summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authordgrogan@chromium.org <dgrogan@chromium.org@62dab493-f737-651d-591e-8d6aee1b9529>2011-04-19 23:01:25 +0000
committerdgrogan@chromium.org <dgrogan@chromium.org@62dab493-f737-651d-591e-8d6aee1b9529>2011-04-19 23:01:25 +0000
commitb743906eeabc925f3e824d91a9747012bf249e2f (patch)
treee7cb4f854196c43045756469627920e4e7b146c1 /doc
parentb409afe968b6917574ec08e02c4bf6e6f722e3ca (diff)
downloadleveldb-b743906eeabc925f3e824d91a9747012bf249e2f.tar.gz
Revision created by MOE tool push_codebase.
MOE_MIGRATION= git-svn-id: https://leveldb.googlecode.com/svn/trunk@22 62dab493-f737-651d-591e-8d6aee1b9529
Diffstat (limited to 'doc')
-rw-r--r--doc/doc.css89
-rw-r--r--doc/impl.html228
-rw-r--r--doc/index.html509
-rw-r--r--doc/log_format.txt75
-rw-r--r--doc/table_format.txt61
5 files changed, 0 insertions, 962 deletions
diff --git a/doc/doc.css b/doc/doc.css
deleted file mode 100644
index 700c564..0000000
--- a/doc/doc.css
+++ /dev/null
@@ -1,89 +0,0 @@
-body {
- margin-left: 0.5in;
- margin-right: 0.5in;
- background: white;
- color: black;
-}
-
-h1 {
- margin-left: -0.2in;
- font-size: 14pt;
-}
-h2 {
- margin-left: -0in;
- font-size: 12pt;
-}
-h3 {
- margin-left: -0in;
-}
-h4 {
- margin-left: -0in;
-}
-hr {
- margin-left: -0in;
-}
-
-/* Definition lists: definition term bold */
-dt {
- font-weight: bold;
-}
-
-address {
- text-align: center;
-}
-code,samp,var {
- color: blue;
-}
-kbd {
- color: #600000;
-}
-div.note p {
- float: right;
- width: 3in;
- margin-right: 0%;
- padding: 1px;
- border: 2px solid #6060a0;
- background-color: #fffff0;
-}
-
-ul {
- margin-top: -0em;
- margin-bottom: -0em;
-}
-
-ol {
- margin-top: -0em;
- margin-bottom: -0em;
-}
-
-UL.nobullets {
- list-style-type: none;
- list-style-image: none;
- margin-left: -1em;
-}
-
-p {
- margin: 1em 0 1em 0;
- padding: 0 0 0 0;
-}
-
-pre {
- line-height: 1.3em;
- padding: 0.4em 0 0.8em 0;
- margin: 0 0 0 0;
- border: 0 0 0 0;
- color: blue;
-}
-
-.datatable {
- margin-left: auto;
- margin-right: auto;
- margin-top: 2em;
- margin-bottom: 2em;
- border: 1px solid;
-}
-
-.datatable td,th {
- padding: 0 0.5em 0 0.5em;
- text-align: right;
-}
diff --git a/doc/impl.html b/doc/impl.html
deleted file mode 100644
index b190d2c..0000000
--- a/doc/impl.html
+++ /dev/null
@@ -1,228 +0,0 @@
-<!DOCTYPE html>
-<html>
-<head>
-<link rel="stylesheet" type="text/css" href="doc.css" />
-<title>Leveldb file layout and compactions</title>
-</head>
-
-<body>
-
-<h1>Files</h1>
-
-The implementation of leveldb is similar in spirit to the
-representation of a single
-<a href="http://labs.google.com/papers/bigtable.html">
-Bigtable tablet (section 5.3)</a>.
-However the organization of the files that make up the representation
-is somewhat different and is explained below.
-
-<p>
-Each database is represented by a set of file stored in a directory.
-There are several different types of files as documented below:
-<p>
-<h2>Log files</h2>
-<p>
-A log file (*.log) stores a sequence of recent updates. Each update
-is appended to the current log file. When the log file reaches a
-pre-determined size (approximately 1MB by default), it is converted
-to a sorted table (see below) and a new log file is created for future
-updates.
-<p>
-A copy of the current log file is kept in an in-memory structure (the
-<code>memtable</code>). This copy is consulted on every read so that read
-operations reflect all logged updates.
-<p>
-<h2>Sorted tables</h2>
-<p>
-A sorted table (*.sst) stores a sequence of entries sorted by key.
-Each entry is either a value for the key, or a deletion marker for the
-key. (Deletion markers are kept around to hide obsolete values
-present in older sorted tables).
-<p>
-The set of sorted tables are organized into a sequence of levels. The
-sorted table generated from a log file is placed in a special <code>young</code>
-level (also called level-0). When the number of young files exceeds a
-certain threshold (currently four), all of the young files are merged
-together with all of the overlapping level-1 files to produce a
-sequence of new level-1 files (we create a new level-1 file for every
-2MB of data.)
-<p>
-Files in the young level may contain overlapping keys. However files
-in other levels have distinct non-overlapping key ranges. Consider
-level number L where L >= 1. When the combined size of files in
-level-L exceeds (10^L) MB (i.e., 10MB for level-1, 100MB for level-2,
-...), one file in level-L, and all of the overlapping files in
-level-(L+1) are merged to form a set of new files for level-(L+1).
-These merges have the effect of gradually migrating new updates from
-the young level to the largest level using only bulk reads and writes
-(i.e., minimizing expensive seeks).
-
-<h2>Large value files</h2>
-<p>
-Each large value (greater than 64KB by default) is placed in a large
-value file (*.val) of its own. An entry is maintained in the log
-and/or sorted tables that maps from the corresponding key to the
-name of this large value file. The name of the large value file
-is derived from a SHA1 hash of the value and its length so that
-identical values share the same file.
-<p>
-<h2>Manifest</h2>
-<p>
-A MANIFEST file lists the set of sorted tables that make up each
-level, the corresponding key ranges, and other important metadata.
-A new MANIFEST file (with a new number embedded in the file name)
-is created whenever the database is reopened. The MANIFEST file is
-formatted as a log, and changes made to the serving state (as files
-are added or removed) are appended to this log.
-<p>
-<h2>Current</h2>
-<p>
-CURRENT is a simple text file that contains the name of the latest
-MANIFEST file.
-<p>
-<h2>Info logs</h2>
-<p>
-Informational messages are printed to files named LOG and LOG.old.
-<p>
-<h2>Others</h2>
-<p>
-Other files used for miscellaneous purposes may also be present
-(LOCK, *.dbtmp).
-
-<h1>Level 0</h1>
-When the log file grows above a certain size (1MB by default):
-<ul>
-<li>Write the contents of the current memtable to an sstable
-<li>Replace the current memtable by a brand new empty memtable
-<li>Switch to a new log file
-<li>Delete the old log file and the old memtable
-</ul>
-Experimental measurements show that generating an sstable from a 1MB
-log file takes ~12ms, which seems like an acceptable latency hiccup to
-add infrequently to a log write.
-
-<p>
-The new sstable is added to a special level-0 level. level-0 contains
-a set of files (up to 4 by default). However unlike other levels,
-these files do not cover disjoint ranges, but may overlap each other.
-
-<h1>Compactions</h1>
-
-<p>
-When the size of level L exceeds its limit, we compact it in a
-background thread. The compaction picks a file from level L and all
-overlapping files from the next level L+1. Note that if a level-L
-file overlaps only part of a level-(L+1) file, the entire file at
-level-(L+1) is used as an input to the compaction and will be
-discarded after the compaction. Aside: because level-0 is special
-(files in it may overlap each other), we treat compactions from
-level-0 to level-1 specially: a level-0 compaction may pick more than
-one level-0 file in case some of these files overlap each other.
-
-<p>
-A compaction merges the contents of the picked files to produce a
-sequence of level-(L+1) files. We switch to producing a new
-level-(L+1) file after the current output file has reached the target
-file size (2MB). We also switch to a new output file when the key
-range of the current output file has grown enough to overlap more then
-ten level-(L+2) files. This last rule ensures that a later compaction
-of a level-(L+1) file will not pick up too much data from level-(L+2).
-
-<p>
-The old files are discarded and the new files are added to the serving
-state.
-
-<p>
-Compactions for a particular level rotate through the key space. In
-more detail, for each level L, we remember the ending key of the last
-compaction at level L. The next compaction for level L will pick the
-first file that starts after this key (wrapping around to the
-beginning of the key space if there is no such file).
-
-<p>
-Compactions drop overwritten values. They also drop deletion markers
-if there are no higher numbered levels that contain a file whose range
-overlaps the current key.
-
-<h2>Timing</h2>
-
-Level-0 compactions will read up to four 1MB files from level-0, and
-at worst all the level-1 files (10MB). I.e., we will read 14MB and
-write 14MB.
-
-<p>
-Other than the special level-0 compactions, we will pick one 2MB file
-from level L. In the worst case, this will overlap ~ 12 files from
-level L+1 (10 because level-(L+1) is ten times the size of level-L,
-and another two at the boundaries since the file ranges at level-L
-will usually not be aligned with the file ranges at level-L+1). The
-compaction will therefore read 26MB and write 26MB. Assuming a disk
-IO rate of 100MB/s (ballpark range for modern drives), the worst
-compaction cost will be approximately 0.5 second.
-
-<p>
-If we throttle the background writing to something small, say 10% of
-the full 100MB/s speed, a compaction may take up to 5 seconds. If the
-user is writing at 10MB/s, we might build up lots of level-0 files
-(~50 to hold the 5*10MB). This may signficantly increase the cost of
-reads due to the overhead of merging more files together on every
-read.
-
-<p>
-Solution 1: To reduce this problem, we might want to increase the log
-switching threshold when the number of level-0 files is large. Though
-the downside is that the larger this threshold, the larger the delay
-that we will add to write latency when a write triggers a log switch.
-
-<p>
-Solution 2: We might want to decrease write rate artificially when the
-number of level-0 files goes up.
-
-<p>
-Solution 3: We work on reducing the cost of very wide merges.
-Perhaps most of the level-0 files will have their blocks sitting
-uncompressed in the cache and we will only need to worry about the
-O(N) complexity in the merging iterator.
-
-<h2>Number of files</h2>
-
-Instead of always making 2MB files, we could make larger files for
-larger levels to reduce the total file count, though at the expense of
-more bursty compactions. Alternatively, we could shard the set of
-files into multiple directories.
-
-<p>
-An experiment on an <code>ext3</code> filesystem on Feb 04, 2011 shows
-the following timings to do 100K file opens in directories with
-varying number of files:
-<table class="datatable">
-<tr><th>Files in directory</th><th>Microseconds to open a file</th></tr>
-<tr><td>1000</td><td>9</td>
-<tr><td>10000</td><td>10</td>
-<tr><td>100000</td><td>16</td>
-</table>
-So maybe even the sharding is not necessary on modern filesystems?
-
-<h1>Recovery</h1>
-
-<ul>
-<li> Read CURRENT to find name of the latest committed MANIFEST
-<li> Read the named MANIFEST file
-<li> Clean up stale files
-<li> We could open all sstables here, but it is probably better to be lazy...
-<li> Convert log chunk to a new level-0 sstable
-<li> Start directing new writes to a new log file with recovered sequence#
-</ul>
-
-<h1>Garbage collection of files</h1>
-
-<code>DeleteObsoleteFiles()</code> is called at the end of every
-compaction and at the end of recovery. It finds the names of all
-files in the database. It deletes all log files that are not the
-current log file. It deletes all table files that are not referenced
-from some level and are not the output of an active compaction. It
-deletes all large value files that are not referenced from any live
-table or log file.
-
-</body>
-</html>
diff --git a/doc/index.html b/doc/index.html
deleted file mode 100644
index 2a83fc3..0000000
--- a/doc/index.html
+++ /dev/null
@@ -1,509 +0,0 @@
-<!DOCTYPE html>
-<html>
-<head>
-<link rel="stylesheet" type="text/css" href="doc.css" />
-<title>Leveldb</title>
-</head>
-
-<body>
-<h1>Leveldb</h1>
-<address>Jeff Dean, Sanjay Ghemawat</address>
-<p>
-The <code>leveldb</code> library provides a persistent key value store. Keys and
-values are arbitrary byte arrays. The keys are ordered within the key
-value store according to a user-specified comparator function.
-
-<p>
-<h1>Opening A Database</h1>
-<p>
-A <code>leveldb</code> database has a name which corresponds to a file system
-directory. All of the contents of database are stored in this
-directory. The following example shows how to open a database,
-creating it if necessary:
-<p>
-<pre>
- #include &lt;assert&gt;
- #include "leveldb/include/db.h"
-
- leveldb::DB* db;
- leveldb::Options options;
- options.create_if_missing = true;
- leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &amp;db);
- assert(status.ok());
- ...
-</pre>
-If you want to raise an error if the database already exists, add
-the following line before the <code>leveldb::DB::Open</code> call:
-<pre>
- options.error_if_exists = true;
-</pre>
-<h1>Status</h1>
-<p>
-You may have noticed the <code>leveldb::Status</code> type above. Values of this
-type are returned by most functions in <code>leveldb</code> that may encounter an
-error. You can check if such a result is ok, and also print an
-associated error message:
-<p>
-<pre>
- leveldb::Status s = ...;
- if (!s.ok()) cerr &lt;&lt; s.ToString() &lt;&lt; endl;
-</pre>
-<h1>Closing A Database</h1>
-<p>
-When you are done with a database, just delete the database object.
-Example:
-<p>
-<pre>
- ... open the db as described above ...
- ... do something with db ...
- delete db;
-</pre>
-<h1>Reads And Writes</h1>
-<p>
-The database provides <code>Put</code>, <code>Delete</code>, and <code>Get</code> methods to
-modify/query the database. For example, the following code
-moves the value stored under key1 to key2.
-<pre>
- std::string value;
- leveldb::Status s = db-&gt;Get(leveldb::ReadOptions(), key1, &amp;value);
- if (s.ok()) s = db-&gt;Put(leveldb::WriteOptions(), key2, value);
- if (s.ok()) s = db-&gt;Delete(leveldb::WriteOptions(), key1);
-</pre>
-
-<h1>Atomic Updates</h1>
-<p>
-Note that if the process dies after the Put of key2 but before the
-delete of key1, the same value may be left stored under multiple keys.
-Such problems can be avoided by using the <code>WriteBatch</code> class to
-atomically apply a set of updates:
-<p>
-<pre>
- #include "leveldb/include/write_batch.h"
- ...
- std::string value;
- leveldb::Status s = db-&gt;Get(leveldb::ReadOptions(), key1, &amp;value);
- if (s.ok()) {
- leveldb::WriteBatch batch;
- batch.Delete(key1);
- batch.Put(key2, value);
- s = db-&gt;Write(leveldb::WriteOptions(), &amp;batch);
- }
-</pre>
-The <code>WriteBatch</code> holds a sequence of edits to be made to the database,
-and these edits within the batch are applied in order. Note that we
-called <code>Delete</code> before <code>Put</code> so that if <code>key1</code> is identical to <code>key2</code>,
-we do not end up erroneously dropping the value entirely.
-<p>
-Apart from its atomicity benefits, <code>WriteBatch</code> may also be used to
-speed up bulk updates by placing lots of individual mutations into the
-same batch.
-
-<h1>Synchronous Writes</h1>
-By default, each write to <code>leveldb</code> is asynchronous: it
-returns after pushing the write from the process into the operating
-system. The transfer from operating system memory to the underlying
-persistent storage happens asynchronously. The <code>sync</code> flag
-can be turned on for a particular write to make the write operation
-not return until the data being written has been pushed all the way to
-persistent storage. (On Posix systems, this is implemented by calling
-either <code>fsync(...)</code> or <code>fdatasync(...)</code> or
-<code>msync(..., MS_SYNC)</code> before the write operation returns.)
-<pre>
- leveldb::WriteOptions write_options;
- write_options.sync = true;
- db-&gt;Put(write_options, ...);
-</pre>
-Asynchronous writes are often more than a thousand times as fast as
-synchronous writes. The downside of asynchronous writes is that a
-crash of the machine may cause the last few updates to be lost. Note
-that a crash of just the writing process (i.e., not a reboot) will not
-cause any loss since even when <code>sync</code> is false, an update
-is pushed from the process memory into the operating system before it
-is considered done.
-
-<p>
-Asynchronous writes can often be used safely. For example, when
-loading a large amount of data into the database you can handle lost
-updates by restarting the bulk load after a crash. A hybrid scheme is
-also possible where every Nth write is synchronous, and in the event
-of a crash, the bulk load is restarted just after the last synchronous
-write finished by the previous run. (The synchronous write can update
-a marker that describes where to restart on a crash.)
-
-<p>
-<code>WriteBatch</code> provides an alternative to asynchronous writes.
-Multiple updates may be placed in the same <code>WriteBatch</code> and
-applied together using a synchronous write (i.e.,
-<code>write_options.sync</code> is set to true). The extra cost of
-the synchronous write will be amortized across all of the writes in
-the batch.
-
-<p>
-<h1>Concurrency</h1>
-<p>
-A database may only be opened by one process at a time. The <code>leveldb</code>
-implementation acquires a lock from the operating system to prevent
-misuse. Within a single process, the same <code>leveldb::DB</code> object may
-be safely used by multiple concurrent threads.
-<p>
-<h1>Iteration</h1>
-<p>
-The following example demonstrates how to print all key,value pairs
-in a database.
-<p>
-<pre>
- leveldb::Iterator* it = db-&gt;NewIterator(leveldb::ReadOptions());
- for (it-&gt;SeekToFirst(); it-&gt;Valid(); it-&gt;Next()) {
- cout &lt;&lt; it-&gt;key().ToString() &lt;&lt; ": " &lt;&lt; it-&gt;value().ToString() &lt;&lt; endl;
- }
- assert(it-&gt;status().ok()); // Check for any errors found during the scan
- delete it;
-</pre>
-The following variation shows how to process just the keys in the
-range <code>[start,limit)</code>:
-<p>
-<pre>
- for (it-&gt;Seek(start);
- it-&gt;Valid() &amp;&amp; it-&gt;key().ToString() &lt; limit;
- it-&gt;Next()) {
- ...
- }
-</pre>
-You can also process entries in reverse order. (Caveat: reverse
-iteration may be somewhat slower than forward iteration.)
-<p>
-<pre>
- for (it-&gt;SeekToLast(); it-&gt;Valid(); it-&gt;Prev()) {
- ...
- }
-</pre>
-<h1>Snapshots</h1>
-<p>
-Snapshots provide consistent read-only views over the entire state of
-the key-value store. <code>ReadOptions::snapshot</code> may be non-NULL to indicate
-that a read should operate on a particular version of the DB state.
-If <code>ReadOptions::snapshot</code> is NULL, the read will operate on an
-implicit snapshot of the current state.
-<p>
-Snapshots typically are created by the DB::GetSnapshot() method:
-<p>
-<pre>
- leveldb::ReadOptions options;
- options.snapshot = db-&gt;GetSnapshot();
- ... apply some updates to db ...
- leveldb::Iterator* iter = db-&gt;NewIterator(options);
- ... read using iter to view the state when the snapshot was created ...
- delete iter;
- db-&gt;ReleaseSnapshot(options.snapshot);
-</pre>
-Note that when a snapshot is no longer needed, it should be released
-using the DB::ReleaseSnapshot interface. This allows the
-implementation to get rid of state that was being maintained just to
-support reading as of that snapshot.
-<p>
-A Write operation can also return a snapshot that
-represents the state of the database just after applying a particular
-set of updates:
-<p>
-<pre>
- leveldb::Snapshot* snapshot;
- leveldb::WriteOptions write_options;
- write_options.post_write_snapshot = &amp;snapshot;
- leveldb::Status status = db-&gt;Write(write_options, ...);
- ... perform other mutations to db ...
-
- leveldb::ReadOptions read_options;
- read_options.snapshot = snapshot;
- leveldb::Iterator* iter = db-&gt;NewIterator(read_options);
- ... read as of the state just after the Write call returned ...
- delete iter;
-
- db-&gt;ReleaseSnapshot(snapshot);
-</pre>
-<h1>Slice</h1>
-<p>
-The return value of the <code>it->key()</code> and <code>it->value()</code> calls above
-are instances of the <code>leveldb::Slice</code> type. <code>Slice</code> is a simple
-structure that contains a length and a pointer to an external byte
-array. Returning a <code>Slice</code> is a cheaper alternative to returning a
-<code>std::string</code> since we do not need to copy potentially large keys and
-values. In addition, <code>leveldb</code> methods do not return null-terminated
-C-style strings since <code>leveldb</code> keys and values are allowed to
-contain '\0' bytes.
-<p>
-C++ strings and null-terminated C-style strings can be easily converted
-to a Slice:
-<p>
-<pre>
- leveldb::Slice s1 = "hello";
-
- std::string str("world");
- leveldb::Slice s2 = str;
-</pre>
-A Slice can be easily converted back to a C++ string:
-<pre>
- std::string str = s1.ToString();
- assert(str == std::string("hello"));
-</pre>
-Be careful when using Slices since it is up to the caller to ensure that
-the external byte array into which the Slice points remains live while
-the Slice is in use. For example, the following is buggy:
-<p>
-<pre>
- leveldb::Slice slice;
- if (...) {
- std::string str = ...;
- slice = str;
- }
- Use(slice);
-</pre>
-When the <code>if</code> statement goes out of scope, <code>str</code> will be destroyed and the
-backing storage for <code>slice</code> will disappear.
-<p>
-<h1>Comparators</h1>
-<p>
-The preceding examples used the default ordering function for key,
-which orders bytes lexicographically. You can however supply a custom
-comparator when opening a database. For example, suppose each
-database key consists of two numbers and we should sort by the first
-number, breaking ties by the second number. First, define a proper
-subclass of <code>leveldb::Comparator</code> that expresses these rules:
-<p>
-<pre>
- class TwoPartComparator : public leveldb::Comparator {
- public:
- // Three-way comparison function:
- // if a &lt; b: negative result
- // if a &gt; b: positive result
- // else: zero result
- int Compare(const leveldb::Slice&amp; a, const leveldb::Slice&amp; b) const {
- int a1, a2, b1, b2;
- ParseKey(a, &amp;a1, &amp;a2);
- ParseKey(b, &amp;b1, &amp;b2);
- if (a1 &lt; b1) return -1;
- if (a1 &gt; b1) return +1;
- if (a2 &lt; b2) return -1;
- if (a2 &gt; b2) return +1;
- return 0;
- }
-
- // Ignore the following methods for now:
- const char* Name() { return "TwoPartComparator"; }
- void FindShortestSeparator(std::string*, const leveldb::Slice&amp;) const { }
- void FindShortSuccessor(std::string*) const { }
- };
-</pre>
-Now create a database using this custom comparator:
-<p>
-<pre>
- TwoPartComparator cmp;
- leveldb::DB* db;
- leveldb::Options options;
- options.create_if_missing = true;
- options.comparator = &amp;cmp;
- leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &amp;db);
- ...
-</pre>
-<h2>Backwards compatibility</h2>
-<p>
-The result of the comparator's <code>Name</code> method is attached to the
-database when it is created, and is checked on every subsequent
-database open. If the name changes, the <code>leveldb::DB::Open</code> call will
-fail. Therefore, change the name if and only if the new key format
-and comparison function are incompatible with existing databases, and
-it is ok to discard the contents of all existing databases.
-<p>
-You can however still gradually evolve your key format over time with
-a little bit of pre-planning. For example, you could store a version
-number at the end of each key (one byte should suffice for most uses).
-When you wish to switch to a new key format (e.g., adding an optional
-third part to the keys processed by <code>TwoPartComparator</code>),
-(a) keep the same comparator name (b) increment the version number
-for new keys (c) change the comparator function so it uses the
-version numbers found in the keys to decide how to interpret them.
-<p>
-<h1>Performance</h1>
-<p>
-Performance can be tuned by changing the default values of the
-types defined in <code>leveldb/include/options.h</code>.
-
-<p>
-<h2>Block size</h2>
-<p>
-<code>leveldb</code> groups adjacent keys together into the same block and such a
-block is the unit of transfer to and from persistent storage. The
-default block size is approximately 4096 uncompressed bytes.
-Applications that mostly do bulk scans over the contents of the
-database may wish to increase this size. Applications that do a lot
-of point reads of small values may wish to switch to a smaller block
-size if performance measurements indicate an improvement. There isn't
-much benefit in using blocks smaller than one kilobyte, or larger than
-a few megabytes. Also note that compression will be more effective
-with larger block sizes.
-<p>
-<h2>Compression</h2>
-<p>
-Each block is individually compressed before being written to
-persistent storage. Compression is on by default since the default
-compression method is very fast, and is automatically disabled for
-uncompressible data. In rare cases, applications may want to disable
-compression entirely, but should only do so if benchmarks show a
-performance improvement:
-<p>
-<pre>
- leveldb::Options options;
- options.compression = leveldb::kNoCompression;
- ... leveldb::DB::Open(options, name, ...) ....
-</pre>
-<h2>Cache</h2>
-<p>
-The contents of the database are stored in a set of files in the
-filesystem and each file stores a sequence of compressed blocks. If
-<code>options.cache</code> is non-NULL, it is used to cache frequently used
-uncompressed block contents.
-<p>
-<pre>
- #include "leveldb/include/cache.h"
-
- leveldb::Options options;
- options.cache = leveldb::NewLRUCache(100 * 1048576); // 100MB cache
- leveldb::DB* db;
- leveldb::DB::Open(options, name, &db);
- ... use the db ...
- delete db
- delete options.cache;
-</pre>
-Note that the cache holds uncompressed data, and therefore it should
-be sized according to application level data sizes, without any
-reduction from compression. (Caching of compressed blocks is left to
-the operating system buffer cache, or any custom <code>Env</code>
-implementation provided by the client.)
-<p>
-When performing a bulk read, the application may wish to disable
-caching so that the data processed by the bulk read does not end up
-displacing most of the cached contents. A per-iterator option can be
-used to achieve this:
-<p>
-<pre>
- leveldb::ReadOptions options;
- options.fill_cache = false;
- leveldb::Iterator* it = db-&gt;NewIterator(options);
- for (it-&gt;SeekToFirst(); it-&gt;Valid(); it-&gt;Next()) {
- ...
- }
-</pre>
-<h2>Key Layout</h2>
-<p>
-Note that the unit of disk transfer and caching is a block. Adjacent
-keys (according to the database sort order) will usually be placed in
-the same block. Therefore the application can improve its performance
-by placing keys that are accessed together near each other and placing
-infrequently used keys in a separate region of the key space.
-<p>
-For example, suppose we are implementing a simple file system on top
-of <code>leveldb</code>. The types of entries we might wish to store are:
-<p>
-<pre>
- filename -&gt; permission-bits, length, list of file_block_ids
- file_block_id -&gt; data
-</pre>
-We might want to prefix <code>filename</code> keys with one letter (say '/') and the
-<code>file_block_id</code> keys with a different letter (say '0') so that scans
-over just the metadata do not force us to fetch and cache bulky file
-contents.
-<p>
-<h2>Large Values</h2>
-<p>
-<code>leveldb</code> has special treatment of large values (by default, a value
-of length greater than or equal to 64K is considered large, though a
-field in Options can be used to adjust this threshold). Each such
-large value is placed in a separate operating system file, and the
-normal database blocks just contain pointers to such files.
-<p>
-Furthermore, if the same large value occurs multiple times in a single
-database, it will be stored just once.
-<p>
-<h1>Checksums</h1>
-<p>
-<code>leveldb</code> associates checksums with all data it stores in the file system.
-There are two separate controls provided over how aggressively these
-checksums are verified:
-<p>
-<ul>
-<li> <code>ReadOptions::verify_checksums</code> may be set to true to force
- checksum verification of all data that is read from the file system on
- behalf of a particular read. By default, no such verification is
- done.
-<p>
-<li> <code>Options::paranoid_checks</code> may be set to true before opening a
- database to make the database implementation raise an error as soon as
- it detects an internal corruption. Depending on which portion of the
- database has been corrupted, the error may be raised when the database
- is opened, or later by another database operation. By default,
- paranoid checking is off so that the database can be used even if
- parts of its persistent storage have been corrupted.
-<p>
- If a database is corrupted (perhaps it cannot be opened when
- paranoid checking is turned on), the <code>leveldb::RepairDB</code> function
- may be used to recover as much of the data as possible
-<p>
-</ul>
-<h1>Approximate Sizes</h1>
-<p>
-The <code>GetApproximateSizes</code> method can used to get the approximate
-number of bytes of file system space used by one or more key ranges.
-<p>
-<pre>
- leveldb::Range ranges[2];
- ranges[0] = leveldb::Range("a", "c");
- ranges[1] = leveldb::Range("x", "z");
- uint64_t sizes[2];
- leveldb::Status s = db-&gt;GetApproximateSizes(ranges, 2, sizes);
-</pre>
-The preceding call will set <code>sizes[0]</code> to the approximate number of
-bytes of file system space used by the key range <code>[a..c)</code> and
-<code>sizes[1]</code> to the approximate number of bytes used by the key range
-<code>[x..z)</code>.
-<p>
-<h1>Environment</h1>
-<p>
-All file operations (and other operating system calls) issued by the
-<code>leveldb</code> implementation are routed through a <code>leveldb::Env</code> object.
-Sophisticated clients may wish to provide their own <code>Env</code>
-implementation to get better control. For example, an application may
-introduce artificial delays in the file IO paths to limit the impact
-of <code>leveldb</code> on other activities in the system.
-<p>
-<pre>
- class SlowEnv : public leveldb::Env {
- .. implementation of the Env interface ...
- };
-
- SlowEnv env;
- leveldb::Options options;
- options.env = &amp;env;
- Status s = leveldb::DB::Open(options, ...);
-</pre>
-<h1>Porting</h1>
-<p>
-<code>leveldb</code> may be ported to a new platform by providing platform
-specific implementations of the types/methods/functions exported by
-<code>leveldb/port/port.h</code>. See <code>leveldb/port/port_example.h</code> for more
-details.
-<p>
-In addition, the new platform may need a new default <code>leveldb::Env</code>
-implementation. See <code>leveldb/util/env_posix.h</code> for an example.
-
-<h1>Other Information</h1>
-
-<p>
-Details about the <code>leveldb</code> implementation may be found in
-the following documents:
-<ul>
-<li> <a href="impl.html">Implementation notes</a>
-<li> <a href="table_format.txt">Format of an immutable Table file</a>
-<li> <a href="log_format.txt">Format of a log file</a>
-</ul>
-
-</body>
-</html>
diff --git a/doc/log_format.txt b/doc/log_format.txt
deleted file mode 100644
index 3a0414b..0000000
--- a/doc/log_format.txt
+++ /dev/null
@@ -1,75 +0,0 @@
-The log file contents are a sequence of 32KB blocks. The only
-exception is that the tail of the file may contain a partial block.
-
-Each block consists of a sequence of records:
- block := record* trailer?
- record :=
- checksum: uint32 // crc32c of type and data[]
- length: uint16
- type: uint8 // One of FULL, FIRST, MIDDLE, LAST
- data: uint8[length]
-
-A record never starts within the last six bytes of a block (since it
-won't fit). Any leftover bytes here form the trailer, which must
-consist entirely of zero bytes and must be skipped by readers.
-
-Aside: if exactly seven bytes are left in the current block, and a new
-non-zero length record is added, the writer must emit a FIRST record
-(which contains zero bytes of user data) to fill up the trailing seven
-bytes of the block and then emit all of the user data in subsequent
-blocks.
-
-More types may be added in the future. Some Readers may skip record
-types they do not understand, others may report that some data was
-skipped.
-
-FULL == 1
-FIRST == 2
-MIDDLE == 3
-LAST == 4
-
-The FULL record contains the contents of an entire user record.
-
-FIRST, MIDDLE, LAST are types used for user records that have been
-split into multiple fragments (typically because of block boundaries).
-FIRST is the type of the first fragment of a user record, LAST is the
-type of the last fragment of a user record, and MID is the type of all
-interior fragments of a user record.
-
-Example: consider a sequence of user records:
- A: length 1000
- B: length 97270
- C: length 8000
-A will be stored as a FULL record in the first block.
-
-B will be split into three fragments: first fragment occupies the rest
-of the first block, second fragment occupies the entirety of the
-second block, and the third fragment occupies a prefix of the third
-block. This will leave six bytes free in the third block, which will
-be left empty as the trailer.
-
-C will be stored as a FULL record in the fourth block.
-
-===================
-
-Some benefits over the recordio format:
-
-(1) We do not need any heuristics for resyncing - just go to next
-block boundary and scan. If there is a corruption, skip to the next
-block. As a side-benefit, we do not get confused when part of the
-contents of one log file are embedded as a record inside another log
-file.
-
-(2) Splitting at approximate boundaries (e.g., for mapreduce) is
-simple: find the next block boundary and skip records until we
-hit a FULL or FIRST record.
-
-(3) We do not need extra buffering for large records.
-
-Some downsides compared to recordio format:
-
-(1) No packing of tiny records. This could be fixed by adding a new
-record type, so it is a shortcoming of the current implementation,
-not necessarily the format.
-
-(2) No compression. Again, this could be fixed by adding new record types.
diff --git a/doc/table_format.txt b/doc/table_format.txt
deleted file mode 100644
index ad5aa4b..0000000
--- a/doc/table_format.txt
+++ /dev/null
@@ -1,61 +0,0 @@
-File format
-===========
-
- <beginning_of_file>
- [data block 1]
- [data block 2]
- ...
- [data block N]
- [meta block 1]
- ...
- [meta block K]
- [metaindex block]
- [index block]
- [Footer] (fixed size; starts at file_size - sizeof(Footer))
- <end_of_file>
-
-The file contains internal pointers. Each such pointer is called
-a BlockHandle and contains the following information:
- offset: varint64
- size: varint64
-
-(1) The sequence of key/value pairs in the file are stored in sorted
-order and partitioned into a sequence of data blocks. These blocks
-come one after another at the beginning of the file. Each data block
-is formatted according to the code in block_builder.cc, and then
-optionally compressed.
-
-(2) After the data blocks we store a bunch of meta blocks. The
-supported meta block types are described below. More meta block types
-may be added in the future. Each meta block is again formatted using
-block_builder.cc and then optionally compressed.
-
-(3) A "metaindex" block. It contains one entry for every other meta
-block where the key is the name of the meta block and the value is a
-BlockHandle pointing to that meta block.
-
-(4) An "index" block. This block contains one entry per data block,
-where the key is a string >= last key in that data block and before
-the first key in the successive data block. The value is the
-BlockHandle for the data block.
-
-(6) At the very end of the file is a fixed length footer that contains
-the BlockHandle of the metaindex and index blocks as well as a magic number.
- metaindex_handle: char[p]; // Block handle for metaindex
- index_handle: char[q]; // Block handle for index
- padding: char[40-p-q]; // 0 bytes to make fixed length
- // (40==2*BlockHandle::kMaxEncodedLength)
- magic: fixed64; // == 0xdb4775248b80fb57
-
-"stats" Meta Block
-------------------
-
-This meta block contains a bunch of stats. The key is the name
-of the statistic. The value contains the statistic.
-TODO(postrelease): record following stats.
- data size
- index size
- key size (uncompressed)
- value size (uncompressed)
- number of entries
- number of data blocks