_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_ADD_S_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ADD_S_imm_T3, rn, rd, imm);
+ }
+
+ // Not allowed in an IT (if then) block?
+ void add_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ADD_S_reg_T3, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // Not allowed in an IT (if then) block.
+ void add_S(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_ADD_S_reg_T1, rm, rn, rd);
+ else
+ add_S(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ void ARM_and(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_AND_imm_T1, rn, rd, imm);
+ }
+
+ void ARM_and(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_AND_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void ARM_and(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_AND_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_AND_reg_T1, rn, rd);
+ else
+ ARM_and(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ void asr(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_ASR, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_ASR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void asr(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ASR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ // Only allowed in IT (if then) block if last instruction.
+ JmpSrc b()
+ {
+ m_formatter.twoWordOp16Op16(OP_B_T4a, OP_B_T4b);
+ return JmpSrc(m_formatter.size());
+ }
+
+ // Only allowed in IT (if then) block if last instruction.
+ JmpSrc blx(RegisterID rm)
+ {
+ ASSERT(rm != ARMRegisters::pc);
+ m_formatter.oneWordOp8RegReg143(OP_BLX, rm, (RegisterID)8);
+ return JmpSrc(m_formatter.size());
+ }
+
+ // Only allowed in IT (if then) block if last instruction.
+ JmpSrc bx(RegisterID rm)
+ {
+ m_formatter.oneWordOp8RegReg143(OP_BX, rm, (RegisterID)0);
+ return JmpSrc(m_formatter.size());
+ }
+
+ void bkpt(uint8_t imm=0)
+ {
+ m_formatter.oneWordOp8Imm8(OP_BKPT, imm);
+ }
+
+ void cmn(RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_CMN_imm, rn, (RegisterID)0xf, imm);
+ }
+
+ void cmp(RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isEncodedImm());
+
+ if (!(rn & 8) && imm.isUInt8())
+ m_formatter.oneWordOp5Reg3Imm8(OP_CMP_imm_T1, rn, imm.getUInt8());
+ else
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_CMP_imm_T2, rn, (RegisterID)0xf, imm);
+ }
+
+ void cmp(RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_CMP_reg_T2, rn, FourFours(shift.hi4(), 0xf, shift.lo4(), rm));
+ }
+
+ void cmp(RegisterID rn, RegisterID rm)
+ {
+ if ((rn | rm) & 8)
+ cmp(rn, rm, ShiftTypeAndAmount());
+ else
+ m_formatter.oneWordOp10Reg3Reg3(OP_CMP_reg_T1, rm, rn);
+ }
+
+ // xor is not spelled with an 'e'. :-(
+ void eor(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_EOR_imm_T1, rn, rd, imm);
+ }
+
+ // xor is not spelled with an 'e'. :-(
+ void eor(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_EOR_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // xor is not spelled with an 'e'. :-(
+ void eor(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_EOR_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_EOR_reg_T1, rn, rd);
+ else
+ eor(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ void it(Condition cond)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond));
+ }
+
+ void it(Condition cond, bool inst2if)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if));
+ }
+
+ void it(Condition cond, bool inst2if, bool inst3if)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if, inst3if));
+ }
+
+ void it(Condition cond, bool inst2if, bool inst3if, bool inst4if)
+ {
+ m_formatter.oneWordOp8Imm8(OP_IT, ifThenElse(cond, inst2if, inst3if, inst4if));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ void ldr(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt7())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDR_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ else if ((rn == ARMRegisters::sp) && !(rt & 8) && imm.isUInt10())
+ m_formatter.oneWordOp5Reg3Imm8(OP_LDR_imm_T2, rt, imm.getUInt10() >> 2);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T3, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed load;
+ // if index is not set then is is a post-index load.
+ //
+ // If wback is set rn is updated - this is a pre or post index load,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ void ldr(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDR_imm_T4, rn, rt, offset);
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ void ldr(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift=0)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDR_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDR_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ void ldrh(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt6())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDRH_imm_T1, imm.getUInt6() >> 2, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRH_imm_T2, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed load;
+ // if index is not set then is is a post-index load.
+ //
+ // If wback is set rn is updated - this is a pre or post index load,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ void ldrh(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRH_imm_T3, rn, rt, offset);
+ }
+
+ void ldrh(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift=0)
+ {
+ ASSERT(!BadReg(rt)); // Memory hint
+ ASSERT(rn != ARMRegisters::pc); // LDRH (literal)
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRH_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDRH_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void ldrb(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt5())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_LDRB_imm_T1, imm.getUInt5(), rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRB_imm_T2, rn, rt, imm.getUInt12());
+ }
+
+ void ldrb(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+
+ ASSERT(!(offset & ~0xff));
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_LDRB_imm_T3, rn, rt, offset);
+ }
+
+ void ldrb(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift = 0)
+ {
+ ASSERT(rn != ARMRegisters::pc); // LDR (literal)
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_LDRB_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_LDRB_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void lsl(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_LSL, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_LSL_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void lsl(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_LSL_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ void lsr(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_LSR, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_LSR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void lsr(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_LSR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ void movT3(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isValid());
+ ASSERT(!imm.isEncodedImm());
+ ASSERT(!BadReg(rd));
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOV_imm_T3, imm.m_value.imm4, rd, imm);
+ }
+
+ void mov(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isValid());
+ ASSERT(!BadReg(rd));
+
+ if ((rd < 8) && imm.isUInt8())
+ m_formatter.oneWordOp5Reg3Imm8(OP_MOV_imm_T1, rd, imm.getUInt8());
+ else if (imm.isEncodedImm())
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOV_imm_T2, 0xf, rd, imm);
+ else
+ movT3(rd, imm);
+ }
+
+ void mov(RegisterID rd, RegisterID rm)
+ {
+ m_formatter.oneWordOp8RegReg143(OP_MOV_reg_T1, rm, rd);
+ }
+
+ void movt(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isUInt16());
+ ASSERT(!BadReg(rd));
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MOVT, imm.m_value.imm4, rd, imm);
+ }
+
+ void mvn(RegisterID rd, ARMThumbImmediate imm)
+ {
+ ASSERT(imm.isEncodedImm());
+ ASSERT(!BadReg(rd));
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_MVN_imm, 0xf, rd, imm);
+ }
+
+ void mvn(RegisterID rd, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp16FourFours(OP_MVN_reg_T2, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void mvn(RegisterID rd, RegisterID rm)
+ {
+ if (!((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_MVN_reg_T1, rm, rd);
+ else
+ mvn(rd, rm, ShiftTypeAndAmount());
+ }
+
+ void orr(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_ORR_imm_T1, rn, rd, imm);
+ }
+
+ void orr(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ORR_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void orr(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if ((rd == rn) && !((rd | rm) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rm, rd);
+ else if ((rd == rm) && !((rd | rn) & 8))
+ m_formatter.oneWordOp10Reg3Reg3(OP_ORR_reg_T1, rn, rd);
+ else
+ orr(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ void ror(RegisterID rd, RegisterID rm, int32_t shiftAmount)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rm));
+ ShiftTypeAndAmount shift(SRType_ROR, shiftAmount);
+ m_formatter.twoWordOp16FourFours(OP_ROR_imm_T1, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ void ror(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rd));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_ROR_reg_T2, rn, FourFours(0xf, rd, 0, rm));
+ }
+
+ void smull(RegisterID rdLo, RegisterID rdHi, RegisterID rn, RegisterID rm)
+ {
+ ASSERT(!BadReg(rdLo));
+ ASSERT(!BadReg(rdHi));
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ ASSERT(rdLo != rdHi);
+ m_formatter.twoWordOp12Reg4FourFours(OP_SMULL_T1, rn, FourFours(rdLo, rdHi, 0, rm));
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ void str(RegisterID rt, RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isUInt12());
+
+ if (!((rt | rn) & 8) && imm.isUInt7())
+ m_formatter.oneWordOp5Imm5Reg3Reg3(OP_STR_imm_T1, imm.getUInt7() >> 2, rn, rt);
+ else if ((rn == ARMRegisters::sp) && !(rt & 8) && imm.isUInt10())
+ m_formatter.oneWordOp5Reg3Imm8(OP_STR_imm_T2, rt, imm.getUInt10() >> 2);
+ else
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STR_imm_T3, rn, rt, imm.getUInt12());
+ }
+
+ // If index is set, this is a regular offset or a pre-indexed store;
+ // if index is not set then is is a post-index store.
+ //
+ // If wback is set rn is updated - this is a pre or post index store,
+ // if wback is not set this is a regular offset memory access.
+ //
+ // (-255 <= offset <= 255)
+ // _reg = REG[rn]
+ // _tmp = _reg + offset
+ // MEM[index ? _tmp : _reg] = REG[rt]
+ // if (wback) REG[rn] = _tmp
+ void str(RegisterID rt, RegisterID rn, int offset, bool index, bool wback)
+ {
+ ASSERT(rt != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(index || wback);
+ ASSERT(!wback | (rt != rn));
+
+ bool add = true;
+ if (offset < 0) {
+ add = false;
+ offset = -offset;
+ }
+ ASSERT((offset & ~0xff) == 0);
+
+ offset |= (wback << 8);
+ offset |= (add << 9);
+ offset |= (index << 10);
+ offset |= (1 << 11);
+
+ m_formatter.twoWordOp12Reg4Reg4Imm12(OP_STR_imm_T4, rn, rt, offset);
+ }
+
+ // rt == ARMRegisters::pc only allowed if last instruction in IT (if then) block.
+ void str(RegisterID rt, RegisterID rn, RegisterID rm, unsigned shift=0)
+ {
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ ASSERT(shift <= 3);
+
+ if (!shift && !((rt | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_STR_reg_T1, rm, rn, rt);
+ else
+ m_formatter.twoWordOp12Reg4FourFours(OP_STR_reg_T2, rn, FourFours(rt, 0, shift, rm));
+ }
+
+ void sub(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+
+ if ((rn == ARMRegisters::sp) && (rd == ARMRegisters::sp) && imm.isUInt9()) {
+ m_formatter.oneWordOp9Imm7(OP_SUB_SP_imm_T1, imm.getUInt9() >> 2);
+ return;
+ } else if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_SUB_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ if (imm.isEncodedImm())
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_imm_T3, rn, rd, imm);
+ else {
+ ASSERT(imm.isUInt12());
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_imm_T4, rn, rd, imm);
+ }
+ }
+
+ void sub(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_SUB_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // NOTE: In an IT block, add doesn't modify the flags register.
+ void sub(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_reg_T1, rm, rn, rd);
+ else
+ sub(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ // Not allowed in an IT (if then) block.
+ void sub_S(RegisterID rd, RegisterID rn, ARMThumbImmediate imm)
+ {
+ // Rd can only be SP if Rn is also SP.
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(imm.isValid());
+
+ if ((rn == ARMRegisters::sp) && (rd == ARMRegisters::sp) && imm.isUInt9()) {
+ m_formatter.oneWordOp9Imm7(OP_SUB_SP_imm_T1, imm.getUInt9() >> 2);
+ return;
+ } else if (!((rd | rn) & 8)) {
+ if (imm.isUInt3()) {
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_S_imm_T1, (RegisterID)imm.getUInt3(), rn, rd);
+ return;
+ } else if ((rd == rn) && imm.isUInt8()) {
+ m_formatter.oneWordOp5Reg3Imm8(OP_SUB_S_imm_T2, rd, imm.getUInt8());
+ return;
+ }
+ }
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_SUB_S_imm_T3, rn, rd, imm);
+ }
+
+ // Not allowed in an IT (if then) block?
+ void sub_S(RegisterID rd, RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT((rd != ARMRegisters::sp) || (rn == ARMRegisters::sp));
+ ASSERT(rd != ARMRegisters::pc);
+ ASSERT(rn != ARMRegisters::pc);
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_SUB_S_reg_T2, rn, FourFours(shift.hi4(), rd, shift.lo4(), rm));
+ }
+
+ // Not allowed in an IT (if then) block.
+ void sub_S(RegisterID rd, RegisterID rn, RegisterID rm)
+ {
+ if (!((rd | rn | rm) & 8))
+ m_formatter.oneWordOp7Reg3Reg3Reg3(OP_SUB_S_reg_T1, rm, rn, rd);
+ else
+ sub_S(rd, rn, rm, ShiftTypeAndAmount());
+ }
+
+ void tst(RegisterID rn, ARMThumbImmediate imm)
+ {
+ ASSERT(!BadReg(rn));
+ ASSERT(imm.isEncodedImm());
+
+ m_formatter.twoWordOp5i6Imm4Reg4EncodedImm(OP_TST_imm, rn, (RegisterID)0xf, imm);
+ }
+
+ void tst(RegisterID rn, RegisterID rm, ShiftTypeAndAmount shift)
+ {
+ ASSERT(!BadReg(rn));
+ ASSERT(!BadReg(rm));
+ m_formatter.twoWordOp12Reg4FourFours(OP_TST_reg_T2, rn, FourFours(shift.hi4(), 0xf, shift.lo4(), rm));
+ }
+
+ void tst(RegisterID rn, RegisterID rm)
+ {
+ if ((rn | rm) & 8)
+ tst(rn, rm, ShiftTypeAndAmount());
+ else
+ m_formatter.oneWordOp10Reg3Reg3(OP_TST_reg_T1, rm, rn);
+ }
+
+ void vadd_F64(FPRegisterID rd, FPRegisterID rn, FPRegisterID rm)
+ {
+ m_formatter.vfpOp(0x0b00ee30 | doubleRegisterMask(rd, 6, 28) | doubleRegisterMask(rn, 23, 0) | doubleRegisterMask(rm, 21, 16));
+ }
+
+ void vcmp_F64(FPRegisterID rd, FPRegisterID rm)
+ {
+ m_formatter.vfpOp(0x0bc0eeb4 | doubleRegisterMask(rd, 6, 28) | doubleRegisterMask(rm, 21, 16));
+ }
+
+ void vcvt_F64_S32(FPRegisterID fd, FPRegisterID sm)
+ {
+ m_formatter.vfpOp(0x0bc0eeb8 | doubleRegisterMask(fd, 6, 28) | singleRegisterMask(sm, 16, 21));
+ }
+
+ void vcvt_S32_F64(FPRegisterID sd, FPRegisterID fm)
+ {
+ m_formatter.vfpOp(0x0bc0eebd | singleRegisterMask(sd, 28, 6) | doubleRegisterMask(fm, 21, 16));
+ }
+
+ void vldr(FPRegisterID rd, RegisterID rn, int32_t imm)
+ {
+ vmem(rd, rn, imm, true);
+ }
+
+ void vmov(RegisterID rd, FPRegisterID sn)
+ {
+ m_formatter.vfpOp(0x0a10ee10 | (rd << 28) | singleRegisterMask(sn, 0, 23));
+ }
+
+ void vmov(FPRegisterID sn, RegisterID rd)
+ {
+ m_formatter.vfpOp(0x0a10ee00 | (rd << 28) | singleRegisterMask(sn, 0, 23));
+ }
+
+ // move FPSCR flags to APSR.
+ void vmrs_APSR_nzcv_FPSCR()
+ {
+ m_formatter.vfpOp(0xfa10eef1);
+ }
+
+ void vmul_F64(FPRegisterID rd, FPRegisterID rn, FPRegisterID rm)
+ {
+ m_formatter.vfpOp(0x0b00ee20 | doubleRegisterMask(rd, 6, 28) | doubleRegisterMask(rn, 23, 0) | doubleRegisterMask(rm, 21, 16));
+ }
+
+ void vstr(FPRegisterID rd, RegisterID rn, int32_t imm)
+ {
+ vmem(rd, rn, imm, false);
+ }
+
+ void vsub_F64(FPRegisterID rd, FPRegisterID rn, FPRegisterID rm)
+ {
+ m_formatter.vfpOp(0x0b40ee30 | doubleRegisterMask(rd, 6, 28) | doubleRegisterMask(rn, 23, 0) | doubleRegisterMask(rm, 21, 16));
+ }
+
+
+ JmpDst label()
+ {
+ return JmpDst(m_formatter.size());
+ }
+
+ JmpDst align(int alignment)
+ {
+ while (!m_formatter.isAligned(alignment))
+ bkpt();
+
+ return label();
+ }
+
+ static void* getRelocatedAddress(void* code, JmpSrc jump)
+ {
+ ASSERT(jump.m_offset != -1);
+
+ return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + jump.m_offset);
+ }
+
+ static void* getRelocatedAddress(void* code, JmpDst destination)
+ {
+ ASSERT(destination.m_offset != -1);
+
+ return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + destination.m_offset);
+ }
+
+ static int getDifferenceBetweenLabels(JmpDst src, JmpDst dst)
+ {
+ return dst.m_offset - src.m_offset;
+ }
+
+ static int getDifferenceBetweenLabels(JmpDst src, JmpSrc dst)
+ {
+ return dst.m_offset - src.m_offset;
+ }
+
+ static int getDifferenceBetweenLabels(JmpSrc src, JmpDst dst)
+ {
+ return dst.m_offset - src.m_offset;
+ }
+
+ // Assembler admin methods:
+
+ size_t size() const
+ {
+ return m_formatter.size();
+ }
+
+ void* executableCopy(ExecutablePool* allocator)
+ {
+ void* copy = m_formatter.executableCopy(allocator);
+
+ unsigned jumpCount = m_jumpsToLink.size();
+ for (unsigned i = 0; i < jumpCount; ++i) {
+ uint16_t* location = reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(copy) + m_jumpsToLink[i].from);
+ uint16_t* target = reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(copy) + m_jumpsToLink[i].to);
+ linkJumpAbsolute(location, target);
+ }
+ m_jumpsToLink.clear();
+
+ ASSERT(copy);
+ return copy;
+ }
+
+ static unsigned getCallReturnOffset(JmpSrc call)
+ {
+ ASSERT(call.m_offset >= 0);
+ return call.m_offset;
+ }
+
+ // Linking & patching:
+ //
+ // 'link' and 'patch' methods are for use on unprotected code - such as the code
+ // within the AssemblerBuffer, and code being patched by the patch buffer. Once
+ // code has been finalized it is (platform support permitting) within a non-
+ // writable region of memory; to modify the code in an execute-only execuable
+ // pool the 'repatch' and 'relink' methods should be used.
+
+ void linkJump(JmpSrc from, JmpDst to)
+ {
+ ASSERT(to.m_offset != -1);
+ ASSERT(from.m_offset != -1);
+ m_jumpsToLink.append(LinkRecord(from.m_offset, to.m_offset));
+ }
+
+ static void linkJump(void* code, JmpSrc from, void* to)
+ {
+ ASSERT(from.m_offset != -1);
+
+ uint16_t* location = reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(code) + from.m_offset);
+ linkJumpAbsolute(location, to);
+ }
+
+ // bah, this mathod should really be static, since it is used by the LinkBuffer.
+ // return a bool saying whether the link was successful?
+ static void linkCall(void* code, JmpSrc from, void* to)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(code) & 1));
+ ASSERT(from.m_offset != -1);
+ ASSERT(reinterpret_cast<intptr_t>(to) & 1);
+
+ setPointer(reinterpret_cast<uint16_t*>(reinterpret_cast<intptr_t>(code) + from.m_offset) - 1, to);
+ }
+
+ static void linkPointer(void* code, JmpDst where, void* value)
+ {
+ setPointer(reinterpret_cast<char*>(code) + where.m_offset, value);
+ }
+
+ static void relinkJump(void* from, void* to)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(from) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(to) & 1));
+
+ linkJumpAbsolute(reinterpret_cast<uint16_t*>(from), to);
+
+ ExecutableAllocator::cacheFlush(reinterpret_cast<uint16_t*>(from) - 5, 5 * sizeof(uint16_t));
+ }
+
+ static bool canRelinkJump(void* from, void* to)
+ {
+ return true;
+ }
+
+ static void relinkCall(void* from, void* to)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(from) & 1));
+ ASSERT(reinterpret_cast<intptr_t>(to) & 1);
+
+ setPointer(reinterpret_cast<uint16_t*>(from) - 1, to);
+
+ ExecutableAllocator::cacheFlush(reinterpret_cast<uint16_t*>(from) - 5, 4 * sizeof(uint16_t));
+ }
+
+ static void repatchInt32(void* where, int32_t value)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
+
+ setInt32(where, value);
+
+ ExecutableAllocator::cacheFlush(reinterpret_cast<uint16_t*>(where) - 4, 4 * sizeof(uint16_t));
+ }
+
+ static void repatchPointer(void* where, void* value)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
+
+ setPointer(where, value);
+
+ ExecutableAllocator::cacheFlush(reinterpret_cast<uint16_t*>(where) - 4, 4 * sizeof(uint16_t));
+ }
+
+ static void repatchLoadPtrToLEA(void* where)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
+
+ uint16_t* loadOp = reinterpret_cast<uint16_t*>(where) + 4;
+ ASSERT((*loadOp & 0xfff0) == OP_LDR_reg_T2);
+
+ *loadOp = OP_ADD_reg_T3 | (*loadOp & 0xf);
+ ExecutableAllocator::cacheFlush(loadOp, sizeof(uint16_t));
+ }
+
+ static void repatchLEAToLoadPtr(void* where)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(where) & 1));
+
+ uint16_t* loadOp = reinterpret_cast<uint16_t*>(where) + 4;
+ if ((*loadOp & 0xfff0) == OP_LDR_reg_T2)
+ return;
+
+ ASSERT((*loadOp & 0xfff0) == OP_ADD_reg_T3);
+
+ *loadOp = OP_LDR_reg_T2 | (*loadOp & 0xf);
+ ExecutableAllocator::cacheFlush(loadOp, sizeof(uint16_t));
+ }
+
+private:
+
+ // Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
+ // (i.e. +/-(0..255) 32-bit words)
+ void vmem(FPRegisterID rd, RegisterID rn, int32_t imm, bool isLoad)
+ {
+ bool up;
+ uint32_t offset;
+ if (imm < 0) {
+ offset = -imm;
+ up = false;
+ } else {
+ offset = imm;
+ up = true;
+ }
+
+ // offset is effectively leftshifted by 2 already (the bottom two bits are zero, and not
+ // reperesented in the instruction. Left shift by 14, to mov it into position 0x00AA0000.
+ ASSERT((offset & ~(0xff << 2)) == 0);
+ offset <<= 14;
+
+ m_formatter.vfpOp(0x0b00ed00 | offset | (up << 7) | (isLoad << 4) | doubleRegisterMask(rd, 6, 28) | rn);
+ }
+
+ static void setInt32(void* code, uint32_t value)
+ {
+ uint16_t* location = reinterpret_cast<uint16_t*>(code);
+ ASSERT(isMOV_imm_T3(location - 4) && isMOVT(location - 2));
+
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(value));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(value >> 16));
+ location[-4] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ location[-3] = twoWordOp5i6Imm4Reg4EncodedImmSecond((location[-3] >> 8) & 0xf, lo16);
+ location[-2] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ location[-1] = twoWordOp5i6Imm4Reg4EncodedImmSecond((location[-1] >> 8) & 0xf, hi16);
+
+ ExecutableAllocator::cacheFlush(location - 4, 4 * sizeof(uint16_t));
+ }
+
+ static void setPointer(void* code, void* value)
+ {
+ setInt32(code, reinterpret_cast<uint32_t>(value));
+ }
+
+ static bool isB(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return ((instruction[0] & 0xf800) == OP_B_T4a) && ((instruction[1] & 0xd000) == OP_B_T4b);
+ }
+
+ static bool isBX(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return (instruction[0] & 0xff87) == OP_BX;
+ }
+
+ static bool isMOV_imm_T3(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return ((instruction[0] & 0xFBF0) == OP_MOV_imm_T3) && ((instruction[1] & 0x8000) == 0);
+ }
+
+ static bool isMOVT(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return ((instruction[0] & 0xFBF0) == OP_MOVT) && ((instruction[1] & 0x8000) == 0);
+ }
+
+ static bool isNOP_T1(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return instruction[0] == OP_NOP_T1;
+ }
+
+ static bool isNOP_T2(void* address)
+ {
+ uint16_t* instruction = static_cast<uint16_t*>(address);
+ return (instruction[0] == OP_NOP_T2a) && (instruction[1] == OP_NOP_T2b);
+ }
+
+ static void linkJumpAbsolute(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ const uint16_t JUMP_TEMPORARY_REGISTER = ARMRegisters::ip;
+
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ ASSERT( (isMOV_imm_T3(instruction - 5) && isMOVT(instruction - 3) && isBX(instruction - 1))
+ || (isNOP_T1(instruction - 5) && isNOP_T2(instruction - 4) && isB(instruction - 2)) );
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+
+ // From Cortex-A8 errata:
+ // If the 32-bit Thumb-2 branch instruction spans two 4KiB regions and
+ // the target of the branch falls within the first region it is
+ // possible for the processor to incorrectly determine the branch
+ // instruction, and it is also possible in some cases for the processor
+ // to enter a deadlock state.
+ // The instruction is spanning two pages if it ends at an address ending 0x002
+ bool spansTwo4K = ((reinterpret_cast<intptr_t>(instruction) & 0xfff) == 0x002);
+ // The target is in the first page if the jump branch back by [3..0x1002] bytes
+ bool targetInFirstPage = (relative >= -0x1002) && (relative < -2);
+ bool wouldTriggerA8Errata = spansTwo4K && targetInFirstPage;
+
+ if (((relative << 7) >> 7) == relative && !wouldTriggerA8Errata) {
+ // ARM encoding for the top two bits below the sign bit is 'peculiar'.
+ if (relative >= 0)
+ relative ^= 0xC00000;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ // There may be a better way to fix this, but right now put the NOPs first, since in the
+ // case of an conditional branch this will be coming after an ITTT predicating *three*
+ // instructions! Looking backwards to modify the ITTT to an IT is not easy, due to
+ // variable wdith encoding - the previous instruction might *look* like an ITTT but
+ // actually be the second half of a 2-word op.
+ instruction[-5] = OP_NOP_T1;
+ instruction[-4] = OP_NOP_T2a;
+ instruction[-3] = OP_NOP_T2b;
+ instruction[-2] = OP_B_T4a | ((relative & 0x1000000) >> 14) | ((relative & 0x3ff000) >> 12);
+ instruction[-1] = OP_B_T4b | ((relative & 0x800000) >> 10) | ((relative & 0x400000) >> 11) | ((relative & 0xffe) >> 1);
+ } else {
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) + 1));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) >> 16));
+ instruction[-5] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ instruction[-4] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, lo16);
+ instruction[-3] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ instruction[-2] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, hi16);
+ instruction[-1] = OP_BX | (JUMP_TEMPORARY_REGISTER << 3);
+ }
+ }
+
+ static uint16_t twoWordOp5i6Imm4Reg4EncodedImmFirst(uint16_t op, ARMThumbImmediate imm)
+ {
+ return op | (imm.m_value.i << 10) | imm.m_value.imm4;
+ }
+ static uint16_t twoWordOp5i6Imm4Reg4EncodedImmSecond(uint16_t rd, ARMThumbImmediate imm)
+ {
+ return (imm.m_value.imm3 << 12) | (rd << 8) | imm.m_value.imm8;
+ }
+
+ class ARMInstructionFormatter {
+ public:
+ void oneWordOp5Reg3Imm8(OpcodeID op, RegisterID rd, uint8_t imm)
+ {
+ m_buffer.putShort(op | (rd << 8) | imm);
+ }
+
+ void oneWordOp5Imm5Reg3Reg3(OpcodeID op, uint8_t imm, RegisterID reg1, RegisterID reg2)
+ {
+ m_buffer.putShort(op | (imm << 6) | (reg1 << 3) | reg2);
+ }
+
+ void oneWordOp7Reg3Reg3Reg3(OpcodeID op, RegisterID reg1, RegisterID reg2, RegisterID reg3)
+ {
+ m_buffer.putShort(op | (reg1 << 6) | (reg2 << 3) | reg3);
+ }
+
+ void oneWordOp8Imm8(OpcodeID op, uint8_t imm)
+ {
+ m_buffer.putShort(op | imm);
+ }
+
+ void oneWordOp8RegReg143(OpcodeID op, RegisterID reg1, RegisterID reg2)
+ {
+ m_buffer.putShort(op | ((reg2 & 8) << 4) | (reg1 << 3) | (reg2 & 7));
+ }
+ void oneWordOp9Imm7(OpcodeID op, uint8_t imm)
+ {
+ m_buffer.putShort(op | imm);
+ }
+
+ void oneWordOp10Reg3Reg3(OpcodeID op, RegisterID reg1, RegisterID reg2)
+ {
+ m_buffer.putShort(op | (reg1 << 3) | reg2);
+ }
+
+ void twoWordOp12Reg4FourFours(OpcodeID1 op, RegisterID reg, FourFours ff)
+ {
+ m_buffer.putShort(op | reg);
+ m_buffer.putShort(ff.m_u.value);
+ }
+
+ void twoWordOp16FourFours(OpcodeID1 op, FourFours ff)
+ {
+ m_buffer.putShort(op);
+ m_buffer.putShort(ff.m_u.value);
+ }
+
+ void twoWordOp16Op16(OpcodeID1 op1, OpcodeID2 op2)
+ {
+ m_buffer.putShort(op1);
+ m_buffer.putShort(op2);
+ }
+
+ void twoWordOp5i6Imm4Reg4EncodedImm(OpcodeID1 op, int imm4, RegisterID rd, ARMThumbImmediate imm)
+ {
+ ARMThumbImmediate newImm = imm;
+ newImm.m_value.imm4 = imm4;
+
+ m_buffer.putShort(ARMv7Assembler::twoWordOp5i6Imm4Reg4EncodedImmFirst(op, newImm));
+ m_buffer.putShort(ARMv7Assembler::twoWordOp5i6Imm4Reg4EncodedImmSecond(rd, newImm));
+ }
+
+ void twoWordOp12Reg4Reg4Imm12(OpcodeID1 op, RegisterID reg1, RegisterID reg2, uint16_t imm)
+ {
+ m_buffer.putShort(op | reg1);
+ m_buffer.putShort((reg2 << 12) | imm);
+ }
+
+ void vfpOp(int32_t op)
+ {
+ m_buffer.putInt(op);
+ }
+
+
+ // Administrative methods:
+
+ size_t size() const { return m_buffer.size(); }
+ bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); }
+ void* data() const { return m_buffer.data(); }
+ void* executableCopy(ExecutablePool* allocator) { return m_buffer.executableCopy(allocator); }
+ bool oom() const { return m_buffer.oom(); }
+
+ private:
+ AssemblerBuffer m_buffer;
+ } m_formatter;
+
+ Vector<LinkRecord> m_jumpsToLink;
+};
+
+} // namespace JSC
+
+#endif // ENABLE(ASSEMBLER) && CPU(ARM_THUMB2)
+
+#endif // ARMAssembler_h