summaryrefslogtreecommitdiff
path: root/js/src/jsmath.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jsmath.cpp')
-rw-r--r--js/src/jsmath.cpp885
1 files changed, 885 insertions, 0 deletions
diff --git a/js/src/jsmath.cpp b/js/src/jsmath.cpp
new file mode 100644
index 0000000..352dead
--- /dev/null
+++ b/js/src/jsmath.cpp
@@ -0,0 +1,885 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ *
+ * ***** BEGIN LICENSE BLOCK *****
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is Mozilla Communicator client code, released
+ * March 31, 1998.
+ *
+ * The Initial Developer of the Original Code is
+ * Netscape Communications Corporation.
+ * Portions created by the Initial Developer are Copyright (C) 1998
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either of the GNU General Public License Version 2 or later (the "GPL"),
+ * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ * ***** END LICENSE BLOCK ***** */
+
+/*
+ * JS math package.
+ */
+#include <stdlib.h>
+#include "jstypes.h"
+#include "jsstdint.h"
+#include "jslong.h"
+#include "prmjtime.h"
+#include "jsapi.h"
+#include "jsatom.h"
+#include "jsbuiltins.h"
+#include "jscntxt.h"
+#include "jsversion.h"
+#include "jslock.h"
+#include "jsmath.h"
+#include "jsnum.h"
+#include "jslibmath.h"
+#include "jscompartment.h"
+
+using namespace js;
+
+#ifndef M_E
+#define M_E 2.7182818284590452354
+#endif
+#ifndef M_LOG2E
+#define M_LOG2E 1.4426950408889634074
+#endif
+#ifndef M_LOG10E
+#define M_LOG10E 0.43429448190325182765
+#endif
+#ifndef M_LN2
+#define M_LN2 0.69314718055994530942
+#endif
+#ifndef M_LN10
+#define M_LN10 2.30258509299404568402
+#endif
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+#ifndef M_SQRT2
+#define M_SQRT2 1.41421356237309504880
+#endif
+#ifndef M_SQRT1_2
+#define M_SQRT1_2 0.70710678118654752440
+#endif
+
+static JSConstDoubleSpec math_constants[] = {
+ {M_E, "E", 0, {0,0,0}},
+ {M_LOG2E, "LOG2E", 0, {0,0,0}},
+ {M_LOG10E, "LOG10E", 0, {0,0,0}},
+ {M_LN2, "LN2", 0, {0,0,0}},
+ {M_LN10, "LN10", 0, {0,0,0}},
+ {M_PI, "PI", 0, {0,0,0}},
+ {M_SQRT2, "SQRT2", 0, {0,0,0}},
+ {M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
+ {0,0,0,{0,0,0}}
+};
+
+MathCache::MathCache() {
+ memset(table, 0, sizeof(table));
+
+ /* See comments in lookup(). */
+ JS_ASSERT(JSDOUBLE_IS_NEGZERO(-0.0));
+ JS_ASSERT(!JSDOUBLE_IS_NEGZERO(+0.0));
+ JS_ASSERT(hash(-0.0) != hash(+0.0));
+}
+
+Class js_MathClass = {
+ js_Math_str,
+ JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
+ PropertyStub, /* addProperty */
+ PropertyStub, /* delProperty */
+ PropertyStub, /* getProperty */
+ StrictPropertyStub, /* setProperty */
+ EnumerateStub,
+ ResolveStub,
+ ConvertStub
+};
+
+JSBool
+js_math_abs(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ z = fabs(x);
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_acos(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (x < -1 || 1 < x) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+#endif
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(acos, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_asin(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (x < -1 || 1 < x) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+#endif
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(asin, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_atan(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(atan, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+static inline jsdouble JS_FASTCALL
+math_atan2_kernel(jsdouble x, jsdouble y)
+{
+#if defined(_MSC_VER)
+ /*
+ * MSVC's atan2 does not yield the result demanded by ECMA when both x
+ * and y are infinite.
+ * - The result is a multiple of pi/4.
+ * - The sign of x determines the sign of the result.
+ * - The sign of y determines the multiplicator, 1 or 3.
+ */
+ if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) {
+ jsdouble z = js_copysign(M_PI / 4, x);
+ if (y < 0)
+ z *= 3;
+ return z;
+ }
+#endif
+
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (x == 0) {
+ if (JSDOUBLE_IS_NEGZERO(y))
+ return js_copysign(M_PI, x);
+ if (y == 0)
+ return x;
+ }
+#endif
+ return atan2(x, y);
+}
+
+static JSBool
+math_atan2(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, y, z;
+
+ if (argc <= 1) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ if (!ValueToNumber(cx, vp[3], &y))
+ return JS_FALSE;
+ z = math_atan2_kernel(x, y);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+jsdouble
+js_math_ceil_impl(jsdouble x)
+{
+#ifdef __APPLE__
+ if (x < 0 && x > -1.0)
+ return js_copysign(0, -1);
+#endif
+ return ceil(x);
+}
+
+JSBool
+js_math_ceil(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ z = js_math_ceil_impl(x);
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_cos(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(cos, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+static double
+math_exp_body(double d)
+{
+#ifdef _WIN32
+ if (!JSDOUBLE_IS_NaN(d)) {
+ if (d == js_PositiveInfinity)
+ return js_PositiveInfinity;
+ if (d == js_NegativeInfinity)
+ return 0.0;
+ }
+#endif
+ return exp(d);
+}
+
+static JSBool
+math_exp(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(math_exp_body, x);
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+jsdouble
+js_math_floor_impl(jsdouble x)
+{
+ return floor(x);
+}
+
+JSBool
+js_math_floor(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ z = js_math_floor_impl(x);
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_log(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (x < 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+#endif
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(log, x);
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+JSBool
+js_math_max(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z = js_NegativeInfinity;
+ Value *argv;
+ uintN i;
+
+ if (argc == 0) {
+ vp->setDouble(js_NegativeInfinity);
+ return JS_TRUE;
+ }
+ argv = vp + 2;
+ for (i = 0; i < argc; i++) {
+ if (!ValueToNumber(cx, argv[i], &x))
+ return JS_FALSE;
+ if (JSDOUBLE_IS_NaN(x)) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (x == 0 && x == z) {
+ if (js_copysign(1.0, z) == -1)
+ z = x;
+ } else {
+ z = (x > z) ? x : z;
+ }
+ }
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+JSBool
+js_math_min(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z = js_PositiveInfinity;
+ Value *argv;
+ uintN i;
+
+ if (argc == 0) {
+ vp->setDouble(js_PositiveInfinity);
+ return JS_TRUE;
+ }
+ argv = vp + 2;
+ for (i = 0; i < argc; i++) {
+ if (!ValueToNumber(cx, argv[i], &x))
+ return JS_FALSE;
+ if (JSDOUBLE_IS_NaN(x)) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (x == 0 && x == z) {
+ if (js_copysign(1.0, x) == -1)
+ z = x;
+ } else {
+ z = (x < z) ? x : z;
+ }
+ }
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+static jsdouble
+powi(jsdouble x, jsint y)
+{
+ jsuint n = (y < 0) ? -y : y;
+ jsdouble m = x;
+ jsdouble p = 1;
+ while (true) {
+ if ((n & 1) != 0) p *= m;
+ n >>= 1;
+ if (n == 0) {
+ if (y < 0) {
+ // Unfortunately, we have to be careful when p has reached
+ // infinity in the computation, because sometimes the higher
+ // internal precision in the pow() implementation would have
+ // given us a finite p. This happens very rarely.
+
+ jsdouble result = 1.0 / p;
+ return (result == 0 && JSDOUBLE_IS_INFINITE(p))
+ ? pow(x, static_cast<jsdouble>(y)) // Avoid pow(double, int).
+ : result;
+ }
+
+ return p;
+ }
+ m *= m;
+ }
+}
+
+static JSBool
+math_pow(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, y, z;
+
+ if (argc <= 1) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ if (!ValueToNumber(cx, vp[3], &y))
+ return JS_FALSE;
+ /*
+ * Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
+ * when x = -0.0, so we have to guard for this.
+ */
+ if (JSDOUBLE_IS_FINITE(x) && x != 0.0) {
+ if (y == 0.5) {
+ vp->setNumber(sqrt(x));
+ return JS_TRUE;
+ }
+ if (y == -0.5) {
+ vp->setNumber(1.0/sqrt(x));
+ return JS_TRUE;
+ }
+ }
+ /*
+ * Because C99 and ECMA specify different behavior for pow(),
+ * we need to wrap the libm call to make it ECMA compliant.
+ */
+ if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ /* pow(x, +-0) is always 1, even for x = NaN. */
+ if (y == 0) {
+ vp->setInt32(1);
+ return JS_TRUE;
+ }
+
+ if (vp[3].isInt32())
+ z = powi(x, vp[3].toInt32());
+ else
+ z = pow(x, y);
+
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+static const int64 RNG_MULTIPLIER = 0x5DEECE66DLL;
+static const int64 RNG_ADDEND = 0xBLL;
+static const int64 RNG_MASK = (1LL << 48) - 1;
+static const jsdouble RNG_DSCALE = jsdouble(1LL << 53);
+
+/*
+ * Math.random() support, lifted from java.util.Random.java.
+ */
+static inline void
+random_setSeed(JSContext *cx, int64 seed)
+{
+ cx->rngSeed = (seed ^ RNG_MULTIPLIER) & RNG_MASK;
+}
+
+void
+js_InitRandom(JSContext *cx)
+{
+ /*
+ * Set the seed from current time. Since we have a RNG per context and we often bring
+ * up several contexts at the same time, we xor in some additional values, namely
+ * the context and its successor. We don't just use the context because it might be
+ * possible to reverse engineer the context pointer if one guesses the time right.
+ */
+ random_setSeed(cx,
+ (PRMJ_Now() / 1000) ^
+ int64(cx) ^
+ int64(cx->link.next));
+}
+
+static inline uint64
+random_next(JSContext *cx, int bits)
+{
+ uint64 nextseed = cx->rngSeed * RNG_MULTIPLIER;
+ nextseed += RNG_ADDEND;
+ nextseed &= RNG_MASK;
+ cx->rngSeed = nextseed;
+ return nextseed >> (48 - bits);
+}
+
+static inline jsdouble
+random_nextDouble(JSContext *cx)
+{
+ return jsdouble((random_next(cx, 26) << 27) + random_next(cx, 27)) / RNG_DSCALE;
+}
+
+static JSBool
+math_random(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble z = random_nextDouble(cx);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400
+/* Try to work around apparent _copysign bustage in VC7.x. */
+double
+js_copysign(double x, double y)
+{
+ jsdpun xu, yu;
+
+ xu.d = x;
+ yu.d = y;
+ xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT;
+ xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT;
+ return xu.d;
+}
+#endif
+
+jsdouble
+js_math_round_impl(jsdouble x)
+{
+ return js_copysign(floor(x + 0.5), x);
+}
+
+JSBool
+js_math_round(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ z = js_copysign(floor(x + 0.5), x);
+ vp->setNumber(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_sin(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(sin, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_sqrt(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(sqrt, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+static JSBool
+math_tan(JSContext *cx, uintN argc, Value *vp)
+{
+ jsdouble x, z;
+
+ if (argc == 0) {
+ vp->setDouble(js_NaN);
+ return JS_TRUE;
+ }
+ if (!ValueToNumber(cx, vp[2], &x))
+ return JS_FALSE;
+ MathCache *mathCache = GetMathCache(cx);
+ if (!mathCache)
+ return JS_FALSE;
+ z = mathCache->lookup(tan, x);
+ vp->setDouble(z);
+ return JS_TRUE;
+}
+
+#if JS_HAS_TOSOURCE
+static JSBool
+math_toSource(JSContext *cx, uintN argc, Value *vp)
+{
+ vp->setString(ATOM_TO_STRING(CLASS_ATOM(cx, Math)));
+ return JS_TRUE;
+}
+#endif
+
+#ifdef JS_TRACER
+
+#define MATH_BUILTIN_1(name, cfun) \
+ static jsdouble FASTCALL name##_tn(MathCache *cache, jsdouble d) { \
+ return cache->lookup(cfun, d); \
+ } \
+ JS_DEFINE_TRCINFO_1(name, \
+ (2, (static, DOUBLE, name##_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+
+MATH_BUILTIN_1(js_math_abs, fabs)
+MATH_BUILTIN_1(math_atan, atan)
+MATH_BUILTIN_1(math_sin, sin)
+MATH_BUILTIN_1(math_cos, cos)
+MATH_BUILTIN_1(math_sqrt, sqrt)
+MATH_BUILTIN_1(math_tan, tan)
+
+static jsdouble FASTCALL
+math_acos_tn(MathCache *cache, jsdouble d)
+{
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (d < -1 || 1 < d) {
+ return js_NaN;
+ }
+#endif
+ return cache->lookup(acos, d);
+}
+
+static jsdouble FASTCALL
+math_asin_tn(MathCache *cache, jsdouble d)
+{
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (d < -1 || 1 < d) {
+ return js_NaN;
+ }
+#endif
+ return cache->lookup(asin, d);
+}
+
+static jsdouble FASTCALL
+math_exp_tn(MathCache *cache, jsdouble d)
+{
+ return cache->lookup(math_exp_body, d);
+}
+
+JS_DEFINE_TRCINFO_1(math_exp,
+ (2, (static, DOUBLE, math_exp_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+
+static jsdouble FASTCALL
+math_log_tn(MathCache *cache, jsdouble d)
+{
+#if defined(SOLARIS) && defined(__GNUC__)
+ if (d < 0)
+ return js_NaN;
+#endif
+ return cache->lookup(log, d);
+}
+
+static jsdouble FASTCALL
+math_max_tn(jsdouble d, jsdouble p)
+{
+ if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
+ return js_NaN;
+
+ if (p == 0 && p == d) {
+ // Max prefers 0.0 to -0.0.
+ if (js_copysign(1.0, d) == -1)
+ return p;
+ return d;
+ }
+ return (p > d) ? p : d;
+}
+
+static jsdouble FASTCALL
+math_min_tn(jsdouble d, jsdouble p)
+{
+ if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
+ return js_NaN;
+
+ if (p == 0 && p == d) {
+ // Min prefers -0.0 to 0.0.
+ if (js_copysign (1.0, p) == -1)
+ return p;
+ return d;
+ }
+ return (p < d) ? p : d;
+}
+
+static jsdouble FASTCALL
+math_pow_tn(jsdouble d, jsdouble p)
+{
+ /*
+ * Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
+ * when x = -0.0, so we have to guard for this.
+ */
+ if (JSDOUBLE_IS_FINITE(d) && d != 0.0) {
+ if (p == 0.5)
+ return sqrt(d);
+
+ if (p == -0.5)
+ return 1.0/sqrt(d);
+ }
+ if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0))
+ return js_NaN;
+ if (p == 0)
+ return 1.0;
+ int32_t i;
+ if (JSDOUBLE_IS_INT32(p, &i))
+ return powi(d, i);
+
+ return pow(d, p);
+}
+
+static jsdouble FASTCALL
+math_random_tn(JSContext *cx)
+{
+ return random_nextDouble(cx);
+}
+
+static jsdouble FASTCALL
+math_round_tn(jsdouble x)
+{
+ return js_math_round_impl(x);
+}
+
+static jsdouble FASTCALL
+math_ceil_tn(jsdouble x)
+{
+ return js_math_ceil_impl(x);
+}
+
+static jsdouble FASTCALL
+math_floor_tn(jsdouble x)
+{
+ return js_math_floor_impl(x);
+}
+
+JS_DEFINE_TRCINFO_1(math_acos,
+ (2, (static, DOUBLE, math_acos_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(math_asin,
+ (2, (static, DOUBLE, math_asin_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(math_atan2,
+ (2, (static, DOUBLE, math_atan2_kernel, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(js_math_floor,
+ (1, (static, DOUBLE, math_floor_tn, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(math_log,
+ (2, (static, DOUBLE, math_log_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(js_math_max,
+ (2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(js_math_min,
+ (2, (static, DOUBLE, math_min_tn, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(math_pow,
+ (2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(math_random,
+ (1, (static, DOUBLE, math_random_tn, CONTEXT, 0, nanojit::ACCSET_STORE_ANY)))
+JS_DEFINE_TRCINFO_1(js_math_round,
+ (1, (static, DOUBLE, math_round_tn, DOUBLE, 1, nanojit::ACCSET_NONE)))
+JS_DEFINE_TRCINFO_1(js_math_ceil,
+ (1, (static, DOUBLE, math_ceil_tn, DOUBLE, 1, nanojit::ACCSET_NONE)))
+
+#endif /* JS_TRACER */
+
+static JSFunctionSpec math_static_methods[] = {
+#if JS_HAS_TOSOURCE
+ JS_FN(js_toSource_str, math_toSource, 0, 0),
+#endif
+ JS_TN("abs", js_math_abs, 1, 0, &js_math_abs_trcinfo),
+ JS_TN("acos", math_acos, 1, 0, &math_acos_trcinfo),
+ JS_TN("asin", math_asin, 1, 0, &math_asin_trcinfo),
+ JS_TN("atan", math_atan, 1, 0, &math_atan_trcinfo),
+ JS_TN("atan2", math_atan2, 2, 0, &math_atan2_trcinfo),
+ JS_TN("ceil", js_math_ceil, 1, 0, &js_math_ceil_trcinfo),
+ JS_TN("cos", math_cos, 1, 0, &math_cos_trcinfo),
+ JS_TN("exp", math_exp, 1, 0, &math_exp_trcinfo),
+ JS_TN("floor", js_math_floor, 1, 0, &js_math_floor_trcinfo),
+ JS_TN("log", math_log, 1, 0, &math_log_trcinfo),
+ JS_TN("max", js_math_max, 2, 0, &js_math_max_trcinfo),
+ JS_TN("min", js_math_min, 2, 0, &js_math_min_trcinfo),
+ JS_TN("pow", math_pow, 2, 0, &math_pow_trcinfo),
+ JS_TN("random", math_random, 0, 0, &math_random_trcinfo),
+ JS_TN("round", js_math_round, 1, 0, &js_math_round_trcinfo),
+ JS_TN("sin", math_sin, 1, 0, &math_sin_trcinfo),
+ JS_TN("sqrt", math_sqrt, 1, 0, &math_sqrt_trcinfo),
+ JS_TN("tan", math_tan, 1, 0, &math_tan_trcinfo),
+ JS_FS_END
+};
+
+bool
+js_IsMathFunction(JSNative native)
+{
+ for (size_t i=0; math_static_methods[i].name != NULL; i++) {
+ if (native == math_static_methods[i].call)
+ return true;
+ }
+ return false;
+}
+
+JSObject *
+js_InitMathClass(JSContext *cx, JSObject *obj)
+{
+ JSObject *Math;
+
+ Math = JS_NewObject(cx, Jsvalify(&js_MathClass), NULL, obj);
+ if (!Math)
+ return NULL;
+ if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
+ JS_PropertyStub, JS_StrictPropertyStub, 0)) {
+ return NULL;
+ }
+
+ if (!JS_DefineFunctions(cx, Math, math_static_methods))
+ return NULL;
+ if (!JS_DefineConstDoubles(cx, Math, math_constants))
+ return NULL;
+ return Math;
+}