summaryrefslogtreecommitdiff
path: root/js/src/nanojit/NativeX64.cpp
blob: 39fd4e0293ccffe813522fdc8c71257d56f10388 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is [Open Source Virtual Machine].
 *
 * The Initial Developer of the Original Code is
 * Adobe System Incorporated.
 * Portions created by the Initial Developer are Copyright (C) 2009
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Adobe AS3 Team
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#include "nanojit.h"

// uncomment this to enable _vprof/_nvprof macros
//#define DOPROF
#include "../vprof/vprof.h"

#if defined FEATURE_NANOJIT && defined NANOJIT_X64

/*
completion
- 64bit branch offsets
- finish cmov/qcmov with other conditions
- validate asm_cond with other conditions

better code
- put R12 back in play as a base register
- no-disp addr modes (except RBP/R13)
- disp64 branch/call
- spill gp values to xmm registers?
- prefer xmm registers for copies since gprs are in higher demand?
- stack arg doubles
- stack based LIR_paramp

tracing
- nFragExit

*/

namespace nanojit
{
    const Register Assembler::retRegs[] = { RAX };
#ifdef _WIN64
    const Register Assembler::argRegs[] = { RCX, RDX, R8, R9 };
    const static int maxArgRegs = 4;
    const Register Assembler::savedRegs[] = { RBX, RSI, RDI, R12, R13, R14, R15 };
#else
    const Register Assembler::argRegs[] = { RDI, RSI, RDX, RCX, R8, R9 };
    const static int maxArgRegs = 6;
    const Register Assembler::savedRegs[] = { RBX, R12, R13, R14, R15 };
#endif

    const char *regNames[] = {
        "rax",  "rcx",  "rdx",   "rbx",   "rsp",   "rbp",   "rsi",   "rdi",
        "r8",   "r9",   "r10",   "r11",   "r12",   "r13",   "r14",   "r15",
        "xmm0", "xmm1", "xmm2",  "xmm3",  "xmm4",  "xmm5",  "xmm6",  "xmm7",
        "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
    };

    const char *gpRegNames32[] = {
        "eax", "ecx", "edx",  "ebx",  "esp",  "ebp",  "esi",  "edi",
        "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
    };

    const char *gpRegNames8[] = {
        "al",  "cl",  "dl",   "bl",   "spl",  "bpl",  "sil",  "dil",
        "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
    };

    const char *gpRegNames8hi[] = {
        "ah", "ch", "dh", "bh"
    };

    const char *gpRegNames16[] = {
        "ax",  "cx",  "dx",   "bx",   "spx",  "bpx",  "six",  "dix",
        "r8x", "r9x", "r10x", "r11x", "r12x", "r13x", "r14x", "r15x"
    };

#ifdef _DEBUG
    #define TODO(x) todo(#x)
    static void todo(const char *s) {
        verbose_only( avmplus::AvmLog("%s",s); )
        NanoAssertMsgf(false, "%s", s);
    }
#else
    #define TODO(x)
#endif

    // MODRM and SIB restrictions:
    // memory access modes != 11 require SIB if base&7 == 4 (RSP or R12)
    // mode 00 with base == x101 means RIP+disp32 (RBP or R13), use mode 01 disp8=0 instead
    // mode 01 or 11 with base = x101 means disp32 + EBP or R13, not RIP relative
    // base == x100 means SIB byte is present, so using ESP|R12 as base requires SIB
    // rex prefix required to use RSP-R15 as 8bit registers in mod/rm8 modes.

    // take R12 out of play as a base register because using ESP or R12 as base requires the SIB byte
    const RegisterMask BaseRegs = GpRegs & ~rmask(R12);

    static inline int oplen(uint64_t op) {
        return op & 255;
    }

    // encode 2-register rex prefix.  dropped if none of its bits are set.
    static inline uint64_t rexrb(uint64_t op, Register r, Register b) {
        int shift = 64 - 8*oplen(op);
        uint64_t rex = ((op >> shift) & 255) | ((REGNUM(r)&8)>>1) | ((REGNUM(b)&8)>>3);
        return rex != 0x40 ? op | rex << shift : op - 1;
    }

    // encode 3-register rex prefix.  dropped if none of its bits are set.
    static inline uint64_t rexrxb(uint64_t op, Register r, Register x, Register b) {
        int shift = 64 - 8*oplen(op);
        uint64_t rex = ((op >> shift) & 255) | ((REGNUM(r)&8)>>1) | ((REGNUM(x)&8)>>2) | ((REGNUM(b)&8)>>3);
        return rex != 0x40 ? op | rex << shift : op - 1;
    }

    // encode 2-register rex prefix.  dropped if none of its bits are set, but
    // keep REX if b >= rsp, to allow uniform use of all 16 8bit registers
    static inline uint64_t rexrb8(uint64_t op, Register r, Register b) {
        int shift = 64 - 8*oplen(op);
        uint64_t rex = ((op >> shift) & 255) | ((REGNUM(r)&8)>>1) | ((REGNUM(b)&8)>>3);
        return ((rex | (REGNUM(b) & ~3)) != 0x40) ? (op | (rex << shift)) : op - 1;
    }

    // encode 2-register rex prefix that follows a manditory prefix (66,F2,F3)
    // [prefix][rex][opcode]
    static inline uint64_t rexprb(uint64_t op, Register r, Register b) {
        int shift = 64 - 8*oplen(op) + 8;
        uint64_t rex = ((op >> shift) & 255) | ((REGNUM(r)&8)>>1) | ((REGNUM(b)&8)>>3);
        // to drop rex, we replace rex with manditory prefix, and decrement length
        return rex != 0x40 ? op | rex << shift :
            ((op & ~(255LL<<shift)) | (op>>(shift-8)&255) << shift) - 1;
    }

    // [rex][opcode][mod-rr]
    static inline uint64_t mod_rr(uint64_t op, Register r, Register b) {
        return op | uint64_t((REGNUM(r)&7)<<3 | (REGNUM(b)&7))<<56;
    }

    // [rex][opcode][modrm=r][sib=xb]
    static inline uint64_t mod_rxb(uint64_t op, Register r, Register x, Register b) {
        return op | /*modrm*/uint64_t((REGNUM(r)&7)<<3)<<48 | /*sib*/uint64_t((REGNUM(x)&7)<<3|(REGNUM(b)&7))<<56;
    }

    static inline uint64_t mod_disp32(uint64_t op, Register r, Register b, int32_t d) {
        NanoAssert(IsGpReg(r) && IsGpReg(b));
        NanoAssert((REGNUM(b) & 7) != 4); // using RSP or R12 as base requires SIB
        uint64_t mod = (((op>>24)&255)>>6); // mod bits in addressing mode: 0,1,2, or 3
        if (mod == 2 && isS8(d)) {
            // op is:  0x[disp32=0][mod=2:r:b][op][rex][len]
            int len = oplen(op);
            op = (op & ~0xff000000LL) | (0x40 | (REGNUM(r)&7)<<3 | (REGNUM(b)&7))<<24; // replace mod
            return op<<24 | int64_t(d)<<56 | (len-3); // shrink disp, add disp8
        } else {
            // op is: 0x[disp32][mod][op][rex][len]
            return op | int64_t(d)<<32 | uint64_t((REGNUM(r)&7)<<3 | (REGNUM(b)&7))<<24;
        }
    }

    // All the emit() functions should only be called from within codegen
    // functions PUSHR(), SHR(), etc.

    void Assembler::emit(uint64_t op) {
        int len = oplen(op);
        // we will only move nIns by -len bytes, but we write 8
        // bytes.  so need to protect 8 so we dont stomp the page
        // header or the end of the preceding page (might segf)
        underrunProtect(8);
        ((int64_t*)_nIns)[-1] = op;
        _nIns -= len; // move pointer by length encoded in opcode
        _nvprof("x64-bytes", len);
    }

    void Assembler::emit8(uint64_t op, int64_t v) {
        NanoAssert(isS8(v));
        emit(op | uint64_t(v)<<56);
    }

    void Assembler::emit_target8(size_t underrun, uint64_t op, NIns* target) {
        underrunProtect(underrun); // must do this before calculating offset
        // Nb: see emit_target32() for why we use _nIns here.
        int64_t offset = target - _nIns;
        NanoAssert(isS8(offset));
        emit(op | uint64_t(offset)<<56);
    }

    void Assembler::emit_target32(size_t underrun, uint64_t op, NIns* target) {
        underrunProtect(underrun); // must do this before calculating offset
        // Nb: at this point in time, _nIns points to the most recently
        // written instruction, ie. the jump's successor.  So why do we use it
        // to compute the offset, rather than the jump's address?  Because in
        // x86/x64-64 the offset in a relative jump is not from the jmp itself
        // but from the following instruction.  Eg. 'jmp $0' will jump to the
        // next instruction.
        int64_t offset = target ? target - _nIns : 0;
        if (!isS32(offset)) {
            setError(BranchTooFar);
            NanoAssert(0);  // assert because we'd like to know if this ever happens
        }
        emit(op | uint64_t(uint32_t(offset))<<32);
    }

    void Assembler::emit_target64(size_t underrun, uint64_t op, NIns* target) {
        NanoAssert(underrun >= 16);
        underrunProtect(underrun); // must do this before calculating offset
        // Nb: at this point in time, _nIns points to the most recently
        // written instruction, ie. the jump's successor.
        ((uint64_t*)_nIns)[-1] = (uint64_t) target;
        _nIns -= 8;
        emit(op);
    }

    // 3-register modrm32+sib form
    void Assembler::emitrxb(uint64_t op, Register r, Register x, Register b) {
        emit(rexrxb(mod_rxb(op, r, x, b), r, x, b));
    }

    // 2-register modrm32 form
    void Assembler::emitrr(uint64_t op, Register r, Register b) {
        emit(rexrb(mod_rr(op, r, b), r, b));
    }

    // 2-register modrm8 form (8 bit operand size)
    void Assembler::emitrr8(uint64_t op, Register r, Register b) {
        emit(rexrb8(mod_rr(op, r, b), r, b));
    }

    // same as emitrr, but with a prefix byte
    void Assembler::emitprr(uint64_t op, Register r, Register b) {
        emit(rexprb(mod_rr(op, r, b), r, b));
    }

    // disp32 modrm8 form, when the disp fits in the instruction (opcode is 1-3 bytes)
    void Assembler::emitrm8(uint64_t op, Register r, int32_t d, Register b) {
        emit(rexrb8(mod_disp32(op, r, b, d), r, b));
    }

    // disp32 modrm form, when the disp fits in the instruction (opcode is 1-3 bytes)
    void Assembler::emitrm(uint64_t op, Register r, int32_t d, Register b) {
        emit(rexrb(mod_disp32(op, r, b, d), r, b));
    }

    // disp32 modrm form when the disp must be written separately (opcode is 4+ bytes)
    uint64_t Assembler::emit_disp32(uint64_t op, int32_t d) {
        if (isS8(d)) {
            NanoAssert(((op>>56)&0xC0) == 0x80); // make sure mod bits == 2 == disp32 mode
            underrunProtect(1+8);
            *(--_nIns) = (NIns) d;
            _nvprof("x64-bytes", 1);
            op ^= 0xC000000000000000LL; // change mod bits to 1 == disp8 mode
        } else {
            underrunProtect(4+8); // room for displ plus fullsize op
            *((int32_t*)(_nIns -= 4)) = d;
            _nvprof("x64-bytes", 4);
        }
        return op;
    }

    // disp32 modrm form when the disp must be written separately (opcode is 4+ bytes)
    void Assembler::emitrm_wide(uint64_t op, Register r, int32_t d, Register b) {
        op = emit_disp32(op, d);
        emitrr(op, r, b);
    }

    // disp32 modrm form when the disp must be written separately (opcode is 4+ bytes)
    // p = prefix -- opcode must have a 66, F2, or F3 prefix
    void Assembler::emitprm(uint64_t op, Register r, int32_t d, Register b) {
        op = emit_disp32(op, d);
        emitprr(op, r, b);
    }

    // disp32 modrm form with 32-bit immediate value
    void Assembler::emitrm_imm32(uint64_t op, Register b, int32_t d, int32_t imm) {
        NanoAssert(IsGpReg(b));
        NanoAssert((REGNUM(b) & 7) != 4); // using RSP or R12 as base requires SIB
        underrunProtect(4+4+8); // room for imm plus disp plus fullsize op
        *((int32_t*)(_nIns -= 4)) = imm;
        _nvprof("x86-bytes", 4);
        emitrm_wide(op, RZero, d, b);
    }

    // disp32 modrm form with 16-bit immediate value
    // p = prefix -- opcode must have a 66, F2, or F3 prefix
    void Assembler::emitprm_imm16(uint64_t op, Register b, int32_t d, int32_t imm) {
        NanoAssert(IsGpReg(b));
        NanoAssert((REGNUM(b) & 7) != 4); // using RSP or R12 as base requires SIB
        underrunProtect(2+4+8); // room for imm plus disp plus fullsize op
        *((int16_t*)(_nIns -= 2)) = (int16_t) imm;
        _nvprof("x86-bytes", 2);
        emitprm(op, RZero, d, b);
    }

    // disp32 modrm form with 8-bit immediate value
    void Assembler::emitrm_imm8(uint64_t op, Register b, int32_t d, int32_t imm) {
        NanoAssert(IsGpReg(b));
        NanoAssert((REGNUM(b) & 7) != 4); // using RSP or R12 as base requires SIB
        underrunProtect(1+4+8); // room for imm plus disp plus fullsize op
        *((int8_t*)(_nIns -= 1)) = (int8_t) imm;
        _nvprof("x86-bytes", 1);
        emitrm_wide(op, RZero, d, b);
    }

    void Assembler::emitrr_imm(uint64_t op, Register r, Register b, int32_t imm) {
        NanoAssert(IsGpReg(r) && IsGpReg(b));
        underrunProtect(4+8); // room for imm plus fullsize op
        *((int32_t*)(_nIns -= 4)) = imm;
        _nvprof("x86-bytes", 4);
        emitrr(op, r, b);
    }

    void Assembler::emitr_imm64(uint64_t op, Register r, uint64_t imm64) {
        underrunProtect(8+8); // imm64 + worst case instr len
        *((uint64_t*)(_nIns -= 8)) = imm64;
        _nvprof("x64-bytes", 8);
        emitr(op, r);
    }

    void Assembler::emitrxb_imm(uint64_t op, Register r, Register x, Register b, int32_t imm) {
        NanoAssert(IsGpReg(r) && IsGpReg(x) && IsGpReg(b));
        underrunProtect(4+8); // room for imm plus fullsize op
        *((int32_t*)(_nIns -= 4)) = imm;
        _nvprof("x86-bytes", 4);
        emitrxb(op, r, x, b);
    }

    // op = [rex][opcode][modrm][imm8]
    void Assembler::emitr_imm8(uint64_t op, Register b, int32_t imm8) {
        NanoAssert(IsGpReg(b) && isS8(imm8));
        op |= uint64_t(imm8)<<56 | uint64_t(REGNUM(b)&7)<<48;  // modrm is 2nd to last byte
        emit(rexrb(op, RZero, b));
    }

    void Assembler::emitxm_abs(uint64_t op, Register r, int32_t addr32)
    {
        underrunProtect(4+8);
        *((int32_t*)(_nIns -= 4)) = addr32;
        _nvprof("x64-bytes", 4);
        op = op | uint64_t((REGNUM(r)&7)<<3)<<48; // put rr[0:2] into mod/rm byte
        op = rexrb(op, r, RZero);         // put rr[3] into rex byte
        emit(op);
    }

    void Assembler::emitxm_rel(uint64_t op, Register r, NIns* addr64)
    {
        underrunProtect(4+8);
        int32_t d = (int32_t)(addr64 - _nIns);
        *((int32_t*)(_nIns -= 4)) = d;
        _nvprof("x64-bytes", 4);
        emitrr(op, r, RZero);
    }

    // Succeeds if 'target' is within a signed 8-bit offset from the current
    // instruction's address.
    bool Assembler::isTargetWithinS8(NIns* target)
    {
        NanoAssert(target);
        // First call underrunProtect().  Without it, we might compute the
        // difference just before starting a new code chunk.
        underrunProtect(8);
        return isS8(target - _nIns);
    }

    // Like isTargetWithinS8(), but for signed 32-bit offsets.
    bool Assembler::isTargetWithinS32(NIns* target)
    {
        NanoAssert(target);
        underrunProtect(8);
        return isS32(target - _nIns);
    }

#define RB(r)       gpRegNames8[(REGNUM(r))]
#define RS(r)       gpRegNames16[(REGNUM(r))]
#define RBhi(r)     gpRegNames8hi[(REGNUM(r))]
#define RL(r)       gpRegNames32[(REGNUM(r))]
#define RQ(r)       gpn(r)

    typedef Register R;
    typedef int      I;
    typedef int32_t  I32;
    typedef uint64_t U64;
    typedef size_t   S;

    void Assembler::PUSHR(R r)  { emitr(X64_pushr,r); asm_output("push %s", RQ(r)); }
    void Assembler::POPR( R r)  { emitr(X64_popr, r); asm_output("pop %s",  RQ(r)); }
    void Assembler::NOT(  R r)  { emitr(X64_not,  r); asm_output("notl %s", RL(r)); }
    void Assembler::NEG(  R r)  { emitr(X64_neg,  r); asm_output("negl %s", RL(r)); }
    void Assembler::IDIV( R r)  { emitr(X64_idiv, r); asm_output("idivl edx:eax, %s",RL(r)); }

    void Assembler::SHR( R r)   { emitr(X64_shr,  r); asm_output("shrl %s, ecx", RL(r)); }
    void Assembler::SAR( R r)   { emitr(X64_sar,  r); asm_output("sarl %s, ecx", RL(r)); }
    void Assembler::SHL( R r)   { emitr(X64_shl,  r); asm_output("shll %s, ecx", RL(r)); }
    void Assembler::SHRQ(R r)   { emitr(X64_shrq, r); asm_output("shrq %s, ecx", RQ(r)); }
    void Assembler::SARQ(R r)   { emitr(X64_sarq, r); asm_output("sarq %s, ecx", RQ(r)); }
    void Assembler::SHLQ(R r)   { emitr(X64_shlq, r); asm_output("shlq %s, ecx", RQ(r)); }

    void Assembler::SHRI( R r, I i)   { emit8(rexrb(X64_shri  | U64(REGNUM(r)&7)<<48, RZero, r), i); asm_output("shrl %s, %d", RL(r), i); }
    void Assembler::SARI( R r, I i)   { emit8(rexrb(X64_sari  | U64(REGNUM(r)&7)<<48, RZero, r), i); asm_output("sarl %s, %d", RL(r), i); }
    void Assembler::SHLI( R r, I i)   { emit8(rexrb(X64_shli  | U64(REGNUM(r)&7)<<48, RZero, r), i); asm_output("shll %s, %d", RL(r), i); }
    void Assembler::SHRQI(R r, I i)   { emit8(rexrb(X64_shrqi | U64(REGNUM(r)&7)<<48, RZero, r), i); asm_output("shrq %s, %d", RQ(r), i); }
    void Assembler::SARQI(R r, I i)   { emit8(rexrb(X64_sarqi | U64(REGNUM(r)&7)<<48, RZero, r), i); asm_output("sarq %s, %d", RQ(r), i); }
    void Assembler::SHLQI(R r, I i)   { emit8(rexrb(X64_shlqi | U64(REGNUM(r)&7)<<48, RZero, r), i); asm_output("shlq %s, %d", RQ(r), i); }

    void Assembler::SETE( R r)  { emitr8(X64_sete, r); asm_output("sete %s", RB(r)); }
    void Assembler::SETL( R r)  { emitr8(X64_setl, r); asm_output("setl %s", RB(r)); }
    void Assembler::SETLE(R r)  { emitr8(X64_setle,r); asm_output("setle %s",RB(r)); }
    void Assembler::SETG( R r)  { emitr8(X64_setg, r); asm_output("setg %s", RB(r)); }
    void Assembler::SETGE(R r)  { emitr8(X64_setge,r); asm_output("setge %s",RB(r)); }
    void Assembler::SETB( R r)  { emitr8(X64_setb, r); asm_output("setb %s", RB(r)); }
    void Assembler::SETBE(R r)  { emitr8(X64_setbe,r); asm_output("setbe %s",RB(r)); }
    void Assembler::SETA( R r)  { emitr8(X64_seta, r); asm_output("seta %s", RB(r)); }
    void Assembler::SETAE(R r)  { emitr8(X64_setae,r); asm_output("setae %s",RB(r)); }
    void Assembler::SETO( R r)  { emitr8(X64_seto, r); asm_output("seto %s", RB(r)); }

    void Assembler::ADDRR(R l, R r)     { emitrr(X64_addrr,l,r); asm_output("addl %s, %s", RL(l),RL(r)); }
    void Assembler::SUBRR(R l, R r)     { emitrr(X64_subrr,l,r); asm_output("subl %s, %s", RL(l),RL(r)); }
    void Assembler::ANDRR(R l, R r)     { emitrr(X64_andrr,l,r); asm_output("andl %s, %s", RL(l),RL(r)); }
    void Assembler::ORLRR(R l, R r)     { emitrr(X64_orlrr,l,r); asm_output("orl %s, %s",  RL(l),RL(r)); }
    void Assembler::XORRR(R l, R r)     { emitrr(X64_xorrr,l,r); asm_output("xorl %s, %s", RL(l),RL(r)); }
    void Assembler::IMUL( R l, R r)     { emitrr(X64_imul, l,r); asm_output("imull %s, %s",RL(l),RL(r)); }
    void Assembler::CMPLR(R l, R r)     { emitrr(X64_cmplr,l,r); asm_output("cmpl %s, %s", RL(l),RL(r)); }
    void Assembler::MOVLR(R l, R r)     { emitrr(X64_movlr,l,r); asm_output("movl %s, %s", RL(l),RL(r)); }

    void Assembler::ADDQRR( R l, R r)   { emitrr(X64_addqrr, l,r); asm_output("addq %s, %s",  RQ(l),RQ(r)); }
    void Assembler::SUBQRR( R l, R r)   { emitrr(X64_subqrr, l,r); asm_output("subq %s, %s",  RQ(l),RQ(r)); }
    void Assembler::ANDQRR( R l, R r)   { emitrr(X64_andqrr, l,r); asm_output("andq %s, %s",  RQ(l),RQ(r)); }
    void Assembler::ORQRR(  R l, R r)   { emitrr(X64_orqrr,  l,r); asm_output("orq %s, %s",   RQ(l),RQ(r)); }
    void Assembler::XORQRR( R l, R r)   { emitrr(X64_xorqrr, l,r); asm_output("xorq %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMPQR(  R l, R r)   { emitrr(X64_cmpqr,  l,r); asm_output("cmpq %s, %s",  RQ(l),RQ(r)); }
    void Assembler::MOVQR(  R l, R r)   { emitrr(X64_movqr,  l,r); asm_output("movq %s, %s",  RQ(l),RQ(r)); }
    void Assembler::MOVAPSR(R l, R r)   { emitrr(X64_movapsr,l,r); asm_output("movaps %s, %s",RQ(l),RQ(r)); }

    void Assembler::CMOVNO( R l, R r)   { emitrr(X64_cmovno, l,r); asm_output("cmovlno %s, %s",  RL(l),RL(r)); }
    void Assembler::CMOVNE( R l, R r)   { emitrr(X64_cmovne, l,r); asm_output("cmovlne %s, %s",  RL(l),RL(r)); }
    void Assembler::CMOVNL( R l, R r)   { emitrr(X64_cmovnl, l,r); asm_output("cmovlnl %s, %s",  RL(l),RL(r)); }
    void Assembler::CMOVNLE(R l, R r)   { emitrr(X64_cmovnle,l,r); asm_output("cmovlnle %s, %s", RL(l),RL(r)); }
    void Assembler::CMOVNG( R l, R r)   { emitrr(X64_cmovng, l,r); asm_output("cmovlng %s, %s",  RL(l),RL(r)); }
    void Assembler::CMOVNGE(R l, R r)   { emitrr(X64_cmovnge,l,r); asm_output("cmovlnge %s, %s", RL(l),RL(r)); }
    void Assembler::CMOVNB( R l, R r)   { emitrr(X64_cmovnb, l,r); asm_output("cmovlnb %s, %s",  RL(l),RL(r)); }
    void Assembler::CMOVNBE(R l, R r)   { emitrr(X64_cmovnbe,l,r); asm_output("cmovlnbe %s, %s", RL(l),RL(r)); }
    void Assembler::CMOVNA( R l, R r)   { emitrr(X64_cmovna, l,r); asm_output("cmovlna %s, %s",  RL(l),RL(r)); }
    void Assembler::CMOVNAE(R l, R r)   { emitrr(X64_cmovnae,l,r); asm_output("cmovlnae %s, %s", RL(l),RL(r)); }

    void Assembler::CMOVQNO( R l, R r)  { emitrr(X64_cmovqno, l,r); asm_output("cmovqno %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMOVQNE( R l, R r)  { emitrr(X64_cmovqne, l,r); asm_output("cmovqne %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMOVQNL( R l, R r)  { emitrr(X64_cmovqnl, l,r); asm_output("cmovqnl %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMOVQNLE(R l, R r)  { emitrr(X64_cmovqnle,l,r); asm_output("cmovqnle %s, %s", RQ(l),RQ(r)); }
    void Assembler::CMOVQNG( R l, R r)  { emitrr(X64_cmovqng, l,r); asm_output("cmovqng %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMOVQNGE(R l, R r)  { emitrr(X64_cmovqnge,l,r); asm_output("cmovqnge %s, %s", RQ(l),RQ(r)); }
    void Assembler::CMOVQNB( R l, R r)  { emitrr(X64_cmovqnb, l,r); asm_output("cmovqnb %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMOVQNBE(R l, R r)  { emitrr(X64_cmovqnbe,l,r); asm_output("cmovqnbe %s, %s", RQ(l),RQ(r)); }
    void Assembler::CMOVQNA( R l, R r)  { emitrr(X64_cmovqna, l,r); asm_output("cmovqna %s, %s",  RQ(l),RQ(r)); }
    void Assembler::CMOVQNAE(R l, R r)  { emitrr(X64_cmovqnae,l,r); asm_output("cmovqnae %s, %s", RQ(l),RQ(r)); }

    void Assembler::MOVSXDR(R l, R r)   { emitrr(X64_movsxdr,l,r); asm_output("movsxd %s, %s",RQ(l),RL(r)); }

    void Assembler::MOVZX8(R l, R r)    { emitrr8(X64_movzx8,l,r); asm_output("movzx %s, %s",RQ(l),RB(r)); }

// XORPS is a 4x32f vector operation, we use it instead of the more obvious
// XORPD because it's one byte shorter.  This is ok because it's only used for
// zeroing an XMM register;  hence the single argument.
// Also note that (unlike most SSE2 instructions) XORPS does not have a prefix, thus emitrr() should be used.
    void Assembler::XORPS(        R r)  { emitrr(X64_xorps,    r,r); asm_output("xorps %s, %s",   RQ(r),RQ(r)); }
    void Assembler::XORPS(   R l, R r)  { emitrr(X64_xorps,    l,r); asm_output("xorps %s, %s",   RQ(l),RQ(r)); }
    void Assembler::DIVSD(   R l, R r)  { emitprr(X64_divsd,   l,r); asm_output("divsd %s, %s",   RQ(l),RQ(r)); }
    void Assembler::MULSD(   R l, R r)  { emitprr(X64_mulsd,   l,r); asm_output("mulsd %s, %s",   RQ(l),RQ(r)); }
    void Assembler::ADDSD(   R l, R r)  { emitprr(X64_addsd,   l,r); asm_output("addsd %s, %s",   RQ(l),RQ(r)); }
    void Assembler::SUBSD(   R l, R r)  { emitprr(X64_subsd,   l,r); asm_output("subsd %s, %s",   RQ(l),RQ(r)); }
    void Assembler::CVTSQ2SD(R l, R r)  { emitprr(X64_cvtsq2sd,l,r); asm_output("cvtsq2sd %s, %s",RQ(l),RQ(r)); }
    void Assembler::CVTSI2SD(R l, R r)  { emitprr(X64_cvtsi2sd,l,r); asm_output("cvtsi2sd %s, %s",RQ(l),RL(r)); }
    void Assembler::CVTSS2SD(R l, R r)  { emitprr(X64_cvtss2sd,l,r); asm_output("cvtss2sd %s, %s",RQ(l),RL(r)); }
    void Assembler::CVTSD2SS(R l, R r)  { emitprr(X64_cvtsd2ss,l,r); asm_output("cvtsd2ss %s, %s",RL(l),RQ(r)); }
    void Assembler::CVTSD2SI(R l, R r)  { emitprr(X64_cvtsd2si,l,r); asm_output("cvtsd2si %s, %s",RL(l),RQ(r)); }
    void Assembler::CVTTSD2SI(R l, R r) { emitprr(X64_cvttsd2si,l,r);asm_output("cvttsd2si %s, %s",RL(l),RQ(r));}
    void Assembler::UCOMISD( R l, R r)  { emitprr(X64_ucomisd, l,r); asm_output("ucomisd %s, %s", RQ(l),RQ(r)); }
    void Assembler::MOVQRX(  R l, R r)  { emitprr(X64_movqrx,  r,l); asm_output("movq %s, %s",    RQ(l),RQ(r)); } // Nb: r and l are deliberately reversed within the emitprr() call.
    void Assembler::MOVQXR(  R l, R r)  { emitprr(X64_movqxr,  l,r); asm_output("movq %s, %s",    RQ(l),RQ(r)); }

    // MOVI must not affect condition codes!
    void Assembler::MOVI(  R r, I32 i32)    { emitr_imm(X64_movi,  r,i32); asm_output("movl %s, %d",RL(r),i32); }
    void Assembler::ADDLRI(R r, I32 i32)    { emitr_imm(X64_addlri,r,i32); asm_output("addl %s, %d",RL(r),i32); }
    void Assembler::SUBLRI(R r, I32 i32)    { emitr_imm(X64_sublri,r,i32); asm_output("subl %s, %d",RL(r),i32); }
    void Assembler::ANDLRI(R r, I32 i32)    { emitr_imm(X64_andlri,r,i32); asm_output("andl %s, %d",RL(r),i32); }
    void Assembler::ORLRI( R r, I32 i32)    { emitr_imm(X64_orlri, r,i32); asm_output("orl %s, %d", RL(r),i32); }
    void Assembler::XORLRI(R r, I32 i32)    { emitr_imm(X64_xorlri,r,i32); asm_output("xorl %s, %d",RL(r),i32); }
    void Assembler::CMPLRI(R r, I32 i32)    { emitr_imm(X64_cmplri,r,i32); asm_output("cmpl %s, %d",RL(r),i32); }

    void Assembler::ADDQRI( R r, I32 i32)   { emitr_imm(X64_addqri, r,i32); asm_output("addq %s, %d",   RQ(r),i32); }
    void Assembler::SUBQRI( R r, I32 i32)   { emitr_imm(X64_subqri, r,i32); asm_output("subq %s, %d",   RQ(r),i32); }
    void Assembler::ANDQRI( R r, I32 i32)   { emitr_imm(X64_andqri, r,i32); asm_output("andq %s, %d",   RQ(r),i32); }
    void Assembler::ORQRI(  R r, I32 i32)   { emitr_imm(X64_orqri,  r,i32); asm_output("orq %s, %d",    RQ(r),i32); }
    void Assembler::XORQRI( R r, I32 i32)   { emitr_imm(X64_xorqri, r,i32); asm_output("xorq %s, %d",   RQ(r),i32); }
    void Assembler::CMPQRI( R r, I32 i32)   { emitr_imm(X64_cmpqri, r,i32); asm_output("cmpq %s, %d",   RQ(r),i32); }
    void Assembler::MOVQI32(R r, I32 i32)   { emitr_imm(X64_movqi32,r,i32); asm_output("movqi32 %s, %d",RQ(r),i32); }

    void Assembler::ADDLR8(R r, I32 i8)     { emitr_imm8(X64_addlr8,r,i8); asm_output("addl %s, %d", RL(r),i8); }
    void Assembler::SUBLR8(R r, I32 i8)     { emitr_imm8(X64_sublr8,r,i8); asm_output("subl %s, %d", RL(r),i8); }
    void Assembler::ANDLR8(R r, I32 i8)     { emitr_imm8(X64_andlr8,r,i8); asm_output("andl %s, %d", RL(r),i8); }
    void Assembler::ORLR8( R r, I32 i8)     { emitr_imm8(X64_orlr8, r,i8); asm_output("orl %s, %d",  RL(r),i8); }
    void Assembler::XORLR8(R r, I32 i8)     { emitr_imm8(X64_xorlr8,r,i8); asm_output("xorl %s, %d", RL(r),i8); }
    void Assembler::CMPLR8(R r, I32 i8)     { emitr_imm8(X64_cmplr8,r,i8); asm_output("cmpl %s, %d", RL(r),i8); }

    void Assembler::ADDQR8(R r, I32 i8)     { emitr_imm8(X64_addqr8,r,i8); asm_output("addq %s, %d",RQ(r),i8); }
    void Assembler::SUBQR8(R r, I32 i8)     { emitr_imm8(X64_subqr8,r,i8); asm_output("subq %s, %d",RQ(r),i8); }
    void Assembler::ANDQR8(R r, I32 i8)     { emitr_imm8(X64_andqr8,r,i8); asm_output("andq %s, %d",RQ(r),i8); }
    void Assembler::ORQR8( R r, I32 i8)     { emitr_imm8(X64_orqr8, r,i8); asm_output("orq %s, %d", RQ(r),i8); }
    void Assembler::XORQR8(R r, I32 i8)     { emitr_imm8(X64_xorqr8,r,i8); asm_output("xorq %s, %d",RQ(r),i8); }
    void Assembler::CMPQR8(R r, I32 i8)     { emitr_imm8(X64_cmpqr8,r,i8); asm_output("cmpq %s, %d",RQ(r),i8); }

    void Assembler::IMULI(R l, R r, I32 i32)    { emitrr_imm(X64_imuli,l,r,i32); asm_output("imuli %s, %s, %d",RL(l),RL(r),i32); }

    void Assembler::MOVQI(R r, U64 u64)         { emitr_imm64(X64_movqi,r,u64); asm_output("movq %s, %p",RQ(r),(void*)u64); }

    void Assembler::LEARIP(R r, I32 d)          { emitrm(X64_learip,r,d,RZero); asm_output("lea %s, %d(rip)",RQ(r),d); }

    void Assembler::LEALRM(R r, I d, R b)       { emitrm(X64_lealrm,r,d,b); asm_output("leal %s, %d(%s)",RL(r),d,RL(b)); }
    void Assembler::LEAQRM(R r, I d, R b)       { emitrm(X64_leaqrm,r,d,b); asm_output("leaq %s, %d(%s)",RQ(r),d,RQ(b)); }
    void Assembler::MOVLRM(R r, I d, R b)       { emitrm(X64_movlrm,r,d,b); asm_output("movl %s, %d(%s)",RL(r),d,RQ(b)); }
    void Assembler::MOVQRM(R r, I d, R b)       { emitrm(X64_movqrm,r,d,b); asm_output("movq %s, %d(%s)",RQ(r),d,RQ(b)); }
    void Assembler::MOVBMR(R r, I d, R b)       { emitrm8(X64_movbmr,r,d,b); asm_output("movb %d(%s), %s",d,RQ(b),RB(r)); }
    void Assembler::MOVSMR(R r, I d, R b)       { emitprm(X64_movsmr,r,d,b); asm_output("movs %d(%s), %s",d,RQ(b),RS(r)); }
    void Assembler::MOVLMR(R r, I d, R b)       { emitrm(X64_movlmr,r,d,b); asm_output("movl %d(%s), %s",d,RQ(b),RL(r)); }
    void Assembler::MOVQMR(R r, I d, R b)       { emitrm(X64_movqmr,r,d,b); asm_output("movq %d(%s), %s",d,RQ(b),RQ(r)); }

    void Assembler::MOVZX8M( R r, I d, R b)     { emitrm_wide(X64_movzx8m, r,d,b); asm_output("movzxb %s, %d(%s)",RQ(r),d,RQ(b)); }
    void Assembler::MOVZX16M(R r, I d, R b)     { emitrm_wide(X64_movzx16m,r,d,b); asm_output("movzxs %s, %d(%s)",RQ(r),d,RQ(b)); }

    void Assembler::MOVSX8M( R r, I d, R b)     { emitrm_wide(X64_movsx8m, r,d,b); asm_output("movsxb %s, %d(%s)",RQ(r),d,RQ(b)); }
    void Assembler::MOVSX16M(R r, I d, R b)     { emitrm_wide(X64_movsx16m,r,d,b); asm_output("movsxs %s, %d(%s)",RQ(r),d,RQ(b)); }

    void Assembler::MOVSDRM(R r, I d, R b)      { emitprm(X64_movsdrm,r,d,b); asm_output("movsd %s, %d(%s)",RQ(r),d,RQ(b)); }
    void Assembler::MOVSDMR(R r, I d, R b)      { emitprm(X64_movsdmr,r,d,b); asm_output("movsd %d(%s), %s",d,RQ(b),RQ(r)); }
    void Assembler::MOVSSRM(R r, I d, R b)      { emitprm(X64_movssrm,r,d,b); asm_output("movss %s, %d(%s)",RQ(r),d,RQ(b)); }
    void Assembler::MOVSSMR(R r, I d, R b)      { emitprm(X64_movssmr,r,d,b); asm_output("movss %d(%s), %s",d,RQ(b),RQ(r)); }

    void Assembler::JMP8( S n, NIns* t)    { emit_target8(n, X64_jmp8,t); asm_output("jmp %p", t); }

    void Assembler::JMP32(S n, NIns* t)    { emit_target32(n,X64_jmp, t); asm_output("jmp %p", t); }
    void Assembler::JMP64(S n, NIns* t)    { emit_target64(n,X64_jmpi, t); asm_output("jmp %p", t); }

    void Assembler::JMPX(R indexreg, NIns** table)
    {
        Register R5 = { 5 };
        emitrxb_imm(X64_jmpx, RZero, indexreg, R5, (int32_t)(uintptr_t)table);
        asm_output("jmpq [%s*8 + %p]", RQ(indexreg), (void*)table);
    }

    void Assembler::JMPXB(R indexreg, R tablereg)   { emitxb(X64_jmpxb, indexreg, tablereg); asm_output("jmp [%s*8 + %s]", RQ(indexreg), RQ(tablereg)); }

    void Assembler::JO( S n, NIns* t)      { emit_target32(n,X64_jo,  t); asm_output("jo %p", t); }
    void Assembler::JE( S n, NIns* t)      { emit_target32(n,X64_je,  t); asm_output("je %p", t); }
    void Assembler::JL( S n, NIns* t)      { emit_target32(n,X64_jl,  t); asm_output("jl %p", t); }
    void Assembler::JLE(S n, NIns* t)      { emit_target32(n,X64_jle, t); asm_output("jle %p",t); }
    void Assembler::JG( S n, NIns* t)      { emit_target32(n,X64_jg,  t); asm_output("jg %p", t); }
    void Assembler::JGE(S n, NIns* t)      { emit_target32(n,X64_jge, t); asm_output("jge %p",t); }
    void Assembler::JB( S n, NIns* t)      { emit_target32(n,X64_jb,  t); asm_output("jb %p", t); }
    void Assembler::JBE(S n, NIns* t)      { emit_target32(n,X64_jbe, t); asm_output("jbe %p",t); }
    void Assembler::JA( S n, NIns* t)      { emit_target32(n,X64_ja,  t); asm_output("ja %p", t); }
    void Assembler::JAE(S n, NIns* t)      { emit_target32(n,X64_jae, t); asm_output("jae %p",t); }
    void Assembler::JP( S n, NIns* t)      { emit_target32(n,X64_jp,  t); asm_output("jp  %p",t); }

    void Assembler::JNO( S n, NIns* t)     { emit_target32(n,X64_jo ^X64_jneg, t); asm_output("jno %p", t); }
    void Assembler::JNE( S n, NIns* t)     { emit_target32(n,X64_je ^X64_jneg, t); asm_output("jne %p", t); }
    void Assembler::JNL( S n, NIns* t)     { emit_target32(n,X64_jl ^X64_jneg, t); asm_output("jnl %p", t); }
    void Assembler::JNLE(S n, NIns* t)     { emit_target32(n,X64_jle^X64_jneg, t); asm_output("jnle %p",t); }
    void Assembler::JNG( S n, NIns* t)     { emit_target32(n,X64_jg ^X64_jneg, t); asm_output("jng %p", t); }
    void Assembler::JNGE(S n, NIns* t)     { emit_target32(n,X64_jge^X64_jneg, t); asm_output("jnge %p",t); }
    void Assembler::JNB( S n, NIns* t)     { emit_target32(n,X64_jb ^X64_jneg, t); asm_output("jnb %p", t); }
    void Assembler::JNBE(S n, NIns* t)     { emit_target32(n,X64_jbe^X64_jneg, t); asm_output("jnbe %p",t); }
    void Assembler::JNA( S n, NIns* t)     { emit_target32(n,X64_ja ^X64_jneg, t); asm_output("jna %p", t); }
    void Assembler::JNAE(S n, NIns* t)     { emit_target32(n,X64_jae^X64_jneg, t); asm_output("jnae %p",t); }

    void Assembler::JO8( S n, NIns* t)     { emit_target8(n,X64_jo8,  t); asm_output("jo %p", t); }
    void Assembler::JE8( S n, NIns* t)     { emit_target8(n,X64_je8,  t); asm_output("je %p", t); }
    void Assembler::JL8( S n, NIns* t)     { emit_target8(n,X64_jl8,  t); asm_output("jl %p", t); }
    void Assembler::JLE8(S n, NIns* t)     { emit_target8(n,X64_jle8, t); asm_output("jle %p",t); }
    void Assembler::JG8( S n, NIns* t)     { emit_target8(n,X64_jg8,  t); asm_output("jg %p", t); }
    void Assembler::JGE8(S n, NIns* t)     { emit_target8(n,X64_jge8, t); asm_output("jge %p",t); }
    void Assembler::JB8( S n, NIns* t)     { emit_target8(n,X64_jb8,  t); asm_output("jb %p", t); }
    void Assembler::JBE8(S n, NIns* t)     { emit_target8(n,X64_jbe8, t); asm_output("jbe %p",t); }
    void Assembler::JA8( S n, NIns* t)     { emit_target8(n,X64_ja8,  t); asm_output("ja %p", t); }
    void Assembler::JAE8(S n, NIns* t)     { emit_target8(n,X64_jae8, t); asm_output("jae %p",t); }
    void Assembler::JP8( S n, NIns* t)     { emit_target8(n,X64_jp8,  t); asm_output("jp  %p",t); }

    void Assembler::JNO8( S n, NIns* t)    { emit_target8(n,X64_jo8 ^X64_jneg8, t); asm_output("jno %p", t); }
    void Assembler::JNE8( S n, NIns* t)    { emit_target8(n,X64_je8 ^X64_jneg8, t); asm_output("jne %p", t); }
    void Assembler::JNL8( S n, NIns* t)    { emit_target8(n,X64_jl8 ^X64_jneg8, t); asm_output("jnl %p", t); }
    void Assembler::JNLE8(S n, NIns* t)    { emit_target8(n,X64_jle8^X64_jneg8, t); asm_output("jnle %p",t); }
    void Assembler::JNG8( S n, NIns* t)    { emit_target8(n,X64_jg8 ^X64_jneg8, t); asm_output("jng %p", t); }
    void Assembler::JNGE8(S n, NIns* t)    { emit_target8(n,X64_jge8^X64_jneg8, t); asm_output("jnge %p",t); }
    void Assembler::JNB8( S n, NIns* t)    { emit_target8(n,X64_jb8 ^X64_jneg8, t); asm_output("jnb %p", t); }
    void Assembler::JNBE8(S n, NIns* t)    { emit_target8(n,X64_jbe8^X64_jneg8, t); asm_output("jnbe %p",t); }
    void Assembler::JNA8( S n, NIns* t)    { emit_target8(n,X64_ja8 ^X64_jneg8, t); asm_output("jna %p", t); }
    void Assembler::JNAE8(S n, NIns* t)    { emit_target8(n,X64_jae8^X64_jneg8, t); asm_output("jnae %p",t); }

    void Assembler::CALL( S n, NIns* t)    { emit_target32(n,X64_call,t); asm_output("call %p",t); }

    void Assembler::CALLRAX()       { emit(X64_callrax); asm_output("call (rax)"); }
    void Assembler::RET()           { emit(X64_ret);     asm_output("ret");        }

    void Assembler::MOVQMI(R r, I d, I32 imm) { emitrm_imm32(X64_movqmi,r,d,imm); asm_output("movq %d(%s), %d",d,RQ(r),imm); }
    void Assembler::MOVLMI(R r, I d, I32 imm) { emitrm_imm32(X64_movlmi,r,d,imm); asm_output("movl %d(%s), %d",d,RQ(r),imm); }
    void Assembler::MOVSMI(R r, I d, I32 imm) { emitprm_imm16(X64_movsmi,r,d,imm); asm_output("movs %d(%s), %d",d,RQ(r),imm); }
    void Assembler::MOVBMI(R r, I d, I32 imm) { emitrm_imm8(X64_movbmi,r,d,imm); asm_output("movb %d(%s), %d",d,RQ(r),imm); }

    void Assembler::MOVQSPR(I d, R r)   { emit(X64_movqspr | U64(d) << 56 | U64((REGNUM(r)&7)<<3) << 40 | U64((REGNUM(r)&8)>>1) << 24); asm_output("movq %d(rsp), %s", d, RQ(r)); }    // insert r into mod/rm and rex bytes

    void Assembler::XORPSA(R r, I32 i32)    { emitxm_abs(X64_xorpsa, r, i32); asm_output("xorps %s, (0x%x)",RQ(r), i32); }
    void Assembler::XORPSM(R r, NIns* a64)  { emitxm_rel(X64_xorpsm, r, a64); asm_output("xorps %s, (%p)",  RQ(r), a64); }

    void Assembler::X86_AND8R(R r)  { emit(X86_and8r | U64(REGNUM(r)<<3|(REGNUM(r)|4))<<56); asm_output("andb %s, %s", RB(r), RBhi(r)); }
    void Assembler::X86_SETNP(R r)  { emit(X86_setnp | U64(REGNUM(r)|4)<<56); asm_output("setnp %s", RBhi(r)); }
    void Assembler::X86_SETE(R r)   { emit(X86_sete  | U64(REGNUM(r))<<56);   asm_output("sete %s", RB(r)); }

#undef R
#undef I
#undef I32
#undef U64
#undef S

    void Assembler::MR(Register d, Register s) {
        NanoAssert(IsGpReg(d) && IsGpReg(s));
        MOVQR(d, s);
    }

    // This is needed for guards;  we must be able to patch the jmp later and
    // we cannot do that if an 8-bit relative jump is used, so we can't use
    // JMP().
    void Assembler::JMPl(NIns* target) {
        if (!target || isTargetWithinS32(target)) {
            JMP32(8, target);
        } else {
            JMP64(16, target);
        }
    }

    void Assembler::JMP(NIns *target) {
        if (!target || isTargetWithinS32(target)) {
            if (target && isTargetWithinS8(target)) {
                JMP8(8, target);
            } else {
                JMP32(8, target);
            }
        } else {
            JMP64(16, target);
        }
    }

    void Assembler::asm_qbinop(LIns *ins) {
        asm_arith(ins);
    }

    void Assembler::asm_shift(LIns *ins) {
        // Shift requires rcx for shift count.
        LIns *a = ins->oprnd1();
        LIns *b = ins->oprnd2();
        if (b->isImmI()) {
            asm_shift_imm(ins);
            return;
        }

        Register rr, ra;
        if (a != b) {
            findSpecificRegFor(b, RCX);
            beginOp1Regs(ins, GpRegs & ~rmask(RCX), rr, ra);
        } else {
            // Nb: this is just like beginOp1Regs() except that it asserts
            // that ra is in GpRegs instead of rmask(RCX)) -- this is
            // necessary for the a==b case because 'a' might not be in RCX
            // (which is ok, the MR(rr, ra) below will move it into RCX).
            rr = prepareResultReg(ins, rmask(RCX));

            // If 'a' isn't in a register, it can be clobbered by 'ins'.
            ra = a->isInReg() ? a->getReg() : rr;
            NanoAssert(rmask(ra) & GpRegs);
        }

        switch (ins->opcode()) {
        default:
            TODO(asm_shift);
        case LIR_rshuq: SHRQ(rr);   break;
        case LIR_rshq:  SARQ(rr);   break;
        case LIR_lshq:  SHLQ(rr);   break;
        case LIR_rshui: SHR( rr);   break;
        case LIR_rshi:  SAR( rr);   break;
        case LIR_lshi:  SHL( rr);   break;
        }
        if (rr != ra)
            MR(rr, ra);

        endOpRegs(ins, rr, ra);
    }

    void Assembler::asm_shift_imm(LIns *ins) {
        Register rr, ra;
        beginOp1Regs(ins, GpRegs, rr, ra);

        int shift = ins->oprnd2()->immI() & 63;
        switch (ins->opcode()) {
        default: TODO(shiftimm);
        case LIR_rshuq: SHRQI(rr, shift);   break;
        case LIR_rshq:  SARQI(rr, shift);   break;
        case LIR_lshq:  SHLQI(rr, shift);   break;
        case LIR_rshui: SHRI( rr, shift);   break;
        case LIR_rshi:  SARI( rr, shift);   break;
        case LIR_lshi:  SHLI( rr, shift);   break;
        }
        if (rr != ra)
            MR(rr, ra);

        endOpRegs(ins, rr, ra);
    }

    static bool isImm32(LIns *ins) {
        return ins->isImmI() || (ins->isImmQ() && isS32(ins->immQ()));
    }
    static int32_t getImm32(LIns *ins) {
        return ins->isImmI() ? ins->immI() : int32_t(ins->immQ());
    }

    // Binary op, integer regs, rhs is int32 constant.
    void Assembler::asm_arith_imm(LIns *ins) {
        LIns *b = ins->oprnd2();
        int32_t imm = getImm32(b);
        LOpcode op = ins->opcode();
        Register rr, ra;
        if (op == LIR_muli || op == LIR_muljovi || op == LIR_mulxovi) {
            // Special case: imul-by-imm has true 3-addr form.  So we don't
            // need the MR(rr, ra) after the IMULI.
            beginOp1Regs(ins, GpRegs, rr, ra);
            IMULI(rr, ra, imm);
            endOpRegs(ins, rr, ra);
            return;
        }

        beginOp1Regs(ins, GpRegs, rr, ra);
        if (isS8(imm)) {
            switch (ins->opcode()) {
            default: TODO(arith_imm8);
            case LIR_addi:
            case LIR_addjovi:
            case LIR_addxovi:    ADDLR8(rr, imm);   break;   // XXX: bug 547125: could use LEA for LIR_addi
            case LIR_andi:       ANDLR8(rr, imm);   break;
            case LIR_ori:        ORLR8( rr, imm);   break;
            case LIR_subi:
            case LIR_subjovi:
            case LIR_subxovi:    SUBLR8(rr, imm);   break;
            case LIR_xori:       XORLR8(rr, imm);   break;
            case LIR_addq:
            case LIR_addjovq:    ADDQR8(rr, imm);   break;
            case LIR_subq:
            case LIR_subjovq:    SUBQR8(rr, imm);   break;
            case LIR_andq:       ANDQR8(rr, imm);   break;
            case LIR_orq:        ORQR8( rr, imm);   break;
            case LIR_xorq:       XORQR8(rr, imm);   break;
            }
        } else {
            switch (ins->opcode()) {
            default: TODO(arith_imm);
            case LIR_addi:
            case LIR_addjovi:
            case LIR_addxovi:    ADDLRI(rr, imm);   break;   // XXX: bug 547125: could use LEA for LIR_addi
            case LIR_andi:       ANDLRI(rr, imm);   break;
            case LIR_ori:        ORLRI( rr, imm);   break;
            case LIR_subi:
            case LIR_subjovi:
            case LIR_subxovi:    SUBLRI(rr, imm);   break;
            case LIR_xori:       XORLRI(rr, imm);   break;
            case LIR_addq:
            case LIR_addjovq:    ADDQRI(rr, imm);   break;
            case LIR_subq:
            case LIR_subjovq:    SUBQRI(rr, imm);   break;
            case LIR_andq:       ANDQRI(rr, imm);   break;
            case LIR_orq:        ORQRI( rr, imm);   break;
            case LIR_xorq:       XORQRI(rr, imm);   break;
            }
        }
        if (rr != ra)
            MR(rr, ra);

        endOpRegs(ins, rr, ra);
    }

    // Generates code for a LIR_divi that doesn't have a subsequent LIR_modi.
    void Assembler::asm_div(LIns *div) {
        NanoAssert(div->isop(LIR_divi));
        LIns *a = div->oprnd1();
        LIns *b = div->oprnd2();

        evictIfActive(RDX);
        prepareResultReg(div, rmask(RAX));

        Register rb = findRegFor(b, GpRegs & ~(rmask(RAX)|rmask(RDX)));
        Register ra = a->isInReg() ? a->getReg() : RAX;

        IDIV(rb);
        SARI(RDX, 31);
        MR(RDX, RAX);
        if (RAX != ra)
            MR(RAX, ra);

        freeResourcesOf(div);
        if (!a->isInReg()) {
            NanoAssert(ra == RAX);
            findSpecificRegForUnallocated(a, RAX);
        }
    }

    // Generates code for a LIR_modi(LIR_divi(divL, divR)) sequence.
    void Assembler::asm_div_mod(LIns *mod) {
        LIns *div = mod->oprnd1();

        NanoAssert(mod->isop(LIR_modi));
        NanoAssert(div->isop(LIR_divi));

        LIns *divL = div->oprnd1();
        LIns *divR = div->oprnd2();

        prepareResultReg(mod, rmask(RDX));
        prepareResultReg(div, rmask(RAX));

        Register rDivR = findRegFor(divR, GpRegs & ~(rmask(RAX)|rmask(RDX)));
        Register rDivL = divL->isInReg() ? divL->getReg() : RAX;

        IDIV(rDivR);
        SARI(RDX, 31);
        MR(RDX, RAX);
        if (RAX != rDivL)
            MR(RAX, rDivL);

        freeResourcesOf(mod);
        freeResourcesOf(div);
        if (!divL->isInReg()) {
            NanoAssert(rDivL == RAX);
            findSpecificRegForUnallocated(divL, RAX);
        }
    }

    // binary op with integer registers
    void Assembler::asm_arith(LIns *ins) {
        Register rr, ra, rb = UnspecifiedReg;   // init to shut GCC up

        switch (ins->opcode()) {
        case LIR_lshi:  case LIR_lshq:
        case LIR_rshi:  case LIR_rshq:
        case LIR_rshui: case LIR_rshuq:
            asm_shift(ins);
            return;
        case LIR_modi:
            asm_div_mod(ins);
            return;
        case LIR_divi:
            // Nb: if the div feeds into a mod it will be handled by
            // asm_div_mod() rather than here.
            asm_div(ins);
            return;
        default:
            break;
        }

        LIns *b = ins->oprnd2();
        if (isImm32(b)) {
            asm_arith_imm(ins);
            return;
        }
        beginOp2Regs(ins, GpRegs, rr, ra, rb);
        switch (ins->opcode()) {
        default:           TODO(asm_arith);
        case LIR_ori:      ORLRR(rr, rb);  break;
        case LIR_subi:
        case LIR_subjovi:
        case LIR_subxovi:  SUBRR(rr, rb);  break;
        case LIR_addi:
        case LIR_addjovi:
        case LIR_addxovi:  ADDRR(rr, rb);  break;  // XXX: bug 547125: could use LEA for LIR_addi
        case LIR_andi:     ANDRR(rr, rb);  break;
        case LIR_xori:     XORRR(rr, rb);  break;
        case LIR_muli:
        case LIR_muljovi:
        case LIR_mulxovi:  IMUL(rr, rb);   break;
        case LIR_xorq:     XORQRR(rr, rb); break;
        case LIR_orq:      ORQRR(rr, rb);  break;
        case LIR_andq:     ANDQRR(rr, rb); break;
        case LIR_addq:
        case LIR_addjovq:  ADDQRR(rr, rb); break;
        case LIR_subq:
        case LIR_subjovq:  SUBQRR(rr, rb); break;
        }
        if (rr != ra)
            MR(rr, ra);

        endOpRegs(ins, rr, ra);
    }

    // Binary op with fp registers.
    void Assembler::asm_fop(LIns *ins) {
        Register rr, ra, rb = UnspecifiedReg;   // init to shut GCC up
        beginOp2Regs(ins, FpRegs, rr, ra, rb);
        switch (ins->opcode()) {
        default:       TODO(asm_fop);
        case LIR_divd: DIVSD(rr, rb); break;
        case LIR_muld: MULSD(rr, rb); break;
        case LIR_addd: ADDSD(rr, rb); break;
        case LIR_subd: SUBSD(rr, rb); break;
        }
        if (rr != ra) {
            asm_nongp_copy(rr, ra);
        }

        endOpRegs(ins, rr, ra);
    }

    void Assembler::asm_neg_not(LIns *ins) {
        Register rr, ra;
        beginOp1Regs(ins, GpRegs, rr, ra);

        if (ins->isop(LIR_noti))
            NOT(rr);
        else
            NEG(rr);
        if (rr != ra)
            MR(rr, ra);

        endOpRegs(ins, rr, ra);
    }

    void Assembler::asm_call(LIns *ins) {
        if (!ins->isop(LIR_callv)) {
            Register rr = ( ins->isop(LIR_calld) ? XMM0 : retRegs[0] );
            prepareResultReg(ins, rmask(rr));
            evictScratchRegsExcept(rmask(rr));
        } else {
            evictScratchRegsExcept(0);
        }

        const CallInfo *call = ins->callInfo();
        ArgType argTypes[MAXARGS];
        int argc = call->getArgTypes(argTypes);

        if (!call->isIndirect()) {
            verbose_only(if (_logc->lcbits & LC_Native)
                outputf("        %p:", _nIns);
            )
            NIns *target = (NIns*)call->_address;
            if (isTargetWithinS32(target)) {
                CALL(8, target);
            } else {
                // can't reach target from here, load imm64 and do an indirect jump
                CALLRAX();
                asm_immq(RAX, (uint64_t)target, /*canClobberCCs*/true);
            }
            // Call this now so that the arg setup can involve 'rr'.
            freeResourcesOf(ins);
        } else {
            // Indirect call: we assign the address arg to RAX since it's not
            // used for regular arguments, and is otherwise scratch since it's
            // clobberred by the call.
            CALLRAX();

            // Call this now so that the arg setup can involve 'rr'.
            freeResourcesOf(ins);

            // Assign the call address to RAX.  Must happen after freeResourcesOf()
            // since RAX is usually the return value and will be allocated until that point.
            asm_regarg(ARGTYPE_P, ins->arg(--argc), RAX);
        }

    #ifdef _WIN64
        int stk_used = 32; // always reserve 32byte shadow area
    #else
        int stk_used = 0;
        Register fr = XMM0;
    #endif
        int arg_index = 0;
        for (int i = 0; i < argc; i++) {
            int j = argc - i - 1;
            ArgType ty = argTypes[j];
            LIns* arg = ins->arg(j);
            if ((ty == ARGTYPE_I || ty == ARGTYPE_UI || ty == ARGTYPE_Q) && arg_index < NumArgRegs) {
                // gp arg
                asm_regarg(ty, arg, argRegs[arg_index]);
                arg_index++;
            }
        #ifdef _WIN64
            else if (ty == ARGTYPE_D && arg_index < NumArgRegs) {
                // double goes in XMM reg # based on overall arg_index
                Register rxi = XMM0 + arg_index;
                asm_regarg(ty, arg, rxi);
                arg_index++;
            }
        #else
            else if (ty == ARGTYPE_D && fr < XMM8) {
                // double goes in next available XMM register
                asm_regarg(ty, arg, fr);
                fr = fr + 1;
            }
        #endif
            else {
                asm_stkarg(ty, arg, stk_used);
                stk_used += sizeof(void*);
            }
        }

        if (stk_used > max_stk_used)
            max_stk_used = stk_used;
    }

    void Assembler::asm_regarg(ArgType ty, LIns *p, Register r) {
        if (ty == ARGTYPE_I) {
            NanoAssert(p->isI());
            if (p->isImmI()) {
                asm_immq(r, int64_t(p->immI()), /*canClobberCCs*/true);
                return;
            }
            // sign extend int32 to int64
            MOVSXDR(r, r);
        } else if (ty == ARGTYPE_UI) {
            NanoAssert(p->isI());
            if (p->isImmI()) {
                asm_immq(r, uint64_t(uint32_t(p->immI())), /*canClobberCCs*/true);
                return;
            }
            // zero extend with 32bit mov, auto-zeros upper 32bits
            MOVLR(r, r);
        } else {
            // Do nothing.
        }
        /* there is no point in folding an immediate here, because
         * the argument register must be a scratch register and we're
         * just before a call.  Just reserving the register will cause
         * the constant to be rematerialized nearby in asm_restore(),
         * which is the same instruction we would otherwise emit right
         * here, and moving it earlier in the stream provides more scheduling
         * freedom to the cpu. */
        findSpecificRegFor(p, r);
    }

    void Assembler::asm_stkarg(ArgType ty, LIns *p, int stk_off) {
        NanoAssert(isS8(stk_off));
        if (ty == ARGTYPE_I || ty == ARGTYPE_UI || ty == ARGTYPE_Q) {
            Register r = findRegFor(p, GpRegs);
            MOVQSPR(stk_off, r);    // movq [rsp+d8], r
            if (ty == ARGTYPE_I) {
                // sign extend int32 to int64
                NanoAssert(p->isI());
                MOVSXDR(r, r);
            } else if (ty == ARGTYPE_UI) {
                // zero extend uint32 to uint64
                NanoAssert(p->isI());
                MOVLR(r, r);
            } else {
                NanoAssert(ty == ARGTYPE_Q);
                // Do nothing.
            }
        } else {
            TODO(asm_stkarg_non_int);
        }
    }

    void Assembler::asm_q2i(LIns *ins) {
        Register rr, ra;
        beginOp1Regs(ins, GpRegs, rr, ra);
        NanoAssert(IsGpReg(ra));
        // If ra==rr we do nothing.  This is valid because we don't assume the
        // upper 32-bits of a 64-bit GPR are zero when doing a 32-bit
        // operation.  More specifically, we widen 32-bit to 64-bit in three
        // places, all of which explicitly sign- or zero-extend: asm_ui2uq(),
        // asm_regarg() and asm_stkarg().  For the first this is required, for
        // the latter two it's unclear if this is required, but it can't hurt.
        if (ra != rr)
            MOVLR(rr, ra);
        endOpRegs(ins, rr, ra);
    }

    void Assembler::asm_ui2uq(LIns *ins) {
        Register rr, ra;
        beginOp1Regs(ins, GpRegs, rr, ra);
        NanoAssert(IsGpReg(ra));
        if (ins->isop(LIR_ui2uq)) {
            MOVLR(rr, ra);      // 32bit mov zeros the upper 32bits of the target
        } else {
            NanoAssert(ins->isop(LIR_i2q));
            MOVSXDR(rr, ra);    // sign extend 32->64
        }
        endOpRegs(ins, rr, ra);
    }

    void Assembler::asm_dasq(LIns *ins) {
        Register rr = prepareResultReg(ins, GpRegs);
        Register ra = findRegFor(ins->oprnd1(), FpRegs);
        asm_nongp_copy(rr, ra);
        freeResourcesOf(ins);
    }

    void Assembler::asm_qasd(LIns *ins) {
        Register rr = prepareResultReg(ins, FpRegs);
        Register ra = findRegFor(ins->oprnd1(), GpRegs);
        asm_nongp_copy(rr, ra);
        freeResourcesOf(ins);
    }

    // The CVTSI2SD instruction only writes to the low 64bits of the target
    // XMM register, which hinders register renaming and makes dependence
    // chains longer.  So we precede with XORPS to clear the target register.

    void Assembler::asm_i2d(LIns *ins) {
        LIns *a = ins->oprnd1();
        NanoAssert(ins->isD() && a->isI());

        Register rr = prepareResultReg(ins, FpRegs);
        Register ra = findRegFor(a, GpRegs);
        CVTSI2SD(rr, ra);   // cvtsi2sd xmmr, b  only writes xmm:0:64
        XORPS(rr);          // xorps xmmr,xmmr to break dependency chains
        freeResourcesOf(ins);
    }

    void Assembler::asm_ui2d(LIns *ins) {
        LIns *a = ins->oprnd1();
        NanoAssert(ins->isD() && a->isI());

        Register rr = prepareResultReg(ins, FpRegs);
        Register ra = findRegFor(a, GpRegs);
        // Because oprnd1 is 32bit, it's ok to zero-extend it without worrying about clobbering.
        CVTSQ2SD(rr, ra);   // convert int64 to double
        XORPS(rr);          // xorps xmmr,xmmr to break dependency chains
        MOVLR(ra, ra);      // zero extend u32 to int64
        freeResourcesOf(ins);
    }

    void Assembler::asm_d2i(LIns *ins) {
        LIns *a = ins->oprnd1();
        NanoAssert(ins->isI() && a->isD());

        Register rr = prepareResultReg(ins, GpRegs);
        Register rb = findRegFor(a, FpRegs);
        CVTTSD2SI(rr, rb); 
        freeResourcesOf(ins);
    }

    void Assembler::asm_cmov(LIns *ins) {
        LIns* cond    = ins->oprnd1();
        LIns* iftrue  = ins->oprnd2();
        LIns* iffalse = ins->oprnd3();
        NanoAssert(cond->isCmp());
        NanoAssert((ins->isop(LIR_cmovi) && iftrue->isI() && iffalse->isI()) ||
                   (ins->isop(LIR_cmovq) && iftrue->isQ() && iffalse->isQ()) ||
                   (ins->isop(LIR_cmovd) && iftrue->isD() && iffalse->isD()));

        RegisterMask allow = ins->isD() ? FpRegs : GpRegs;

        Register rr = prepareResultReg(ins, allow);

        Register rf = findRegFor(iffalse, allow & ~rmask(rr));

        if (ins->isop(LIR_cmovd)) {
            // See Nativei386.cpp:asm_cmov() for an explanation of the subtleties here.
            NIns* target = _nIns;
            asm_nongp_copy(rr, rf);
            asm_branch_helper(false, cond, target);

            // If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
            Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;

            if (rr != rt)
                asm_nongp_copy(rr, rt);

            freeResourcesOf(ins);
            if (!iftrue->isInReg()) {
                NanoAssert(rt == rr);
                findSpecificRegForUnallocated(iftrue, rr);
            }

            asm_cmp(cond);
            return;
        }

        // If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
        Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;

        // WARNING: We cannot generate any code that affects the condition
        // codes between the MRcc generation here and the asm_cmpi() call
        // below.  See asm_cmpi() for more details.
        LOpcode condop = cond->opcode();
        if (ins->isop(LIR_cmovi)) {
            switch (condop) {
            case LIR_eqi:  case LIR_eqq:    CMOVNE( rr, rf);  break;
            case LIR_lti:  case LIR_ltq:    CMOVNL( rr, rf);  break;
            case LIR_gti:  case LIR_gtq:    CMOVNG( rr, rf);  break;
            case LIR_lei:  case LIR_leq:    CMOVNLE(rr, rf);  break;
            case LIR_gei:  case LIR_geq:    CMOVNGE(rr, rf);  break;
            case LIR_ltui: case LIR_ltuq:   CMOVNB( rr, rf);  break;
            case LIR_gtui: case LIR_gtuq:   CMOVNA( rr, rf);  break;
            case LIR_leui: case LIR_leuq:   CMOVNBE(rr, rf);  break;
            case LIR_geui: case LIR_geuq:   CMOVNAE(rr, rf);  break;
            default:                        NanoAssert(0);    break;
            }
        } else {
            NanoAssert(ins->isop(LIR_cmovq));
            switch (condop) {
            case LIR_eqi:  case LIR_eqq:    CMOVQNE( rr, rf); break;
            case LIR_lti:  case LIR_ltq:    CMOVQNL( rr, rf); break;
            case LIR_gti:  case LIR_gtq:    CMOVQNG( rr, rf); break;
            case LIR_lei:  case LIR_leq:    CMOVQNLE(rr, rf); break;
            case LIR_gei:  case LIR_geq:    CMOVQNGE(rr, rf); break;
            case LIR_ltui: case LIR_ltuq:   CMOVQNB( rr, rf); break;
            case LIR_gtui: case LIR_gtuq:   CMOVQNA( rr, rf); break;
            case LIR_leui: case LIR_leuq:   CMOVQNBE(rr, rf); break;
            case LIR_geui: case LIR_geuq:   CMOVQNAE(rr, rf); break;
            default:                        NanoAssert(0);    break;
            }
        }
        if (rr != rt)
            MR(rr, rt);

        freeResourcesOf(ins);
        if (!iftrue->isInReg()) {
            NanoAssert(rt == rr);
            findSpecificRegForUnallocated(iftrue, rr);
        }

        asm_cmpi(cond);
    }

    NIns* Assembler::asm_branch(bool onFalse, LIns* cond, NIns* target) {
        NIns* patch = asm_branch_helper(onFalse, cond, target);
        asm_cmp(cond);
        return patch;
    }

    NIns* Assembler::asm_branch_helper(bool onFalse, LIns *cond, NIns *target) {
        if (target && !isTargetWithinS32(target)) {
            // A conditional jump beyond 32-bit range, so invert the
            // branch/compare and emit an unconditional jump to the target:
            //         j(inverted) B1
            //         jmp target
            //     B1:
            NIns* shortTarget = _nIns;
            JMP(target);
            target = shortTarget;
            onFalse = !onFalse;
        }
        return isCmpDOpcode(cond->opcode())
             ? asm_branchd_helper(onFalse, cond, target)
             : asm_branchi_helper(onFalse, cond, target);
    }

    NIns* Assembler::asm_branchi_helper(bool onFalse, LIns *cond, NIns *target) {
        // We must ensure there's room for the instruction before calculating
        // the offset.  And the offset determines the opcode (8bit or 32bit).
        LOpcode condop = cond->opcode();
        if (target && isTargetWithinS8(target)) {
            if (onFalse) {
                switch (condop) {
                case LIR_eqi:  case LIR_eqq:    JNE8( 8, target); break;
                case LIR_lti:  case LIR_ltq:    JNL8( 8, target); break;
                case LIR_gti:  case LIR_gtq:    JNG8( 8, target); break;
                case LIR_lei:  case LIR_leq:    JNLE8(8, target); break;
                case LIR_gei:  case LIR_geq:    JNGE8(8, target); break;
                case LIR_ltui: case LIR_ltuq:   JNB8( 8, target); break;
                case LIR_gtui: case LIR_gtuq:   JNA8( 8, target); break;
                case LIR_leui: case LIR_leuq:   JNBE8(8, target); break;
                case LIR_geui: case LIR_geuq:   JNAE8(8, target); break;
                default:                        NanoAssert(0);    break;
                }
            } else {
                switch (condop) {
                case LIR_eqi:  case LIR_eqq:    JE8( 8, target);  break;
                case LIR_lti:  case LIR_ltq:    JL8( 8, target);  break;
                case LIR_gti:  case LIR_gtq:    JG8( 8, target);  break;
                case LIR_lei:  case LIR_leq:    JLE8(8, target);  break;
                case LIR_gei:  case LIR_geq:    JGE8(8, target);  break;
                case LIR_ltui: case LIR_ltuq:   JB8( 8, target);  break;
                case LIR_gtui: case LIR_gtuq:   JA8( 8, target);  break;
                case LIR_leui: case LIR_leuq:   JBE8(8, target);  break;
                case LIR_geui: case LIR_geuq:   JAE8(8, target);  break;
                default:                        NanoAssert(0);    break;
                }
            }
        } else {
            if (onFalse) {
                switch (condop) {
                case LIR_eqi:  case LIR_eqq:    JNE( 8, target);  break;
                case LIR_lti:  case LIR_ltq:    JNL( 8, target);  break;
                case LIR_gti:  case LIR_gtq:    JNG( 8, target);  break;
                case LIR_lei:  case LIR_leq:    JNLE(8, target);  break;
                case LIR_gei:  case LIR_geq:    JNGE(8, target);  break;
                case LIR_ltui: case LIR_ltuq:   JNB( 8, target);  break;
                case LIR_gtui: case LIR_gtuq:   JNA( 8, target);  break;
                case LIR_leui: case LIR_leuq:   JNBE(8, target);  break;
                case LIR_geui: case LIR_geuq:   JNAE(8, target);  break;
                default:                        NanoAssert(0);    break;
                }
            } else {
                switch (condop) {
                case LIR_eqi:  case LIR_eqq:    JE( 8, target);   break;
                case LIR_lti:  case LIR_ltq:    JL( 8, target);   break;
                case LIR_gti:  case LIR_gtq:    JG( 8, target);   break;
                case LIR_lei:  case LIR_leq:    JLE(8, target);   break;
                case LIR_gei:  case LIR_geq:    JGE(8, target);   break;
                case LIR_ltui: case LIR_ltuq:   JB( 8, target);   break;
                case LIR_gtui: case LIR_gtuq:   JA( 8, target);   break;
                case LIR_leui: case LIR_leuq:   JBE(8, target);   break;
                case LIR_geui: case LIR_geuq:   JAE(8, target);   break;
                default:                        NanoAssert(0);    break;
                }
            }
        }
        return _nIns;   // address of instruction to patch
    }

    NIns* Assembler::asm_branch_ov(LOpcode, NIns* target) {
        // We must ensure there's room for the instr before calculating
        // the offset.  And the offset determines the opcode (8bit or 32bit).
        if (target && isTargetWithinS8(target))
            JO8(8, target);
        else
            JO( 8, target);
        return _nIns;
    }

    void Assembler::asm_cmp(LIns *cond) {
        isCmpDOpcode(cond->opcode()) ? asm_cmpd(cond) : asm_cmpi(cond);
    }

    // WARNING: this function cannot generate code that will affect the
    // condition codes prior to the generation of the test/cmp.  See
    // Nativei386.cpp:asm_cmpi() for details.
    void Assembler::asm_cmpi(LIns *cond) {
        LIns *b = cond->oprnd2();
        if (isImm32(b)) {
            asm_cmpi_imm(cond);
            return;
        }
        LIns *a = cond->oprnd1();
        Register ra, rb;
        if (a != b) {
            findRegFor2(GpRegs, a, ra, GpRegs, b, rb);
        } else {
            // optimize-me: this will produce a const result!
            ra = rb = findRegFor(a, GpRegs);
        }

        LOpcode condop = cond->opcode();
        if (isCmpQOpcode(condop)) {
            CMPQR(ra, rb);
        } else {
            NanoAssert(isCmpIOpcode(condop));
            CMPLR(ra, rb);
        }
    }

    void Assembler::asm_cmpi_imm(LIns *cond) {
        LOpcode condop = cond->opcode();
        LIns *a = cond->oprnd1();
        LIns *b = cond->oprnd2();
        Register ra = findRegFor(a, GpRegs);
        int32_t imm = getImm32(b);
        if (isCmpQOpcode(condop)) {
            if (isS8(imm))
                CMPQR8(ra, imm);
            else
                CMPQRI(ra, imm);
        } else {
            NanoAssert(isCmpIOpcode(condop));
            if (isS8(imm))
                CMPLR8(ra, imm);
            else
                CMPLRI(ra, imm);
        }
    }

    // Compiling floating point branches.
    // Discussion in https://bugzilla.mozilla.org/show_bug.cgi?id=443886.
    //
    //  fucom/p/pp: c3 c2 c0   jae ja    jbe jb je jne
    //  ucomisd:     Z  P  C   !C  !C&!Z C|Z C  Z  !Z
    //              -- -- --   --  ----- --- -- -- --
    //  unordered    1  1  1             T   T  T
    //  greater >    0  0  0   T   T               T
    //  less    <    0  0  1             T   T     T
    //  equal   =    1  0  0   T         T      T
    //
    //  Here are the cases, using conditionals:
    //
    //  branch  >=  >   <=       <        =
    //  ------  --- --- ---      ---      ---
    //  LIR_jt  jae ja  swap+jae swap+ja  jp over je
    //  LIR_jf  jb  jbe swap+jb  swap+jbe jne+jp

    NIns* Assembler::asm_branchd_helper(bool onFalse, LIns *cond, NIns *target) {
        LOpcode condop = cond->opcode();
        NIns *patch;
        if (condop == LIR_eqd) {
            if (onFalse) {
                // branch if unordered or !=
                JP(16, target);     // underrun of 12 needed, round up for overhang --> 16
                JNE(0, target);     // no underrun needed, previous was enough
                patch = _nIns;
            } else {
                // jp skip (2byte)
                // jeq target
                // skip: ...
                underrunProtect(16); // underrun of 7 needed but we write 2 instr --> 16
                NIns *skip = _nIns;
                JE(0, target);      // no underrun needed, previous was enough
                patch = _nIns;
                JP8(0, skip);       // ditto
            }
        }
        else {
            // LIR_ltd and LIR_gtd are handled by the same case because
            // asm_cmpd() converts LIR_ltd(a,b) to LIR_gtd(b,a).  Likewise for
            // LIR_led/LIR_ged.
            switch (condop) {
            case LIR_ltd:
            case LIR_gtd: if (onFalse) JBE(8, target); else JA(8, target);  break;
            case LIR_led:
            case LIR_ged: if (onFalse) JB(8, target);  else JAE(8, target); break;
            default:      NanoAssert(0);                                    break;
            }
            patch = _nIns;
        }
        return patch;
    }

    void Assembler::asm_condd(LIns *ins) {
        LOpcode op = ins->opcode();
        if (op == LIR_eqd) {
            // result = ZF & !PF, must do logic on flags
            // r = al|bl|cl|dl, can only use rh without rex prefix
            Register r = prepareResultReg(ins, 1<<REGNUM(RAX) | 1<<REGNUM(RCX) |
                                               1<<REGNUM(RDX) | 1<<REGNUM(RBX));
            MOVZX8(r, r);       // movzx8   r,rl     r[8:63] = 0
            X86_AND8R(r);       // and      rl,rh    rl &= rh
            X86_SETNP(r);       // setnp    rh       rh = !PF
            X86_SETE(r);        // sete     rl       rl = ZF
        } else {
            // LIR_ltd and LIR_gtd are handled by the same case because
            // asm_cmpd() converts LIR_ltd(a,b) to LIR_gtd(b,a).  Likewise for
            // LIR_led/LIR_ged.
            Register r = prepareResultReg(ins, GpRegs); // x64 can use any GPR as setcc target
            MOVZX8(r, r);
            switch (op) {
            case LIR_ltd:
            case LIR_gtd: SETA(r);       break;
            case LIR_led:
            case LIR_ged: SETAE(r);      break;
            default:      NanoAssert(0); break;
            }
        }

        freeResourcesOf(ins);

        asm_cmpd(ins);
    }

    // WARNING: This function cannot generate any code that will affect the
    // condition codes prior to the generation of the ucomisd.  See asm_cmpi()
    // for more details.
    void Assembler::asm_cmpd(LIns *cond) {
        LOpcode opcode = cond->opcode();
        LIns* a = cond->oprnd1();
        LIns* b = cond->oprnd2();
        // First, we convert (a < b) into (b > a), and (a <= b) into (b >= a).
        if (opcode == LIR_ltd) {
            opcode = LIR_gtd;
            LIns* t = a; a = b; b = t;
        } else if (opcode == LIR_led) {
            opcode = LIR_ged;
            LIns* t = a; a = b; b = t;
        }
        Register ra, rb;
        findRegFor2(FpRegs, a, ra, FpRegs, b, rb);
        UCOMISD(ra, rb);
    }

    // Return true if we can generate code for this instruction that neither
    // sets CCs nor clobbers any input register.
    // LEA is the only native instruction that fits those requirements.
    bool canRematLEA(LIns* ins)
    {
        switch (ins->opcode()) {
        case LIR_addi:
            return ins->oprnd1()->isInRegMask(BaseRegs) && ins->oprnd2()->isImmI();
        case LIR_addq: {
            LIns* rhs;
            return ins->oprnd1()->isInRegMask(BaseRegs) &&
                   (rhs = ins->oprnd2())->isImmQ() &&
                   isS32(rhs->immQ());
        }
        // Subtract and some left-shifts could be rematerialized using LEA,
        // but it hasn't shown to help in real code yet.  Noting them anyway:
        // maybe sub? R = subl/q rL, const  =>  leal/q R, [rL + -const]
        // maybe lsh? R = lshl/q rL, 1/2/3  =>  leal/q R, [rL * 2/4/8]
        default:
            ;
        }
        return false;
    }

    bool Assembler::canRemat(LIns* ins) {
        return ins->isImmAny() || ins->isop(LIR_allocp) || canRematLEA(ins);
    }

    // WARNING: the code generated by this function must not affect the
    // condition codes.  See asm_cmpi() for details.
    void Assembler::asm_restore(LIns *ins, Register r) {
        if (ins->isop(LIR_allocp)) {
            int d = arDisp(ins);
            LEAQRM(r, d, FP);
        }
        else if (ins->isImmI()) {
            asm_immi(r, ins->immI(), /*canClobberCCs*/false);
        }
        else if (ins->isImmQ()) {
            asm_immq(r, ins->immQ(), /*canClobberCCs*/false);
        }
        else if (ins->isImmD()) {
            asm_immd(r, ins->immDasQ(), /*canClobberCCs*/false);
        }
        else if (canRematLEA(ins)) {
            Register lhsReg = ins->oprnd1()->getReg();
            if (ins->isop(LIR_addq))
                LEAQRM(r, (int32_t)ins->oprnd2()->immQ(), lhsReg);
            else // LIR_addi
                LEALRM(r, ins->oprnd2()->immI(), lhsReg);
        }
        else {
            int d = findMemFor(ins);
            if (ins->isD()) {
                NanoAssert(IsFpReg(r));
                MOVSDRM(r, d, FP);
            } else if (ins->isQ()) {
                NanoAssert(IsGpReg(r));
                MOVQRM(r, d, FP);
            } else {
                NanoAssert(ins->isI());
                MOVLRM(r, d, FP);
            }
        }
    }

    void Assembler::asm_cond(LIns *ins) {
        LOpcode op = ins->opcode();

        // unlike x86-32, with a rex prefix we can use any GP register as an 8bit target
        Register r = prepareResultReg(ins, GpRegs);

        // SETcc only sets low 8 bits, so extend
        MOVZX8(r, r);
        switch (op) {
        default:
            TODO(cond);
        case LIR_eqq:
        case LIR_eqi:    SETE(r);    break;
        case LIR_ltq:
        case LIR_lti:    SETL(r);    break;
        case LIR_leq:
        case LIR_lei:    SETLE(r);   break;
        case LIR_gtq:
        case LIR_gti:    SETG(r);    break;
        case LIR_geq:
        case LIR_gei:    SETGE(r);   break;
        case LIR_ltuq:
        case LIR_ltui:   SETB(r);    break;
        case LIR_leuq:
        case LIR_leui:   SETBE(r);   break;
        case LIR_gtuq:
        case LIR_gtui:   SETA(r);    break;
        case LIR_geuq:
        case LIR_geui:   SETAE(r);   break;
        }
        freeResourcesOf(ins);

        asm_cmpi(ins);
    }

    void Assembler::asm_ret(LIns *ins) {
        genEpilogue();

        // Restore RSP from RBP, undoing SUB(RSP,amt) in the prologue
        MR(RSP,FP);

        releaseRegisters();
        assignSavedRegs();
        LIns *value = ins->oprnd1();
        Register r = ins->isop(LIR_retd) ? XMM0 : RAX;
        findSpecificRegFor(value, r);
    }

    void Assembler::asm_nongp_copy(Register d, Register s) {
        if (!IsFpReg(d) && IsFpReg(s)) {
            // gpr <- xmm: use movq r/m64, xmm (66 REX.W 0F 7E /r)
            MOVQRX(d, s);
        } else if (IsFpReg(d) && IsFpReg(s)) {
            // xmm <- xmm: use movaps. movsd r,r causes partial register stall
            MOVAPSR(d, s);
        } else {
            NanoAssert(IsFpReg(d) && !IsFpReg(s));
            // xmm <- gpr: use movq xmm, r/m64 (66 REX.W 0F 6E /r)
            MOVQXR(d, s);
        }
    }

    // Register setup for load ops.  Pairs with endLoadRegs().
    void Assembler::beginLoadRegs(LIns *ins, RegisterMask allow, Register &rr, int32_t &dr, Register &rb) {
        dr = ins->disp();
        LIns *base = ins->oprnd1();
        rb = getBaseReg(base, dr, BaseRegs);
        rr = prepareResultReg(ins, allow & ~rmask(rb));
    }

    // Register clean-up for load ops.  Pairs with beginLoadRegs().
    void Assembler::endLoadRegs(LIns* ins) {
        freeResourcesOf(ins);
    }

    void Assembler::asm_load64(LIns *ins) {
        Register rr, rb;
        int32_t dr;
        switch (ins->opcode()) {
            case LIR_ldq:
                beginLoadRegs(ins, GpRegs, rr, dr, rb);
                NanoAssert(IsGpReg(rr));
                MOVQRM(rr, dr, rb);     // general 64bit load, 32bit const displacement
                break;
            case LIR_ldd:
                beginLoadRegs(ins, FpRegs, rr, dr, rb);
                NanoAssert(IsFpReg(rr));
                MOVSDRM(rr, dr, rb);    // load 64bits into XMM
                break;
            case LIR_ldf2d:
                beginLoadRegs(ins, FpRegs, rr, dr, rb);
                NanoAssert(IsFpReg(rr));
                CVTSS2SD(rr, rr);
                MOVSSRM(rr, dr, rb);
                break;
            default:
                NanoAssertMsg(0, "asm_load64 should never receive this LIR opcode");
                break;
        }
        endLoadRegs(ins);
    }

    void Assembler::asm_load32(LIns *ins) {
        NanoAssert(ins->isI());
        Register r, b;
        int32_t d;
        beginLoadRegs(ins, GpRegs, r, d, b);
        LOpcode op = ins->opcode();
        switch (op) {
            case LIR_lduc2ui:
                MOVZX8M( r, d, b);
                break;
            case LIR_ldus2ui:
                MOVZX16M(r, d, b);
                break;
            case LIR_ldi:
                MOVLRM(  r, d, b);
                break;
            case LIR_ldc2i:
                MOVSX8M( r, d, b);
                break;
            case LIR_lds2i:
                MOVSX16M( r, d, b);
                break;
            default:
                NanoAssertMsg(0, "asm_load32 should never receive this LIR opcode");
                break;
        }
        endLoadRegs(ins);
    }

    void Assembler::asm_store64(LOpcode op, LIns *value, int d, LIns *base) {
        NanoAssert(value->isQorD());

        switch (op) {
            case LIR_stq: {
                uint64_t c;
                if (value->isImmQ() && (c = value->immQ(), isS32(c))) {
                    uint64_t c = value->immQ();
                    Register rb = getBaseReg(base, d, BaseRegs);
                    // MOVQMI takes a 32-bit integer that gets signed extended to a 64-bit value.
                    MOVQMI(rb, d, int32_t(c));
                } else {
                    Register rr, rb;
                    getBaseReg2(GpRegs, value, rr, BaseRegs, base, rb, d);
                    MOVQMR(rr, d, rb);    // gpr store
                }
                break;
            }
            case LIR_std: {
                Register b = getBaseReg(base, d, BaseRegs);
                Register r = findRegFor(value, FpRegs);
                MOVSDMR(r, d, b);   // xmm store
                break;
            }
            case LIR_std2f: {
                Register b = getBaseReg(base, d, BaseRegs);
                Register r = findRegFor(value, FpRegs);
                Register t = registerAllocTmp(FpRegs & ~rmask(r));

                MOVSSMR(t, d, b);   // store
                CVTSD2SS(t, r);     // cvt to single-precision
                XORPS(t);           // break dependency chains
                break;
            }
            default:
                NanoAssertMsg(0, "asm_store64 should never receive this LIR opcode");
                break;
        }
    }

    void Assembler::asm_store32(LOpcode op, LIns *value, int d, LIns *base) {
        if (value->isImmI()) {
            Register rb = getBaseReg(base, d, BaseRegs);
            int c = value->immI();
            switch (op) {
                case LIR_sti2c: MOVBMI(rb, d, c); break;
                case LIR_sti2s: MOVSMI(rb, d, c); break;
                case LIR_sti:   MOVLMI(rb, d, c); break;
                default:        NanoAssert(0);    break;
            }

        } else {
            // Quirk of x86-64: reg cannot appear to be ah/bh/ch/dh for
            // single-byte stores with REX prefix.
            const RegisterMask SrcRegs = (op == LIR_sti2c) ? SingleByteStoreRegs : GpRegs;

            NanoAssert(value->isI());
            Register b = getBaseReg(base, d, BaseRegs);
            Register r = findRegFor(value, SrcRegs & ~rmask(b));

            switch (op) {
                case LIR_sti2c: MOVBMR(r, d, b); break;
                case LIR_sti2s: MOVSMR(r, d, b); break;
                case LIR_sti:   MOVLMR(r, d, b); break;
                default:        NanoAssert(0);   break;
            }
        }
    }

    void Assembler::asm_immi(LIns *ins) {
        Register rr = prepareResultReg(ins, GpRegs);
        asm_immi(rr, ins->immI(), /*canClobberCCs*/true);
        freeResourcesOf(ins);
    }

    void Assembler::asm_immq(LIns *ins) {
        Register rr = prepareResultReg(ins, GpRegs);
        asm_immq(rr, ins->immQ(), /*canClobberCCs*/true);
        freeResourcesOf(ins);
    }

    void Assembler::asm_immd(LIns *ins) {
        Register r = prepareResultReg(ins, FpRegs);
        asm_immd(r, ins->immDasQ(), /*canClobberCCs*/true);
        freeResourcesOf(ins);
    }

    void Assembler::asm_immi(Register r, int32_t v, bool canClobberCCs) {
        NanoAssert(IsGpReg(r));
        if (v == 0 && canClobberCCs) {
            XORRR(r, r);
        } else {
            MOVI(r, v);
        }
    }

    void Assembler::asm_immq(Register r, uint64_t v, bool canClobberCCs) {
        NanoAssert(IsGpReg(r));
        if (isU32(v)) {
            asm_immi(r, int32_t(v), canClobberCCs);
        } else if (isS32(v)) {
            // safe for sign-extension 32->64
            MOVQI32(r, int32_t(v));
        } else if (isTargetWithinS32((NIns*)v)) {
            // value is with +/- 2GB from RIP, can use LEA with RIP-relative disp32
            int32_t d = int32_t(int64_t(v)-int64_t(_nIns));
            LEARIP(r, d);
        } else {
            MOVQI(r, v);
        }
    }

    void Assembler::asm_immd(Register r, uint64_t v, bool canClobberCCs) {
        NanoAssert(IsFpReg(r));
        if (v == 0 && canClobberCCs) {
            XORPS(r);
        } else {
            // There's no general way to load an immediate into an XMM reg.
            // For non-zero floats the best thing is to put the equivalent
            // 64-bit integer into a scratch GpReg and then move it into the
            // appropriate FpReg.
            Register rt = registerAllocTmp(GpRegs);
            MOVQXR(r, rt);
            asm_immq(rt, v, canClobberCCs);
        }
    }

    void Assembler::asm_param(LIns *ins) {
        uint32_t a = ins->paramArg();
        uint32_t kind = ins->paramKind();
        if (kind == 0) {
            // Ordinary param.  First four or six args always in registers for x86_64 ABI.
            if (a < (uint32_t)NumArgRegs) {
                // incoming arg in register
                prepareResultReg(ins, rmask(argRegs[a]));
                // No code to generate.
            } else {
                // todo: support stack based args, arg 0 is at [FP+off] where off
                // is the # of regs to be pushed in genProlog()
                TODO(asm_param_stk);
            }
        }
        else {
            // Saved param.
            prepareResultReg(ins, rmask(savedRegs[a]));
            // No code to generate.
        }
        freeResourcesOf(ins);
    }

    // Register setup for 2-address style unary ops of the form R = (op) R.
    // Pairs with endOpRegs().
    void Assembler::beginOp1Regs(LIns* ins, RegisterMask allow, Register &rr, Register &ra) {
        LIns* a = ins->oprnd1();

        rr = prepareResultReg(ins, allow);

        // If 'a' isn't in a register, it can be clobbered by 'ins'.
        ra = a->isInReg() ? a->getReg() : rr;
        NanoAssert(rmask(ra) & allow);
    }

    // Register setup for 2-address style binary ops of the form R = R (op) B.
    // Pairs with endOpRegs().
    void Assembler::beginOp2Regs(LIns *ins, RegisterMask allow, Register &rr, Register &ra,
                                 Register &rb) {
        LIns *a = ins->oprnd1();
        LIns *b = ins->oprnd2();
        if (a != b) {
            rb = findRegFor(b, allow);
            allow &= ~rmask(rb);
        }
        rr = prepareResultReg(ins, allow);

        // If 'a' isn't in a register, it can be clobbered by 'ins'.
        ra = a->isInReg() ? a->getReg() : rr;
        NanoAssert(rmask(ra) & allow);

        if (a == b) {
            rb = ra;
        }
    }

    // Register clean-up for 2-address style unary ops of the form R = (op) R.
    // Pairs with beginOp1Regs() and beginOp2Regs().
    void Assembler::endOpRegs(LIns* ins, Register rr, Register ra) {
        (void) rr; // quell warnings when NanoAssert is compiled out.

        LIns* a = ins->oprnd1();

        // We're finished with 'ins'.
        NanoAssert(ins->getReg() == rr);
        freeResourcesOf(ins);

        // If 'a' isn't in a register yet, that means it's clobbered by 'ins'.
        if (!a->isInReg()) {
            NanoAssert(ra == rr);
            findSpecificRegForUnallocated(a, ra);
         }
    }

    static const AVMPLUS_ALIGN16(int64_t) negateMask[] = {0x8000000000000000LL,0};

    void Assembler::asm_fneg(LIns *ins) {
        Register rr, ra;
        beginOp1Regs(ins, FpRegs, rr, ra);
        if (isS32((uintptr_t)negateMask)) {
            // builtin code is in bottom or top 2GB addr space, use absolute addressing
            XORPSA(rr, (int32_t)(uintptr_t)negateMask);
        } else if (isTargetWithinS32((NIns*)negateMask)) {
            // jit code is within +/-2GB of builtin code, use rip-relative
            XORPSM(rr, (NIns*)negateMask);
        } else {
            // This is just hideous - can't use RIP-relative load, can't use
            // absolute-address load, and cant move imm64 const to XMM.
            // Solution: move negateMask into a temp GP register, then copy to
            // a temp XMM register.
            // Nb: we don't want any F64 values to end up in a GpReg, nor any
            // I64 values to end up in an FpReg.
            //
            //   # 'gt' and 'ga' are temporary GpRegs.
            //   # ins->oprnd1() is in 'rr' (FpRegs)
            //   mov   gt, 0x8000000000000000
            //   mov   rt, gt
            //   xorps rr, rt
            Register rt = registerAllocTmp(FpRegs & ~(rmask(ra)|rmask(rr)));
            Register gt = registerAllocTmp(GpRegs);
            XORPS(rr, rt);
            MOVQXR(rt, gt);
            asm_immq(gt, negateMask[0], /*canClobberCCs*/true);
        }
        if (ra != rr)
            asm_nongp_copy(rr,ra);
        endOpRegs(ins, rr, ra);
    }

    void Assembler::asm_spill(Register rr, int d, bool quad) {
        NanoAssert(d);
        if (!IsFpReg(rr)) {
            if (quad)
                MOVQMR(rr, d, FP);
            else
                MOVLMR(rr, d, FP);
        } else {
            // store 64bits from XMM to memory
            NanoAssert(quad);
            MOVSDMR(rr, d, FP);
        }
    }

    NIns* Assembler::genPrologue() {
        // activation frame is 4 bytes per entry even on 64bit machines
        uint32_t stackNeeded = max_stk_used + _activation.stackSlotsNeeded() * 4;

        uint32_t stackPushed =
            sizeof(void*) + // returnaddr
            sizeof(void*); // ebp
        uint32_t aligned = alignUp(stackNeeded + stackPushed, NJ_ALIGN_STACK);
        uint32_t amt = aligned - stackPushed;

        // Reserve stackNeeded bytes, padded
        // to preserve NJ_ALIGN_STACK-byte alignment.
        if (amt) {
            if (isS8(amt))
                SUBQR8(RSP, amt);
            else
                SUBQRI(RSP, amt);
        }

        verbose_only( asm_output("[patch entry]"); )
        NIns *patchEntry = _nIns;
        MR(FP, RSP);    // Establish our own FP.
        PUSHR(FP);      // Save caller's FP.

        return patchEntry;
    }

    NIns* Assembler::genEpilogue() {
        // pop rbp
        // ret
        RET();
        POPR(RBP);
        return _nIns;
    }

    void Assembler::nRegisterResetAll(RegAlloc &a) {
        // add scratch registers to our free list for the allocator
        a.clear();
#ifdef _WIN64
        a.free = 0x001fffcf; // rax-rbx, rsi, rdi, r8-r15, xmm0-xmm5
#else
        a.free = 0xffffffff & ~(1<<REGNUM(RSP) | 1<<REGNUM(RBP));
#endif
    }

    void Assembler::nPatchBranch(NIns *patch, NIns *target) {
        NIns *next = 0;
        if (patch[0] == 0xE9) {
            // jmp disp32
            next = patch+5;
        } else if (patch[0] == 0x0F && (patch[1] & 0xF0) == 0x80) {
            // jcc disp32
            next = patch+6;
        } else if ((patch[0] == 0xFF) && (patch[1] == 0x25)) {
            // jmp 64bit target
            next = patch+6;
            ((int64_t*)next)[0] = int64_t(target);
            return;
        } else {
            next = 0;
            TODO(unknown_patch);
        }
        // Guards can result in a valid branch being patched again later, so don't assert
        // that the old value is poison.
        if (!isS32(target - next)) {
            setError(BranchTooFar);
            NanoAssert(0);  // assert because we'd like to know if this ever happens
        }
        ((int32_t*)next)[-1] = int32_t(target - next);
        if (next[0] == 0x0F && next[1] == 0x8A) {
            // code is jne<target>,jp<target>, for LIR_jf(feq)
            // we just patched the jne, now patch the jp.
            next += 6;
            NanoAssert(((int32_t*)next)[-1] == 0);
            NanoAssert(isS32(target - next));
            ((int32_t*)next)[-1] = int32_t(target - next);
        }
    }

    Register Assembler::nRegisterAllocFromSet(RegisterMask set) {
    #if defined _MSC_VER
        DWORD tr;
        _BitScanForward(&tr, set);
        Register r = { tr };
        _allocator.free &= ~rmask(r);
        return r;
    #else
        // gcc asm syntax
        uint32_t regnum;
        asm("bsf    %1, %%eax\n\t"
            "btr    %%eax, %2\n\t"
            "movl   %%eax, %0\n\t"
            : "=m"(regnum) : "m"(set), "m"(_allocator.free) : "%eax", "memory");
        (void)set;
        Register r = { regnum };
        return r;
    #endif
    }

    void Assembler::nFragExit(LIns *guard) {
        SideExit *exit = guard->record()->exit;
        Fragment *frag = exit->target;
        GuardRecord *lr = 0;
        bool destKnown = (frag && frag->fragEntry);
        // Generate jump to epilog and initialize lr.
        // If the guard is LIR_xtbl, use a jump table with epilog in every entry
        if (guard->isop(LIR_xtbl)) {
            NanoAssert(!guard->isop(LIR_xtbl));
        } else {
            // If the guard already exists, use a simple jump.
            if (destKnown) {
                JMP(frag->fragEntry);
                lr = 0;
            } else {  // target doesn't exist. Use 0 jump offset and patch later
                if (!_epilogue)
                    _epilogue = genEpilogue();
                lr = guard->record();
                JMPl(_epilogue);
                lr->jmp = _nIns;
            }
        }

        // profiling for the exit
        verbose_only(
           if (_logc->lcbits & LC_FragProfile) {
              asm_inc_m32( &guard->record()->profCount );
           }
        )

        MR(RSP, RBP);

        // return value is GuardRecord*
        asm_immq(RAX, uintptr_t(lr), /*canClobberCCs*/true);
    }

    void Assembler::nInit(AvmCore*) {
        nHints[LIR_calli]  = rmask(retRegs[0]);
        nHints[LIR_calld]  = rmask(XMM0);
        nHints[LIR_paramp] = PREFER_SPECIAL;
    }

    void Assembler::nBeginAssembly() {
        max_stk_used = 0;
    }

    // This should only be called from within emit() et al.
    void Assembler::underrunProtect(ptrdiff_t bytes) {
        NanoAssertMsg(bytes<=LARGEST_UNDERRUN_PROT, "constant LARGEST_UNDERRUN_PROT is too small");
        NIns *pc = _nIns;
        NIns *top = codeStart;  // this may be in a normal code chunk or an exit code chunk

    #if PEDANTIC
        // pedanticTop is based on the last call to underrunProtect; any time we call
        // underrunProtect and would use more than what's already protected, then insert
        // a page break jump.  Sometimes, this will be to a new page, usually it's just
        // the next instruction

        NanoAssert(pedanticTop >= top);
        if (pc - bytes < pedanticTop) {
            // no page break required, but insert a far branch anyway just to be difficult
            const int br_size = 8; // opcode + 32bit addr
            if (pc - bytes - br_size < top) {
                // really do need a page break
                verbose_only(if (_logc->lcbits & LC_Native) outputf("newpage %p:", pc);)
                // This may be in a normal code chunk or an exit code chunk.
                codeAlloc(codeStart, codeEnd, _nIns verbose_only(, codeBytes));
            }
            // now emit the jump, but make sure we won't need another page break.
            // we're pedantic, but not *that* pedantic.
            pedanticTop = _nIns - br_size;
            JMP(pc);
            pedanticTop = _nIns - bytes;
        }
    #else
        if (pc - bytes < top) {
            verbose_only(if (_logc->lcbits & LC_Native) outputf("newpage %p:", pc);)
            // This may be in a normal code chunk or an exit code chunk.
            codeAlloc(codeStart, codeEnd, _nIns verbose_only(, codeBytes));
            // This jump will call underrunProtect again, but since we're on a new
            // page, nothing will happen.
            JMP(pc);
        }
    #endif
    }

    RegisterMask Assembler::nHint(LIns* ins)
    {
        NanoAssert(ins->isop(LIR_paramp));
        RegisterMask prefer = 0;
        uint8_t arg = ins->paramArg();
        if (ins->paramKind() == 0) {
            if (arg < maxArgRegs)
                prefer = rmask(argRegs[arg]);
        } else {
            if (arg < NumSavedRegs)
                prefer = rmask(savedRegs[arg]);
        }
        return prefer;
    }

    void Assembler::nativePageSetup() {
        NanoAssert(!_inExit);
        if (!_nIns) {
            codeAlloc(codeStart, codeEnd, _nIns verbose_only(, codeBytes));
            IF_PEDANTIC( pedanticTop = _nIns; )
        }
    }

    void Assembler::nativePageReset()
    {}

    // Increment the 32-bit profiling counter at pCtr, without
    // changing any registers.
    verbose_only(
    void Assembler::asm_inc_m32(uint32_t* pCtr)
    {
        // Not as simple as on x86.  We need to temporarily free up a
        // register into which to generate the address, so just push
        // it on the stack.  This assumes that the scratch area at
        // -8(%rsp) .. -1(%esp) isn't being used for anything else
        // at this point.
        emitr(X64_popr, RAX);                                   // popq    %rax
        emit(X64_inclmRAX);                                     // incl    (%rax)
        asm_immq(RAX, (uint64_t)pCtr, /*canClobberCCs*/true);   // movabsq $pCtr, %rax
        emitr(X64_pushr, RAX);                                  // pushq   %rax
    }
    )

    void Assembler::asm_jtbl(LIns* ins, NIns** table)
    {
        // exclude R12 because ESP and R12 cannot be used as an index
        // (index=100 in SIB means "none")
        Register indexreg = findRegFor(ins->oprnd1(), GpRegs & ~rmask(R12));
        if (isS32((intptr_t)table)) {
            // table is in low 2GB or high 2GB, can use absolute addressing
            // jmpq [indexreg*8 + table]
            JMPX(indexreg, table);
        } else {
            // don't use R13 for base because we want to use mod=00, i.e. [index*8+base + 0]
            Register tablereg = registerAllocTmp(GpRegs & ~(rmask(indexreg)|rmask(R13)));
            // jmp [indexreg*8 + tablereg]
            JMPXB(indexreg, tablereg);
            // tablereg <- #table
            asm_immq(tablereg, (uint64_t)table, /*canClobberCCs*/true);
        }
    }

    void Assembler::swapCodeChunks() {
        if (!_nExitIns) {
            codeAlloc(exitStart, exitEnd, _nExitIns verbose_only(, exitBytes));
        }
        SWAP(NIns*, _nIns, _nExitIns);
        SWAP(NIns*, codeStart, exitStart);
        SWAP(NIns*, codeEnd, exitEnd);
        verbose_only( SWAP(size_t, codeBytes, exitBytes); )
    }

    void Assembler::asm_insert_random_nop() {
        NanoAssert(0); // not supported
    }

} // namespace nanojit

#endif // FEATURE_NANOJIT && NANOJIT_X64