summaryrefslogtreecommitdiff
path: root/memory
diff options
context:
space:
mode:
authorLorry <lorry@roadtrain.codethink.co.uk>2012-08-28 17:19:35 +0100
committerLorry <lorry@roadtrain.codethink.co.uk>2012-08-28 17:19:35 +0100
commitd3c52eb4b4402f0afbebc3f36b9ef8c0994a6c1a (patch)
treeb5ed37757fd9e0f821d103c26692e35ddf2976cb /memory
downloadlibapr-tarball-d3c52eb4b4402f0afbebc3f36b9ef8c0994a6c1a.tar.gz
Tarball conversion
Diffstat (limited to 'memory')
-rw-r--r--memory/unix/apr_pools.c2655
1 files changed, 2655 insertions, 0 deletions
diff --git a/memory/unix/apr_pools.c b/memory/unix/apr_pools.c
new file mode 100644
index 0000000..5c1a1ff
--- /dev/null
+++ b/memory/unix/apr_pools.c
@@ -0,0 +1,2655 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "apr.h"
+#include "apr_private.h"
+
+#include "apr_atomic.h"
+#include "apr_portable.h" /* for get_os_proc */
+#include "apr_strings.h"
+#include "apr_general.h"
+#include "apr_pools.h"
+#include "apr_allocator.h"
+#include "apr_lib.h"
+#include "apr_thread_mutex.h"
+#include "apr_hash.h"
+#include "apr_time.h"
+#define APR_WANT_MEMFUNC
+#include "apr_want.h"
+#include "apr_env.h"
+
+#if APR_HAVE_STDLIB_H
+#include <stdlib.h> /* for malloc, free and abort */
+#endif
+
+#if APR_HAVE_UNISTD_H
+#include <unistd.h> /* for getpid and sysconf */
+#endif
+
+#if APR_ALLOCATOR_USES_MMAP
+#include <sys/mman.h>
+#endif
+
+/*
+ * Magic numbers
+ */
+
+/*
+ * XXX: This is not optimal when using --enable-allocator-uses-mmap on
+ * XXX: machines with large pagesize, but currently the sink is assumed
+ * XXX: to be index 0, so MIN_ALLOC must be at least two pages.
+ */
+#define MIN_ALLOC (2 * BOUNDARY_SIZE)
+#define MAX_INDEX 20
+
+#if APR_ALLOCATOR_USES_MMAP && defined(_SC_PAGESIZE)
+static unsigned int boundary_index;
+static unsigned int boundary_size;
+#define BOUNDARY_INDEX boundary_index
+#define BOUNDARY_SIZE boundary_size
+#else
+#define BOUNDARY_INDEX 12
+#define BOUNDARY_SIZE (1 << BOUNDARY_INDEX)
+#endif
+
+/*
+ * Timing constants for killing subprocesses
+ * There is a total 3-second delay between sending a SIGINT
+ * and sending of the final SIGKILL.
+ * TIMEOUT_INTERVAL should be set to TIMEOUT_USECS / 64
+ * for the exponetial timeout alogrithm.
+ */
+#define TIMEOUT_USECS 3000000
+#define TIMEOUT_INTERVAL 46875
+
+/*
+ * Allocator
+ *
+ * @note The max_free_index and current_free_index fields are not really
+ * indices, but quantities of BOUNDARY_SIZE big memory blocks.
+ */
+
+struct apr_allocator_t {
+ /** largest used index into free[], always < MAX_INDEX */
+ apr_uint32_t max_index;
+ /** Total size (in BOUNDARY_SIZE multiples) of unused memory before
+ * blocks are given back. @see apr_allocator_max_free_set().
+ * @note Initialized to APR_ALLOCATOR_MAX_FREE_UNLIMITED,
+ * which means to never give back blocks.
+ */
+ apr_uint32_t max_free_index;
+ /**
+ * Memory size (in BOUNDARY_SIZE multiples) that currently must be freed
+ * before blocks are given back. Range: 0..max_free_index
+ */
+ apr_uint32_t current_free_index;
+#if APR_HAS_THREADS
+ apr_thread_mutex_t *mutex;
+#endif /* APR_HAS_THREADS */
+ apr_pool_t *owner;
+ /**
+ * Lists of free nodes. Slot 0 is used for oversized nodes,
+ * and the slots 1..MAX_INDEX-1 contain nodes of sizes
+ * (i+1) * BOUNDARY_SIZE. Example for BOUNDARY_INDEX == 12:
+ * slot 0: nodes larger than 81920
+ * slot 1: size 8192
+ * slot 2: size 12288
+ * ...
+ * slot 19: size 81920
+ */
+ apr_memnode_t *free[MAX_INDEX];
+};
+
+#define SIZEOF_ALLOCATOR_T APR_ALIGN_DEFAULT(sizeof(apr_allocator_t))
+
+
+/*
+ * Allocator
+ */
+
+APR_DECLARE(apr_status_t) apr_allocator_create(apr_allocator_t **allocator)
+{
+ apr_allocator_t *new_allocator;
+
+ *allocator = NULL;
+
+ if ((new_allocator = malloc(SIZEOF_ALLOCATOR_T)) == NULL)
+ return APR_ENOMEM;
+
+ memset(new_allocator, 0, SIZEOF_ALLOCATOR_T);
+ new_allocator->max_free_index = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
+
+ *allocator = new_allocator;
+
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(void) apr_allocator_destroy(apr_allocator_t *allocator)
+{
+ apr_uint32_t index;
+ apr_memnode_t *node, **ref;
+
+ for (index = 0; index < MAX_INDEX; index++) {
+ ref = &allocator->free[index];
+ while ((node = *ref) != NULL) {
+ *ref = node->next;
+#if APR_ALLOCATOR_USES_MMAP
+ munmap(node, (node->index+1) << BOUNDARY_INDEX);
+#else
+ free(node);
+#endif
+ }
+ }
+
+ free(allocator);
+}
+
+#if APR_HAS_THREADS
+APR_DECLARE(void) apr_allocator_mutex_set(apr_allocator_t *allocator,
+ apr_thread_mutex_t *mutex)
+{
+ allocator->mutex = mutex;
+}
+
+APR_DECLARE(apr_thread_mutex_t *) apr_allocator_mutex_get(
+ apr_allocator_t *allocator)
+{
+ return allocator->mutex;
+}
+#endif /* APR_HAS_THREADS */
+
+APR_DECLARE(void) apr_allocator_owner_set(apr_allocator_t *allocator,
+ apr_pool_t *pool)
+{
+ allocator->owner = pool;
+}
+
+APR_DECLARE(apr_pool_t *) apr_allocator_owner_get(apr_allocator_t *allocator)
+{
+ return allocator->owner;
+}
+
+APR_DECLARE(void) apr_allocator_max_free_set(apr_allocator_t *allocator,
+ apr_size_t in_size)
+{
+ apr_uint32_t max_free_index;
+ apr_uint32_t size = (APR_UINT32_TRUNC_CAST)in_size;
+
+#if APR_HAS_THREADS
+ apr_thread_mutex_t *mutex;
+
+ mutex = apr_allocator_mutex_get(allocator);
+ if (mutex != NULL)
+ apr_thread_mutex_lock(mutex);
+#endif /* APR_HAS_THREADS */
+
+ max_free_index = APR_ALIGN(size, BOUNDARY_SIZE) >> BOUNDARY_INDEX;
+ allocator->current_free_index += max_free_index;
+ allocator->current_free_index -= allocator->max_free_index;
+ allocator->max_free_index = max_free_index;
+ if (allocator->current_free_index > max_free_index)
+ allocator->current_free_index = max_free_index;
+
+#if APR_HAS_THREADS
+ if (mutex != NULL)
+ apr_thread_mutex_unlock(mutex);
+#endif
+}
+
+static APR_INLINE
+apr_memnode_t *allocator_alloc(apr_allocator_t *allocator, apr_size_t in_size)
+{
+ apr_memnode_t *node, **ref;
+ apr_uint32_t max_index;
+ apr_size_t size, i, index;
+
+ /* Round up the block size to the next boundary, but always
+ * allocate at least a certain size (MIN_ALLOC).
+ */
+ size = APR_ALIGN(in_size + APR_MEMNODE_T_SIZE, BOUNDARY_SIZE);
+ if (size < in_size) {
+ return NULL;
+ }
+ if (size < MIN_ALLOC)
+ size = MIN_ALLOC;
+
+ /* Find the index for this node size by
+ * dividing its size by the boundary size
+ */
+ index = (size >> BOUNDARY_INDEX) - 1;
+
+ if (index > APR_UINT32_MAX) {
+ return NULL;
+ }
+
+ /* First see if there are any nodes in the area we know
+ * our node will fit into.
+ */
+ if (index <= allocator->max_index) {
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_lock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+
+ /* Walk the free list to see if there are
+ * any nodes on it of the requested size
+ *
+ * NOTE: an optimization would be to check
+ * allocator->free[index] first and if no
+ * node is present, directly use
+ * allocator->free[max_index]. This seems
+ * like overkill though and could cause
+ * memory waste.
+ */
+ max_index = allocator->max_index;
+ ref = &allocator->free[index];
+ i = index;
+ while (*ref == NULL && i < max_index) {
+ ref++;
+ i++;
+ }
+
+ if ((node = *ref) != NULL) {
+ /* If we have found a node and it doesn't have any
+ * nodes waiting in line behind it _and_ we are on
+ * the highest available index, find the new highest
+ * available index
+ */
+ if ((*ref = node->next) == NULL && i >= max_index) {
+ do {
+ ref--;
+ max_index--;
+ }
+ while (*ref == NULL && max_index > 0);
+
+ allocator->max_index = max_index;
+ }
+
+ allocator->current_free_index += node->index + 1;
+ if (allocator->current_free_index > allocator->max_free_index)
+ allocator->current_free_index = allocator->max_free_index;
+
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_unlock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+
+ node->next = NULL;
+ node->first_avail = (char *)node + APR_MEMNODE_T_SIZE;
+
+ return node;
+ }
+
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_unlock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+ }
+
+ /* If we found nothing, seek the sink (at index 0), if
+ * it is not empty.
+ */
+ else if (allocator->free[0]) {
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_lock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+
+ /* Walk the free list to see if there are
+ * any nodes on it of the requested size
+ */
+ ref = &allocator->free[0];
+ while ((node = *ref) != NULL && index > node->index)
+ ref = &node->next;
+
+ if (node) {
+ *ref = node->next;
+
+ allocator->current_free_index += node->index + 1;
+ if (allocator->current_free_index > allocator->max_free_index)
+ allocator->current_free_index = allocator->max_free_index;
+
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_unlock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+
+ node->next = NULL;
+ node->first_avail = (char *)node + APR_MEMNODE_T_SIZE;
+
+ return node;
+ }
+
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_unlock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+ }
+
+ /* If we haven't got a suitable node, malloc a new one
+ * and initialize it.
+ */
+#if APR_ALLOCATOR_USES_MMAP
+ if ((node = mmap(NULL, size, PROT_READ|PROT_WRITE,
+ MAP_PRIVATE|MAP_ANON, -1, 0)) == MAP_FAILED)
+#else
+ if ((node = malloc(size)) == NULL)
+#endif
+ return NULL;
+
+ node->next = NULL;
+ node->index = (APR_UINT32_TRUNC_CAST)index;
+ node->first_avail = (char *)node + APR_MEMNODE_T_SIZE;
+ node->endp = (char *)node + size;
+
+ return node;
+}
+
+static APR_INLINE
+void allocator_free(apr_allocator_t *allocator, apr_memnode_t *node)
+{
+ apr_memnode_t *next, *freelist = NULL;
+ apr_uint32_t index, max_index;
+ apr_uint32_t max_free_index, current_free_index;
+
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_lock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+
+ max_index = allocator->max_index;
+ max_free_index = allocator->max_free_index;
+ current_free_index = allocator->current_free_index;
+
+ /* Walk the list of submitted nodes and free them one by one,
+ * shoving them in the right 'size' buckets as we go.
+ */
+ do {
+ next = node->next;
+ index = node->index;
+
+ if (max_free_index != APR_ALLOCATOR_MAX_FREE_UNLIMITED
+ && index + 1 > current_free_index) {
+ node->next = freelist;
+ freelist = node;
+ }
+ else if (index < MAX_INDEX) {
+ /* Add the node to the appropiate 'size' bucket. Adjust
+ * the max_index when appropiate.
+ */
+ if ((node->next = allocator->free[index]) == NULL
+ && index > max_index) {
+ max_index = index;
+ }
+ allocator->free[index] = node;
+ if (current_free_index >= index + 1)
+ current_free_index -= index + 1;
+ else
+ current_free_index = 0;
+ }
+ else {
+ /* This node is too large to keep in a specific size bucket,
+ * just add it to the sink (at index 0).
+ */
+ node->next = allocator->free[0];
+ allocator->free[0] = node;
+ if (current_free_index >= index + 1)
+ current_free_index -= index + 1;
+ else
+ current_free_index = 0;
+ }
+ } while ((node = next) != NULL);
+
+ allocator->max_index = max_index;
+ allocator->current_free_index = current_free_index;
+
+#if APR_HAS_THREADS
+ if (allocator->mutex)
+ apr_thread_mutex_unlock(allocator->mutex);
+#endif /* APR_HAS_THREADS */
+
+ while (freelist != NULL) {
+ node = freelist;
+ freelist = node->next;
+#if APR_ALLOCATOR_USES_MMAP
+ munmap(node, (node->index+1) << BOUNDARY_INDEX);
+#else
+ free(node);
+#endif
+ }
+}
+
+APR_DECLARE(apr_memnode_t *) apr_allocator_alloc(apr_allocator_t *allocator,
+ apr_size_t size)
+{
+ return allocator_alloc(allocator, size);
+}
+
+APR_DECLARE(void) apr_allocator_free(apr_allocator_t *allocator,
+ apr_memnode_t *node)
+{
+ allocator_free(allocator, node);
+}
+
+
+
+/*
+ * Debug level
+ */
+
+#define APR_POOL_DEBUG_GENERAL 0x01
+#define APR_POOL_DEBUG_VERBOSE 0x02
+#define APR_POOL_DEBUG_LIFETIME 0x04
+#define APR_POOL_DEBUG_OWNER 0x08
+#define APR_POOL_DEBUG_VERBOSE_ALLOC 0x10
+
+#define APR_POOL_DEBUG_VERBOSE_ALL (APR_POOL_DEBUG_VERBOSE \
+ | APR_POOL_DEBUG_VERBOSE_ALLOC)
+
+
+/*
+ * Structures
+ */
+
+typedef struct cleanup_t cleanup_t;
+
+/** A list of processes */
+struct process_chain {
+ /** The process ID */
+ apr_proc_t *proc;
+ apr_kill_conditions_e kill_how;
+ /** The next process in the list */
+ struct process_chain *next;
+};
+
+
+#if APR_POOL_DEBUG
+
+typedef struct debug_node_t debug_node_t;
+
+struct debug_node_t {
+ debug_node_t *next;
+ apr_uint32_t index;
+ void *beginp[64];
+ void *endp[64];
+};
+
+#define SIZEOF_DEBUG_NODE_T APR_ALIGN_DEFAULT(sizeof(debug_node_t))
+
+#endif /* APR_POOL_DEBUG */
+
+/* The ref field in the apr_pool_t struct holds a
+ * pointer to the pointer referencing this pool.
+ * It is used for parent, child, sibling management.
+ * Look at apr_pool_create_ex() and apr_pool_destroy()
+ * to see how it is used.
+ */
+struct apr_pool_t {
+ apr_pool_t *parent;
+ apr_pool_t *child;
+ apr_pool_t *sibling;
+ apr_pool_t **ref;
+ cleanup_t *cleanups;
+ cleanup_t *free_cleanups;
+ apr_allocator_t *allocator;
+ struct process_chain *subprocesses;
+ apr_abortfunc_t abort_fn;
+ apr_hash_t *user_data;
+ const char *tag;
+
+#if !APR_POOL_DEBUG
+ apr_memnode_t *active;
+ apr_memnode_t *self; /* The node containing the pool itself */
+ char *self_first_avail;
+
+#else /* APR_POOL_DEBUG */
+ apr_pool_t *joined; /* the caller has guaranteed that this pool
+ * will survive as long as ->joined */
+ debug_node_t *nodes;
+ const char *file_line;
+ apr_uint32_t creation_flags;
+ unsigned int stat_alloc;
+ unsigned int stat_total_alloc;
+ unsigned int stat_clear;
+#if APR_HAS_THREADS
+ apr_os_thread_t owner;
+ apr_thread_mutex_t *mutex;
+#endif /* APR_HAS_THREADS */
+#endif /* APR_POOL_DEBUG */
+#ifdef NETWARE
+ apr_os_proc_t owner_proc;
+#endif /* defined(NETWARE) */
+ cleanup_t *pre_cleanups;
+};
+
+#define SIZEOF_POOL_T APR_ALIGN_DEFAULT(sizeof(apr_pool_t))
+
+
+/*
+ * Variables
+ */
+
+static apr_byte_t apr_pools_initialized = 0;
+static apr_pool_t *global_pool = NULL;
+
+#if !APR_POOL_DEBUG
+static apr_allocator_t *global_allocator = NULL;
+#endif /* !APR_POOL_DEBUG */
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+static apr_file_t *file_stderr = NULL;
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+
+/*
+ * Local functions
+ */
+
+static void run_cleanups(cleanup_t **c);
+static void free_proc_chain(struct process_chain *procs);
+
+#if APR_POOL_DEBUG
+static void pool_destroy_debug(apr_pool_t *pool, const char *file_line);
+#endif
+
+#if !APR_POOL_DEBUG
+/*
+ * Initialization
+ */
+
+APR_DECLARE(apr_status_t) apr_pool_initialize(void)
+{
+ apr_status_t rv;
+
+ if (apr_pools_initialized++)
+ return APR_SUCCESS;
+
+#if APR_ALLOCATOR_USES_MMAP && defined(_SC_PAGESIZE)
+ boundary_size = sysconf(_SC_PAGESIZE);
+ boundary_index = 12;
+ while ( (1 << boundary_index) < boundary_size)
+ boundary_index++;
+ boundary_size = (1 << boundary_index);
+#endif
+
+ if ((rv = apr_allocator_create(&global_allocator)) != APR_SUCCESS) {
+ apr_pools_initialized = 0;
+ return rv;
+ }
+
+ if ((rv = apr_pool_create_ex(&global_pool, NULL, NULL,
+ global_allocator)) != APR_SUCCESS) {
+ apr_allocator_destroy(global_allocator);
+ global_allocator = NULL;
+ apr_pools_initialized = 0;
+ return rv;
+ }
+
+ apr_pool_tag(global_pool, "apr_global_pool");
+
+ /* This has to happen here because mutexes might be backed by
+ * atomics. It used to be snug and safe in apr_initialize().
+ *
+ * Warning: apr_atomic_init() must always be called, by any
+ * means possible, from apr_initialize().
+ */
+ if ((rv = apr_atomic_init(global_pool)) != APR_SUCCESS) {
+ return rv;
+ }
+
+#if APR_HAS_THREADS
+ {
+ apr_thread_mutex_t *mutex;
+
+ if ((rv = apr_thread_mutex_create(&mutex,
+ APR_THREAD_MUTEX_DEFAULT,
+ global_pool)) != APR_SUCCESS) {
+ return rv;
+ }
+
+ apr_allocator_mutex_set(global_allocator, mutex);
+ }
+#endif /* APR_HAS_THREADS */
+
+ apr_allocator_owner_set(global_allocator, global_pool);
+
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(void) apr_pool_terminate(void)
+{
+ if (!apr_pools_initialized)
+ return;
+
+ if (--apr_pools_initialized)
+ return;
+
+ apr_pool_destroy(global_pool); /* This will also destroy the mutex */
+ global_pool = NULL;
+
+ global_allocator = NULL;
+}
+
+
+/* Node list management helper macros; list_insert() inserts 'node'
+ * before 'point'. */
+#define list_insert(node, point) do { \
+ node->ref = point->ref; \
+ *node->ref = node; \
+ node->next = point; \
+ point->ref = &node->next; \
+} while (0)
+
+/* list_remove() removes 'node' from its list. */
+#define list_remove(node) do { \
+ *node->ref = node->next; \
+ node->next->ref = node->ref; \
+} while (0)
+
+/* Returns the amount of free space in the given node. */
+#define node_free_space(node_) ((apr_size_t)(node_->endp - node_->first_avail))
+
+/*
+ * Memory allocation
+ */
+
+APR_DECLARE(void *) apr_palloc(apr_pool_t *pool, apr_size_t in_size)
+{
+ apr_memnode_t *active, *node;
+ void *mem;
+ apr_size_t size, free_index;
+
+ size = APR_ALIGN_DEFAULT(in_size);
+ if (size < in_size) {
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+ active = pool->active;
+
+ /* If the active node has enough bytes left, use it. */
+ if (size <= node_free_space(active)) {
+ mem = active->first_avail;
+ active->first_avail += size;
+
+ return mem;
+ }
+
+ node = active->next;
+ if (size <= node_free_space(node)) {
+ list_remove(node);
+ }
+ else {
+ if ((node = allocator_alloc(pool->allocator, size)) == NULL) {
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+ }
+
+ node->free_index = 0;
+
+ mem = node->first_avail;
+ node->first_avail += size;
+
+ list_insert(node, active);
+
+ pool->active = node;
+
+ free_index = (APR_ALIGN(active->endp - active->first_avail + 1,
+ BOUNDARY_SIZE) - BOUNDARY_SIZE) >> BOUNDARY_INDEX;
+
+ active->free_index = (APR_UINT32_TRUNC_CAST)free_index;
+ node = active->next;
+ if (free_index >= node->free_index)
+ return mem;
+
+ do {
+ node = node->next;
+ }
+ while (free_index < node->free_index);
+
+ list_remove(active);
+ list_insert(active, node);
+
+ return mem;
+}
+
+/* Provide an implementation of apr_pcalloc for backward compatibility
+ * with code built before apr_pcalloc was a macro
+ */
+
+#ifdef apr_pcalloc
+#undef apr_pcalloc
+#endif
+
+APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size);
+APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size)
+{
+ void *mem;
+
+ if ((mem = apr_palloc(pool, size)) != NULL) {
+ memset(mem, 0, size);
+ }
+
+ return mem;
+}
+
+
+/*
+ * Pool creation/destruction
+ */
+
+APR_DECLARE(void) apr_pool_clear(apr_pool_t *pool)
+{
+ apr_memnode_t *active;
+
+ /* Run pre destroy cleanups */
+ run_cleanups(&pool->pre_cleanups);
+ pool->pre_cleanups = NULL;
+
+ /* Destroy the subpools. The subpools will detach themselves from
+ * this pool thus this loop is safe and easy.
+ */
+ while (pool->child)
+ apr_pool_destroy(pool->child);
+
+ /* Run cleanups */
+ run_cleanups(&pool->cleanups);
+ pool->cleanups = NULL;
+ pool->free_cleanups = NULL;
+
+ /* Free subprocesses */
+ free_proc_chain(pool->subprocesses);
+ pool->subprocesses = NULL;
+
+ /* Clear the user data. */
+ pool->user_data = NULL;
+
+ /* Find the node attached to the pool structure, reset it, make
+ * it the active node and free the rest of the nodes.
+ */
+ active = pool->active = pool->self;
+ active->first_avail = pool->self_first_avail;
+
+ if (active->next == active)
+ return;
+
+ *active->ref = NULL;
+ allocator_free(pool->allocator, active->next);
+ active->next = active;
+ active->ref = &active->next;
+}
+
+APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool)
+{
+ apr_memnode_t *active;
+ apr_allocator_t *allocator;
+
+ /* Run pre destroy cleanups */
+ run_cleanups(&pool->pre_cleanups);
+ pool->pre_cleanups = NULL;
+
+ /* Destroy the subpools. The subpools will detach themselve from
+ * this pool thus this loop is safe and easy.
+ */
+ while (pool->child)
+ apr_pool_destroy(pool->child);
+
+ /* Run cleanups */
+ run_cleanups(&pool->cleanups);
+
+ /* Free subprocesses */
+ free_proc_chain(pool->subprocesses);
+
+ /* Remove the pool from the parents child list */
+ if (pool->parent) {
+#if APR_HAS_THREADS
+ apr_thread_mutex_t *mutex;
+
+ if ((mutex = apr_allocator_mutex_get(pool->parent->allocator)) != NULL)
+ apr_thread_mutex_lock(mutex);
+#endif /* APR_HAS_THREADS */
+
+ if ((*pool->ref = pool->sibling) != NULL)
+ pool->sibling->ref = pool->ref;
+
+#if APR_HAS_THREADS
+ if (mutex)
+ apr_thread_mutex_unlock(mutex);
+#endif /* APR_HAS_THREADS */
+ }
+
+ /* Find the block attached to the pool structure. Save a copy of the
+ * allocator pointer, because the pool struct soon will be no more.
+ */
+ allocator = pool->allocator;
+ active = pool->self;
+ *active->ref = NULL;
+
+#if APR_HAS_THREADS
+ if (apr_allocator_owner_get(allocator) == pool) {
+ /* Make sure to remove the lock, since it is highly likely to
+ * be invalid now.
+ */
+ apr_allocator_mutex_set(allocator, NULL);
+ }
+#endif /* APR_HAS_THREADS */
+
+ /* Free all the nodes in the pool (including the node holding the
+ * pool struct), by giving them back to the allocator.
+ */
+ allocator_free(allocator, active);
+
+ /* If this pool happens to be the owner of the allocator, free
+ * everything in the allocator (that includes the pool struct
+ * and the allocator). Don't worry about destroying the optional mutex
+ * in the allocator, it will have been destroyed by the cleanup function.
+ */
+ if (apr_allocator_owner_get(allocator) == pool) {
+ apr_allocator_destroy(allocator);
+ }
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
+ apr_pool_t *parent,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator)
+{
+ apr_pool_t *pool;
+ apr_memnode_t *node;
+
+ *newpool = NULL;
+
+ if (!parent)
+ parent = global_pool;
+
+ /* parent will always be non-NULL here except the first time a
+ * pool is created, in which case allocator is guaranteed to be
+ * non-NULL. */
+
+ if (!abort_fn && parent)
+ abort_fn = parent->abort_fn;
+
+ if (allocator == NULL)
+ allocator = parent->allocator;
+
+ if ((node = allocator_alloc(allocator,
+ MIN_ALLOC - APR_MEMNODE_T_SIZE)) == NULL) {
+ if (abort_fn)
+ abort_fn(APR_ENOMEM);
+
+ return APR_ENOMEM;
+ }
+
+ node->next = node;
+ node->ref = &node->next;
+
+ pool = (apr_pool_t *)node->first_avail;
+ node->first_avail = pool->self_first_avail = (char *)pool + SIZEOF_POOL_T;
+
+ pool->allocator = allocator;
+ pool->active = pool->self = node;
+ pool->abort_fn = abort_fn;
+ pool->child = NULL;
+ pool->cleanups = NULL;
+ pool->free_cleanups = NULL;
+ pool->pre_cleanups = NULL;
+ pool->subprocesses = NULL;
+ pool->user_data = NULL;
+ pool->tag = NULL;
+
+#ifdef NETWARE
+ pool->owner_proc = (apr_os_proc_t)getnlmhandle();
+#endif /* defined(NETWARE) */
+
+ if ((pool->parent = parent) != NULL) {
+#if APR_HAS_THREADS
+ apr_thread_mutex_t *mutex;
+
+ if ((mutex = apr_allocator_mutex_get(parent->allocator)) != NULL)
+ apr_thread_mutex_lock(mutex);
+#endif /* APR_HAS_THREADS */
+
+ if ((pool->sibling = parent->child) != NULL)
+ pool->sibling->ref = &pool->sibling;
+
+ parent->child = pool;
+ pool->ref = &parent->child;
+
+#if APR_HAS_THREADS
+ if (mutex)
+ apr_thread_mutex_unlock(mutex);
+#endif /* APR_HAS_THREADS */
+ }
+ else {
+ pool->sibling = NULL;
+ pool->ref = NULL;
+ }
+
+ *newpool = pool;
+
+ return APR_SUCCESS;
+}
+
+/* Deprecated. Renamed to apr_pool_create_unmanaged_ex
+ */
+APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator)
+{
+ return apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator);
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator)
+{
+ apr_pool_t *pool;
+ apr_memnode_t *node;
+ apr_allocator_t *pool_allocator;
+
+ *newpool = NULL;
+
+ if (!apr_pools_initialized)
+ return APR_ENOPOOL;
+ if ((pool_allocator = allocator) == NULL) {
+ if ((pool_allocator = malloc(SIZEOF_ALLOCATOR_T)) == NULL) {
+ if (abort_fn)
+ abort_fn(APR_ENOMEM);
+
+ return APR_ENOMEM;
+ }
+ memset(pool_allocator, 0, SIZEOF_ALLOCATOR_T);
+ pool_allocator->max_free_index = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
+ }
+ if ((node = allocator_alloc(pool_allocator,
+ MIN_ALLOC - APR_MEMNODE_T_SIZE)) == NULL) {
+ if (abort_fn)
+ abort_fn(APR_ENOMEM);
+
+ return APR_ENOMEM;
+ }
+
+ node->next = node;
+ node->ref = &node->next;
+
+ pool = (apr_pool_t *)node->first_avail;
+ node->first_avail = pool->self_first_avail = (char *)pool + SIZEOF_POOL_T;
+
+ pool->allocator = pool_allocator;
+ pool->active = pool->self = node;
+ pool->abort_fn = abort_fn;
+ pool->child = NULL;
+ pool->cleanups = NULL;
+ pool->free_cleanups = NULL;
+ pool->pre_cleanups = NULL;
+ pool->subprocesses = NULL;
+ pool->user_data = NULL;
+ pool->tag = NULL;
+ pool->parent = NULL;
+ pool->sibling = NULL;
+ pool->ref = NULL;
+
+#ifdef NETWARE
+ pool->owner_proc = (apr_os_proc_t)getnlmhandle();
+#endif /* defined(NETWARE) */
+ if (!allocator)
+ pool_allocator->owner = pool;
+ *newpool = pool;
+
+ return APR_SUCCESS;
+}
+
+/*
+ * "Print" functions
+ */
+
+/*
+ * apr_psprintf is implemented by writing directly into the current
+ * block of the pool, starting right at first_avail. If there's
+ * insufficient room, then a new block is allocated and the earlier
+ * output is copied over. The new block isn't linked into the pool
+ * until all the output is done.
+ *
+ * Note that this is completely safe because nothing else can
+ * allocate in this apr_pool_t while apr_psprintf is running. alarms are
+ * blocked, and the only thing outside of apr_pools.c that's invoked
+ * is apr_vformatter -- which was purposefully written to be
+ * self-contained with no callouts.
+ */
+
+struct psprintf_data {
+ apr_vformatter_buff_t vbuff;
+ apr_memnode_t *node;
+ apr_pool_t *pool;
+ apr_byte_t got_a_new_node;
+ apr_memnode_t *free;
+};
+
+#define APR_PSPRINTF_MIN_STRINGSIZE 32
+
+static int psprintf_flush(apr_vformatter_buff_t *vbuff)
+{
+ struct psprintf_data *ps = (struct psprintf_data *)vbuff;
+ apr_memnode_t *node, *active;
+ apr_size_t cur_len, size;
+ char *strp;
+ apr_pool_t *pool;
+ apr_size_t free_index;
+
+ pool = ps->pool;
+ active = ps->node;
+ strp = ps->vbuff.curpos;
+ cur_len = strp - active->first_avail;
+ size = cur_len << 1;
+
+ /* Make sure that we don't try to use a block that has less
+ * than APR_PSPRINTF_MIN_STRINGSIZE bytes left in it. This
+ * also catches the case where size == 0, which would result
+ * in reusing a block that can't even hold the NUL byte.
+ */
+ if (size < APR_PSPRINTF_MIN_STRINGSIZE)
+ size = APR_PSPRINTF_MIN_STRINGSIZE;
+
+ node = active->next;
+ if (!ps->got_a_new_node && size <= node_free_space(node)) {
+
+ list_remove(node);
+ list_insert(node, active);
+
+ node->free_index = 0;
+
+ pool->active = node;
+
+ free_index = (APR_ALIGN(active->endp - active->first_avail + 1,
+ BOUNDARY_SIZE) - BOUNDARY_SIZE) >> BOUNDARY_INDEX;
+
+ active->free_index = (APR_UINT32_TRUNC_CAST)free_index;
+ node = active->next;
+ if (free_index < node->free_index) {
+ do {
+ node = node->next;
+ }
+ while (free_index < node->free_index);
+
+ list_remove(active);
+ list_insert(active, node);
+ }
+
+ node = pool->active;
+ }
+ else {
+ if ((node = allocator_alloc(pool->allocator, size)) == NULL)
+ return -1;
+
+ if (ps->got_a_new_node) {
+ active->next = ps->free;
+ ps->free = active;
+ }
+
+ ps->got_a_new_node = 1;
+ }
+
+ memcpy(node->first_avail, active->first_avail, cur_len);
+
+ ps->node = node;
+ ps->vbuff.curpos = node->first_avail + cur_len;
+ ps->vbuff.endpos = node->endp - 1; /* Save a byte for NUL terminator */
+
+ return 0;
+}
+
+APR_DECLARE(char *) apr_pvsprintf(apr_pool_t *pool, const char *fmt, va_list ap)
+{
+ struct psprintf_data ps;
+ char *strp;
+ apr_size_t size;
+ apr_memnode_t *active, *node;
+ apr_size_t free_index;
+
+ ps.node = active = pool->active;
+ ps.pool = pool;
+ ps.vbuff.curpos = ps.node->first_avail;
+
+ /* Save a byte for the NUL terminator */
+ ps.vbuff.endpos = ps.node->endp - 1;
+ ps.got_a_new_node = 0;
+ ps.free = NULL;
+
+ /* Make sure that the first node passed to apr_vformatter has at least
+ * room to hold the NUL terminator.
+ */
+ if (ps.node->first_avail == ps.node->endp) {
+ if (psprintf_flush(&ps.vbuff) == -1) {
+ if (pool->abort_fn) {
+ pool->abort_fn(APR_ENOMEM);
+ }
+
+ return NULL;
+ }
+ }
+
+ if (apr_vformatter(psprintf_flush, &ps.vbuff, fmt, ap) == -1) {
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+
+ strp = ps.vbuff.curpos;
+ *strp++ = '\0';
+
+ size = strp - ps.node->first_avail;
+ size = APR_ALIGN_DEFAULT(size);
+ strp = ps.node->first_avail;
+ ps.node->first_avail += size;
+
+ if (ps.free)
+ allocator_free(pool->allocator, ps.free);
+
+ /*
+ * Link the node in if it's a new one
+ */
+ if (!ps.got_a_new_node)
+ return strp;
+
+ active = pool->active;
+ node = ps.node;
+
+ node->free_index = 0;
+
+ list_insert(node, active);
+
+ pool->active = node;
+
+ free_index = (APR_ALIGN(active->endp - active->first_avail + 1,
+ BOUNDARY_SIZE) - BOUNDARY_SIZE) >> BOUNDARY_INDEX;
+
+ active->free_index = (APR_UINT32_TRUNC_CAST)free_index;
+ node = active->next;
+
+ if (free_index >= node->free_index)
+ return strp;
+
+ do {
+ node = node->next;
+ }
+ while (free_index < node->free_index);
+
+ list_remove(active);
+ list_insert(active, node);
+
+ return strp;
+}
+
+
+#else /* APR_POOL_DEBUG */
+/*
+ * Debug helper functions
+ */
+
+
+/*
+ * Walk the pool tree rooted at pool, depth first. When fn returns
+ * anything other than 0, abort the traversal and return the value
+ * returned by fn.
+ */
+static int apr_pool_walk_tree(apr_pool_t *pool,
+ int (*fn)(apr_pool_t *pool, void *data),
+ void *data)
+{
+ int rv;
+ apr_pool_t *child;
+
+ rv = fn(pool, data);
+ if (rv)
+ return rv;
+
+#if APR_HAS_THREADS
+ if (pool->mutex) {
+ apr_thread_mutex_lock(pool->mutex);
+ }
+#endif /* APR_HAS_THREADS */
+
+ child = pool->child;
+ while (child) {
+ rv = apr_pool_walk_tree(child, fn, data);
+ if (rv)
+ break;
+
+ child = child->sibling;
+ }
+
+#if APR_HAS_THREADS
+ if (pool->mutex) {
+ apr_thread_mutex_unlock(pool->mutex);
+ }
+#endif /* APR_HAS_THREADS */
+
+ return rv;
+}
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+static void apr_pool_log_event(apr_pool_t *pool, const char *event,
+ const char *file_line, int deref)
+{
+ if (file_stderr) {
+ if (deref) {
+ apr_file_printf(file_stderr,
+ "POOL DEBUG: "
+ "[%lu"
+#if APR_HAS_THREADS
+ "/%lu"
+#endif /* APR_HAS_THREADS */
+ "] "
+ "%7s "
+ "(%10lu/%10lu/%10lu) "
+ "0x%pp \"%s\" "
+ "<%s> "
+ "(%u/%u/%u) "
+ "\n",
+ (unsigned long)getpid(),
+#if APR_HAS_THREADS
+ (unsigned long)apr_os_thread_current(),
+#endif /* APR_HAS_THREADS */
+ event,
+ (unsigned long)apr_pool_num_bytes(pool, 0),
+ (unsigned long)apr_pool_num_bytes(pool, 1),
+ (unsigned long)apr_pool_num_bytes(global_pool, 1),
+ pool, pool->tag,
+ file_line,
+ pool->stat_alloc, pool->stat_total_alloc, pool->stat_clear);
+ }
+ else {
+ apr_file_printf(file_stderr,
+ "POOL DEBUG: "
+ "[%lu"
+#if APR_HAS_THREADS
+ "/%lu"
+#endif /* APR_HAS_THREADS */
+ "] "
+ "%7s "
+ " "
+ "0x%pp "
+ "<%s> "
+ "\n",
+ (unsigned long)getpid(),
+#if APR_HAS_THREADS
+ (unsigned long)apr_os_thread_current(),
+#endif /* APR_HAS_THREADS */
+ event,
+ pool,
+ file_line);
+ }
+ }
+}
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME)
+static int pool_is_child_of(apr_pool_t *parent, void *data)
+{
+ apr_pool_t *pool = (apr_pool_t *)data;
+
+ return (pool == parent);
+}
+
+static int apr_pool_is_child_of(apr_pool_t *pool, apr_pool_t *parent)
+{
+ if (parent == NULL)
+ return 0;
+
+ return apr_pool_walk_tree(parent, pool_is_child_of, pool);
+}
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME) */
+
+static void apr_pool_check_integrity(apr_pool_t *pool)
+{
+ /* Rule of thumb: use of the global pool is always
+ * ok, since the only user is apr_pools.c. Unless
+ * people have searched for the top level parent and
+ * started to use that...
+ */
+ if (pool == global_pool || global_pool == NULL)
+ return;
+
+ /* Lifetime
+ * This basically checks to see if the pool being used is still
+ * a relative to the global pool. If not it was previously
+ * destroyed, in which case we abort().
+ */
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME)
+ if (!apr_pool_is_child_of(pool, global_pool)) {
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+ apr_pool_log_event(pool, "LIFE",
+ __FILE__ ":apr_pool_integrity check", 0);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+ abort();
+ }
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME) */
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_OWNER)
+#if APR_HAS_THREADS
+ if (!apr_os_thread_equal(pool->owner, apr_os_thread_current())) {
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+ apr_pool_log_event(pool, "THREAD",
+ __FILE__ ":apr_pool_integrity check", 0);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+ abort();
+ }
+#endif /* APR_HAS_THREADS */
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_OWNER) */
+}
+
+
+/*
+ * Initialization (debug)
+ */
+
+APR_DECLARE(apr_status_t) apr_pool_initialize(void)
+{
+ apr_status_t rv;
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+ char *logpath;
+ apr_file_t *debug_log = NULL;
+#endif
+
+ if (apr_pools_initialized++)
+ return APR_SUCCESS;
+
+#if APR_ALLOCATOR_USES_MMAP && defined(_SC_PAGESIZE)
+ boundary_size = sysconf(_SC_PAGESIZE);
+ boundary_index = 12;
+ while ( (1 << boundary_index) < boundary_size)
+ boundary_index++;
+ boundary_size = (1 << boundary_index);
+#endif
+
+ /* Since the debug code works a bit differently then the
+ * regular pools code, we ask for a lock here. The regular
+ * pools code has got this lock embedded in the global
+ * allocator, a concept unknown to debug mode.
+ */
+ if ((rv = apr_pool_create_ex(&global_pool, NULL, NULL,
+ NULL)) != APR_SUCCESS) {
+ return rv;
+ }
+
+ apr_pool_tag(global_pool, "APR global pool");
+
+ apr_pools_initialized = 1;
+
+ /* This has to happen here because mutexes might be backed by
+ * atomics. It used to be snug and safe in apr_initialize().
+ */
+ if ((rv = apr_atomic_init(global_pool)) != APR_SUCCESS) {
+ return rv;
+ }
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+ rv = apr_env_get(&logpath, "APR_POOL_DEBUG_LOG", global_pool);
+
+ /* Don't pass file_stderr directly to apr_file_open() here, since
+ * apr_file_open() can call back to apr_pool_log_event() and that
+ * may attempt to use then then non-NULL but partially set up file
+ * object. */
+ if (rv == APR_SUCCESS) {
+ apr_file_open(&debug_log, logpath, APR_APPEND|APR_WRITE|APR_CREATE,
+ APR_OS_DEFAULT, global_pool);
+ }
+ else {
+ apr_file_open_stderr(&debug_log, global_pool);
+ }
+
+ /* debug_log is now a file handle. */
+ file_stderr = debug_log;
+
+ if (file_stderr) {
+ apr_file_printf(file_stderr,
+ "POOL DEBUG: [PID"
+#if APR_HAS_THREADS
+ "/TID"
+#endif /* APR_HAS_THREADS */
+ "] ACTION (SIZE /POOL SIZE /TOTAL SIZE) "
+ "POOL \"TAG\" <__FILE__:__LINE__> (ALLOCS/TOTAL ALLOCS/CLEARS)\n");
+
+ apr_pool_log_event(global_pool, "GLOBAL", __FILE__ ":apr_pool_initialize", 0);
+ }
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(void) apr_pool_terminate(void)
+{
+ if (!apr_pools_initialized)
+ return;
+
+ if (--apr_pools_initialized)
+ return;
+
+ apr_pool_destroy(global_pool); /* This will also destroy the mutex */
+ global_pool = NULL;
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+ file_stderr = NULL;
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+}
+
+
+/*
+ * Memory allocation (debug)
+ */
+
+static void *pool_alloc(apr_pool_t *pool, apr_size_t size)
+{
+ debug_node_t *node;
+ void *mem;
+
+ if ((mem = malloc(size)) == NULL) {
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+
+ node = pool->nodes;
+ if (node == NULL || node->index == 64) {
+ if ((node = malloc(SIZEOF_DEBUG_NODE_T)) == NULL) {
+ free(mem);
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+
+ memset(node, 0, SIZEOF_DEBUG_NODE_T);
+
+ node->next = pool->nodes;
+ pool->nodes = node;
+ node->index = 0;
+ }
+
+ node->beginp[node->index] = mem;
+ node->endp[node->index] = (char *)mem + size;
+ node->index++;
+
+ pool->stat_alloc++;
+ pool->stat_total_alloc++;
+
+ return mem;
+}
+
+APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *pool, apr_size_t size,
+ const char *file_line)
+{
+ void *mem;
+
+ apr_pool_check_integrity(pool);
+
+ mem = pool_alloc(pool, size);
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC)
+ apr_pool_log_event(pool, "PALLOC", file_line, 1);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC) */
+
+ return mem;
+}
+
+APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *pool, apr_size_t size,
+ const char *file_line)
+{
+ void *mem;
+
+ apr_pool_check_integrity(pool);
+
+ mem = pool_alloc(pool, size);
+ memset(mem, 0, size);
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC)
+ apr_pool_log_event(pool, "PCALLOC", file_line, 1);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC) */
+
+ return mem;
+}
+
+
+/*
+ * Pool creation/destruction (debug)
+ */
+
+#define POOL_POISON_BYTE 'A'
+
+static void pool_clear_debug(apr_pool_t *pool, const char *file_line)
+{
+ debug_node_t *node;
+ apr_uint32_t index;
+
+ /* Run pre destroy cleanups */
+ run_cleanups(&pool->pre_cleanups);
+ pool->pre_cleanups = NULL;
+
+ /* Destroy the subpools. The subpools will detach themselves from
+ * this pool thus this loop is safe and easy.
+ */
+ while (pool->child)
+ pool_destroy_debug(pool->child, file_line);
+
+ /* Run cleanups */
+ run_cleanups(&pool->cleanups);
+ pool->free_cleanups = NULL;
+ pool->cleanups = NULL;
+
+ /* If new child pools showed up, this is a reason to raise a flag */
+ if (pool->child)
+ abort();
+
+ /* Free subprocesses */
+ free_proc_chain(pool->subprocesses);
+ pool->subprocesses = NULL;
+
+ /* Clear the user data. */
+ pool->user_data = NULL;
+
+ /* Free the blocks, scribbling over them first to help highlight
+ * use-after-free issues. */
+ while ((node = pool->nodes) != NULL) {
+ pool->nodes = node->next;
+
+ for (index = 0; index < node->index; index++) {
+ memset(node->beginp[index], POOL_POISON_BYTE,
+ (char *)node->endp[index] - (char *)node->beginp[index]);
+ free(node->beginp[index]);
+ }
+
+ memset(node, POOL_POISON_BYTE, SIZEOF_DEBUG_NODE_T);
+ free(node);
+ }
+
+ pool->stat_alloc = 0;
+ pool->stat_clear++;
+}
+
+APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *pool,
+ const char *file_line)
+{
+#if APR_HAS_THREADS
+ apr_thread_mutex_t *mutex = NULL;
+#endif
+
+ apr_pool_check_integrity(pool);
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
+ apr_pool_log_event(pool, "CLEAR", file_line, 1);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
+
+#if APR_HAS_THREADS
+ if (pool->parent != NULL)
+ mutex = pool->parent->mutex;
+
+ /* Lock the parent mutex before clearing so that if we have our
+ * own mutex it won't be accessed by apr_pool_walk_tree after
+ * it has been destroyed.
+ */
+ if (mutex != NULL && mutex != pool->mutex) {
+ apr_thread_mutex_lock(mutex);
+ }
+#endif
+
+ pool_clear_debug(pool, file_line);
+
+#if APR_HAS_THREADS
+ /* If we had our own mutex, it will have been destroyed by
+ * the registered cleanups. Recreate the mutex. Unlock
+ * the mutex we obtained above.
+ */
+ if (mutex != pool->mutex) {
+ (void)apr_thread_mutex_create(&pool->mutex,
+ APR_THREAD_MUTEX_NESTED, pool);
+
+ if (mutex != NULL)
+ (void)apr_thread_mutex_unlock(mutex);
+ }
+#endif /* APR_HAS_THREADS */
+}
+
+static void pool_destroy_debug(apr_pool_t *pool, const char *file_line)
+{
+ apr_pool_check_integrity(pool);
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
+ apr_pool_log_event(pool, "DESTROY", file_line, 1);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
+
+ pool_clear_debug(pool, file_line);
+
+ /* Remove the pool from the parents child list */
+ if (pool->parent) {
+#if APR_HAS_THREADS
+ apr_thread_mutex_t *mutex;
+
+ if ((mutex = pool->parent->mutex) != NULL)
+ apr_thread_mutex_lock(mutex);
+#endif /* APR_HAS_THREADS */
+
+ if ((*pool->ref = pool->sibling) != NULL)
+ pool->sibling->ref = pool->ref;
+
+#if APR_HAS_THREADS
+ if (mutex)
+ apr_thread_mutex_unlock(mutex);
+#endif /* APR_HAS_THREADS */
+ }
+
+ if (pool->allocator != NULL
+ && apr_allocator_owner_get(pool->allocator) == pool) {
+ apr_allocator_destroy(pool->allocator);
+ }
+
+ /* Free the pool itself */
+ free(pool);
+}
+
+APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *pool,
+ const char *file_line)
+{
+ if (pool->joined) {
+ /* Joined pools must not be explicitly destroyed; the caller
+ * has broken the guarantee. */
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
+ apr_pool_log_event(pool, "LIFE",
+ __FILE__ ":apr_pool_destroy abort on joined", 0);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
+
+ abort();
+ }
+ pool_destroy_debug(pool, file_line);
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
+ apr_pool_t *parent,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator,
+ const char *file_line)
+{
+ apr_pool_t *pool;
+
+ *newpool = NULL;
+
+ if (!parent) {
+ parent = global_pool;
+ }
+ else {
+ apr_pool_check_integrity(parent);
+
+ if (!allocator)
+ allocator = parent->allocator;
+ }
+
+ if (!abort_fn && parent)
+ abort_fn = parent->abort_fn;
+
+ if ((pool = malloc(SIZEOF_POOL_T)) == NULL) {
+ if (abort_fn)
+ abort_fn(APR_ENOMEM);
+
+ return APR_ENOMEM;
+ }
+
+ memset(pool, 0, SIZEOF_POOL_T);
+
+ pool->allocator = allocator;
+ pool->abort_fn = abort_fn;
+ pool->tag = file_line;
+ pool->file_line = file_line;
+
+ if ((pool->parent = parent) != NULL) {
+#if APR_HAS_THREADS
+ if (parent->mutex)
+ apr_thread_mutex_lock(parent->mutex);
+#endif /* APR_HAS_THREADS */
+ if ((pool->sibling = parent->child) != NULL)
+ pool->sibling->ref = &pool->sibling;
+
+ parent->child = pool;
+ pool->ref = &parent->child;
+
+#if APR_HAS_THREADS
+ if (parent->mutex)
+ apr_thread_mutex_unlock(parent->mutex);
+#endif /* APR_HAS_THREADS */
+ }
+ else {
+ pool->sibling = NULL;
+ pool->ref = NULL;
+ }
+
+#if APR_HAS_THREADS
+ pool->owner = apr_os_thread_current();
+#endif /* APR_HAS_THREADS */
+#ifdef NETWARE
+ pool->owner_proc = (apr_os_proc_t)getnlmhandle();
+#endif /* defined(NETWARE) */
+
+
+ if (parent == NULL || parent->allocator != allocator) {
+#if APR_HAS_THREADS
+ apr_status_t rv;
+
+ /* No matter what the creation flags say, always create
+ * a lock. Without it integrity_check and apr_pool_num_bytes
+ * blow up (because they traverse pools child lists that
+ * possibly belong to another thread, in combination with
+ * the pool having no lock). However, this might actually
+ * hide problems like creating a child pool of a pool
+ * belonging to another thread.
+ */
+ if ((rv = apr_thread_mutex_create(&pool->mutex,
+ APR_THREAD_MUTEX_NESTED, pool)) != APR_SUCCESS) {
+ free(pool);
+ return rv;
+ }
+#endif /* APR_HAS_THREADS */
+ }
+ else {
+#if APR_HAS_THREADS
+ if (parent)
+ pool->mutex = parent->mutex;
+#endif /* APR_HAS_THREADS */
+ }
+
+ *newpool = pool;
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
+ apr_pool_log_event(pool, "CREATE", file_line, 1);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
+
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator,
+ const char *file_line)
+{
+ return apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator,
+ file_line);
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator,
+ const char *file_line)
+{
+ apr_pool_t *pool;
+ apr_allocator_t *pool_allocator;
+
+ *newpool = NULL;
+
+ if ((pool = malloc(SIZEOF_POOL_T)) == NULL) {
+ if (abort_fn)
+ abort_fn(APR_ENOMEM);
+
+ return APR_ENOMEM;
+ }
+
+ memset(pool, 0, SIZEOF_POOL_T);
+
+ pool->abort_fn = abort_fn;
+ pool->tag = file_line;
+ pool->file_line = file_line;
+
+#if APR_HAS_THREADS
+ pool->owner = apr_os_thread_current();
+#endif /* APR_HAS_THREADS */
+#ifdef NETWARE
+ pool->owner_proc = (apr_os_proc_t)getnlmhandle();
+#endif /* defined(NETWARE) */
+
+ if ((pool_allocator = allocator) == NULL) {
+ apr_status_t rv;
+ if ((rv = apr_allocator_create(&pool_allocator)) != APR_SUCCESS) {
+ if (abort_fn)
+ abort_fn(rv);
+ return rv;
+ }
+ pool_allocator->owner = pool;
+ }
+ pool->allocator = pool_allocator;
+
+ if (pool->allocator != allocator) {
+#if APR_HAS_THREADS
+ apr_status_t rv;
+
+ /* No matter what the creation flags say, always create
+ * a lock. Without it integrity_check and apr_pool_num_bytes
+ * blow up (because they traverse pools child lists that
+ * possibly belong to another thread, in combination with
+ * the pool having no lock). However, this might actually
+ * hide problems like creating a child pool of a pool
+ * belonging to another thread.
+ */
+ if ((rv = apr_thread_mutex_create(&pool->mutex,
+ APR_THREAD_MUTEX_NESTED, pool)) != APR_SUCCESS) {
+ free(pool);
+ return rv;
+ }
+#endif /* APR_HAS_THREADS */
+ }
+
+ *newpool = pool;
+
+#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
+ apr_pool_log_event(pool, "CREATE", file_line, 1);
+#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
+
+ return APR_SUCCESS;
+}
+
+/*
+ * "Print" functions (debug)
+ */
+
+struct psprintf_data {
+ apr_vformatter_buff_t vbuff;
+ char *mem;
+ apr_size_t size;
+};
+
+static int psprintf_flush(apr_vformatter_buff_t *vbuff)
+{
+ struct psprintf_data *ps = (struct psprintf_data *)vbuff;
+ apr_size_t size;
+
+ size = ps->vbuff.curpos - ps->mem;
+
+ ps->size <<= 1;
+ if ((ps->mem = realloc(ps->mem, ps->size)) == NULL)
+ return -1;
+
+ ps->vbuff.curpos = ps->mem + size;
+ ps->vbuff.endpos = ps->mem + ps->size - 1;
+
+ return 0;
+}
+
+APR_DECLARE(char *) apr_pvsprintf(apr_pool_t *pool, const char *fmt, va_list ap)
+{
+ struct psprintf_data ps;
+ debug_node_t *node;
+
+ apr_pool_check_integrity(pool);
+
+ ps.size = 64;
+ ps.mem = malloc(ps.size);
+ ps.vbuff.curpos = ps.mem;
+
+ /* Save a byte for the NUL terminator */
+ ps.vbuff.endpos = ps.mem + ps.size - 1;
+
+ if (apr_vformatter(psprintf_flush, &ps.vbuff, fmt, ap) == -1) {
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+
+ *ps.vbuff.curpos++ = '\0';
+
+ /*
+ * Link the node in
+ */
+ node = pool->nodes;
+ if (node == NULL || node->index == 64) {
+ if ((node = malloc(SIZEOF_DEBUG_NODE_T)) == NULL) {
+ if (pool->abort_fn)
+ pool->abort_fn(APR_ENOMEM);
+
+ return NULL;
+ }
+
+ node->next = pool->nodes;
+ pool->nodes = node;
+ node->index = 0;
+ }
+
+ node->beginp[node->index] = ps.mem;
+ node->endp[node->index] = ps.mem + ps.size;
+ node->index++;
+
+ return ps.mem;
+}
+
+
+/*
+ * Debug functions
+ */
+
+APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub)
+{
+#if APR_POOL_DEBUG
+ if (sub->parent != p) {
+ abort();
+ }
+ sub->joined = p;
+#endif
+}
+
+static int pool_find(apr_pool_t *pool, void *data)
+{
+ void **pmem = (void **)data;
+ debug_node_t *node;
+ apr_uint32_t index;
+
+ node = pool->nodes;
+
+ while (node) {
+ for (index = 0; index < node->index; index++) {
+ if (node->beginp[index] <= *pmem
+ && node->endp[index] > *pmem) {
+ *pmem = pool;
+ return 1;
+ }
+ }
+
+ node = node->next;
+ }
+
+ return 0;
+}
+
+APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem)
+{
+ void *pool = (void *)mem;
+
+ if (apr_pool_walk_tree(global_pool, pool_find, &pool))
+ return pool;
+
+ return NULL;
+}
+
+static int pool_num_bytes(apr_pool_t *pool, void *data)
+{
+ apr_size_t *psize = (apr_size_t *)data;
+ debug_node_t *node;
+ apr_uint32_t index;
+
+ node = pool->nodes;
+
+ while (node) {
+ for (index = 0; index < node->index; index++) {
+ *psize += (char *)node->endp[index] - (char *)node->beginp[index];
+ }
+
+ node = node->next;
+ }
+
+ return 0;
+}
+
+APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *pool, int recurse)
+{
+ apr_size_t size = 0;
+
+ if (!recurse) {
+ pool_num_bytes(pool, &size);
+
+ return size;
+ }
+
+ apr_pool_walk_tree(pool, pool_num_bytes, &size);
+
+ return size;
+}
+
+APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag)
+{
+}
+
+#endif /* !APR_POOL_DEBUG */
+
+#ifdef NETWARE
+void netware_pool_proc_cleanup ()
+{
+ apr_pool_t *pool = global_pool->child;
+ apr_os_proc_t owner_proc = (apr_os_proc_t)getnlmhandle();
+
+ while (pool) {
+ if (pool->owner_proc == owner_proc) {
+ apr_pool_destroy (pool);
+ pool = global_pool->child;
+ }
+ else {
+ pool = pool->sibling;
+ }
+ }
+ return;
+}
+#endif /* defined(NETWARE) */
+
+
+/*
+ * "Print" functions (common)
+ */
+
+APR_DECLARE_NONSTD(char *) apr_psprintf(apr_pool_t *p, const char *fmt, ...)
+{
+ va_list ap;
+ char *res;
+
+ va_start(ap, fmt);
+ res = apr_pvsprintf(p, fmt, ap);
+ va_end(ap);
+ return res;
+}
+
+/*
+ * Pool Properties
+ */
+
+APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abort_fn,
+ apr_pool_t *pool)
+{
+ pool->abort_fn = abort_fn;
+}
+
+APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool)
+{
+ return pool->abort_fn;
+}
+
+APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool)
+{
+#ifdef NETWARE
+ /* On NetWare, don't return the global_pool, return the application pool
+ as the top most pool */
+ if (pool->parent == global_pool)
+ return pool;
+ else
+#endif
+ return pool->parent;
+}
+
+APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool)
+{
+ return pool->allocator;
+}
+
+/* return TRUE if a is an ancestor of b
+ * NULL is considered an ancestor of all pools
+ */
+APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b)
+{
+ if (a == NULL)
+ return 1;
+
+#if APR_POOL_DEBUG
+ /* Find the pool with the longest lifetime guaranteed by the
+ * caller: */
+ while (a->joined) {
+ a = a->joined;
+ }
+#endif
+
+ while (b) {
+ if (a == b)
+ return 1;
+
+ b = b->parent;
+ }
+
+ return 0;
+}
+
+APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag)
+{
+ pool->tag = tag;
+}
+
+
+/*
+ * User data management
+ */
+
+APR_DECLARE(apr_status_t) apr_pool_userdata_set(const void *data, const char *key,
+ apr_status_t (*cleanup) (void *),
+ apr_pool_t *pool)
+{
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(pool);
+#endif /* APR_POOL_DEBUG */
+
+ if (pool->user_data == NULL)
+ pool->user_data = apr_hash_make(pool);
+
+ if (apr_hash_get(pool->user_data, key, APR_HASH_KEY_STRING) == NULL) {
+ char *new_key = apr_pstrdup(pool, key);
+ apr_hash_set(pool->user_data, new_key, APR_HASH_KEY_STRING, data);
+ }
+ else {
+ apr_hash_set(pool->user_data, key, APR_HASH_KEY_STRING, data);
+ }
+
+ if (cleanup)
+ apr_pool_cleanup_register(pool, data, cleanup, cleanup);
+
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(apr_status_t) apr_pool_userdata_setn(const void *data,
+ const char *key,
+ apr_status_t (*cleanup)(void *),
+ apr_pool_t *pool)
+{
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(pool);
+#endif /* APR_POOL_DEBUG */
+
+ if (pool->user_data == NULL)
+ pool->user_data = apr_hash_make(pool);
+
+ apr_hash_set(pool->user_data, key, APR_HASH_KEY_STRING, data);
+
+ if (cleanup)
+ apr_pool_cleanup_register(pool, data, cleanup, cleanup);
+
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
+ apr_pool_t *pool)
+{
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(pool);
+#endif /* APR_POOL_DEBUG */
+
+ if (pool->user_data == NULL) {
+ *data = NULL;
+ }
+ else {
+ *data = apr_hash_get(pool->user_data, key, APR_HASH_KEY_STRING);
+ }
+
+ return APR_SUCCESS;
+}
+
+
+/*
+ * Cleanup
+ */
+
+struct cleanup_t {
+ struct cleanup_t *next;
+ const void *data;
+ apr_status_t (*plain_cleanup_fn)(void *data);
+ apr_status_t (*child_cleanup_fn)(void *data);
+};
+
+APR_DECLARE(void) apr_pool_cleanup_register(apr_pool_t *p, const void *data,
+ apr_status_t (*plain_cleanup_fn)(void *data),
+ apr_status_t (*child_cleanup_fn)(void *data))
+{
+ cleanup_t *c;
+
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(p);
+#endif /* APR_POOL_DEBUG */
+
+ if (p != NULL) {
+ if (p->free_cleanups) {
+ /* reuse a cleanup structure */
+ c = p->free_cleanups;
+ p->free_cleanups = c->next;
+ } else {
+ c = apr_palloc(p, sizeof(cleanup_t));
+ }
+ c->data = data;
+ c->plain_cleanup_fn = plain_cleanup_fn;
+ c->child_cleanup_fn = child_cleanup_fn;
+ c->next = p->cleanups;
+ p->cleanups = c;
+ }
+}
+
+APR_DECLARE(void) apr_pool_pre_cleanup_register(apr_pool_t *p, const void *data,
+ apr_status_t (*plain_cleanup_fn)(void *data))
+{
+ cleanup_t *c;
+
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(p);
+#endif /* APR_POOL_DEBUG */
+
+ if (p != NULL) {
+ if (p->free_cleanups) {
+ /* reuse a cleanup structure */
+ c = p->free_cleanups;
+ p->free_cleanups = c->next;
+ } else {
+ c = apr_palloc(p, sizeof(cleanup_t));
+ }
+ c->data = data;
+ c->plain_cleanup_fn = plain_cleanup_fn;
+ c->next = p->pre_cleanups;
+ p->pre_cleanups = c;
+ }
+}
+
+APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
+ apr_status_t (*cleanup_fn)(void *))
+{
+ cleanup_t *c, **lastp;
+
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(p);
+#endif /* APR_POOL_DEBUG */
+
+ if (p == NULL)
+ return;
+
+ c = p->cleanups;
+ lastp = &p->cleanups;
+ while (c) {
+#if APR_POOL_DEBUG
+ /* Some cheap loop detection to catch a corrupt list: */
+ if (c == c->next
+ || (c->next && c == c->next->next)
+ || (c->next && c->next->next && c == c->next->next->next)) {
+ abort();
+ }
+#endif
+
+ if (c->data == data && c->plain_cleanup_fn == cleanup_fn) {
+ *lastp = c->next;
+ /* move to freelist */
+ c->next = p->free_cleanups;
+ p->free_cleanups = c;
+ break;
+ }
+
+ lastp = &c->next;
+ c = c->next;
+ }
+
+ /* Remove any pre-cleanup as well */
+ c = p->pre_cleanups;
+ lastp = &p->pre_cleanups;
+ while (c) {
+#if APR_POOL_DEBUG
+ /* Some cheap loop detection to catch a corrupt list: */
+ if (c == c->next
+ || (c->next && c == c->next->next)
+ || (c->next && c->next->next && c == c->next->next->next)) {
+ abort();
+ }
+#endif
+
+ if (c->data == data && c->plain_cleanup_fn == cleanup_fn) {
+ *lastp = c->next;
+ /* move to freelist */
+ c->next = p->free_cleanups;
+ p->free_cleanups = c;
+ break;
+ }
+
+ lastp = &c->next;
+ c = c->next;
+ }
+
+}
+
+APR_DECLARE(void) apr_pool_child_cleanup_set(apr_pool_t *p, const void *data,
+ apr_status_t (*plain_cleanup_fn)(void *),
+ apr_status_t (*child_cleanup_fn)(void *))
+{
+ cleanup_t *c;
+
+#if APR_POOL_DEBUG
+ apr_pool_check_integrity(p);
+#endif /* APR_POOL_DEBUG */
+
+ if (p == NULL)
+ return;
+
+ c = p->cleanups;
+ while (c) {
+ if (c->data == data && c->plain_cleanup_fn == plain_cleanup_fn) {
+ c->child_cleanup_fn = child_cleanup_fn;
+ break;
+ }
+
+ c = c->next;
+ }
+}
+
+APR_DECLARE(apr_status_t) apr_pool_cleanup_run(apr_pool_t *p, void *data,
+ apr_status_t (*cleanup_fn)(void *))
+{
+ apr_pool_cleanup_kill(p, data, cleanup_fn);
+ return (*cleanup_fn)(data);
+}
+
+static void run_cleanups(cleanup_t **cref)
+{
+ cleanup_t *c = *cref;
+
+ while (c) {
+ *cref = c->next;
+ (*c->plain_cleanup_fn)((void *)c->data);
+ c = *cref;
+ }
+}
+
+#if !defined(WIN32) && !defined(OS2)
+
+static void run_child_cleanups(cleanup_t **cref)
+{
+ cleanup_t *c = *cref;
+
+ while (c) {
+ *cref = c->next;
+ (*c->child_cleanup_fn)((void *)c->data);
+ c = *cref;
+ }
+}
+
+static void cleanup_pool_for_exec(apr_pool_t *p)
+{
+ run_child_cleanups(&p->cleanups);
+
+ for (p = p->child; p; p = p->sibling)
+ cleanup_pool_for_exec(p);
+}
+
+APR_DECLARE(void) apr_pool_cleanup_for_exec(void)
+{
+ cleanup_pool_for_exec(global_pool);
+}
+
+#else /* !defined(WIN32) && !defined(OS2) */
+
+APR_DECLARE(void) apr_pool_cleanup_for_exec(void)
+{
+ /*
+ * Don't need to do anything on NT or OS/2, because
+ * these platforms will spawn the new process - not
+ * fork for exec. All handles that are not inheritable,
+ * will be automajically closed. The only problem is
+ * with file handles that are open, but there isn't
+ * much that can be done about that (except if the
+ * child decides to go out and close them, or the
+ * developer quits opening them shared)
+ */
+ return;
+}
+
+#endif /* !defined(WIN32) && !defined(OS2) */
+
+APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data)
+{
+ /* do nothing cleanup routine */
+ return APR_SUCCESS;
+}
+
+/* Subprocesses don't use the generic cleanup interface because
+ * we don't want multiple subprocesses to result in multiple
+ * three-second pauses; the subprocesses have to be "freed" all
+ * at once. If other resources are introduced with the same property,
+ * we might want to fold support for that into the generic interface.
+ * For now, it's a special case.
+ */
+APR_DECLARE(void) apr_pool_note_subprocess(apr_pool_t *pool, apr_proc_t *proc,
+ apr_kill_conditions_e how)
+{
+ struct process_chain *pc = apr_palloc(pool, sizeof(struct process_chain));
+
+ pc->proc = proc;
+ pc->kill_how = how;
+ pc->next = pool->subprocesses;
+ pool->subprocesses = pc;
+}
+
+static void free_proc_chain(struct process_chain *procs)
+{
+ /* Dispose of the subprocesses we've spawned off in the course of
+ * whatever it was we're cleaning up now. This may involve killing
+ * some of them off...
+ */
+ struct process_chain *pc;
+ int need_timeout = 0;
+ apr_time_t timeout_interval;
+
+ if (!procs)
+ return; /* No work. Whew! */
+
+ /* First, check to see if we need to do the SIGTERM, sleep, SIGKILL
+ * dance with any of the processes we're cleaning up. If we've got
+ * any kill-on-sight subprocesses, ditch them now as well, so they
+ * don't waste any more cycles doing whatever it is that they shouldn't
+ * be doing anymore.
+ */
+
+#ifndef NEED_WAITPID
+ /* Pick up all defunct processes */
+ for (pc = procs; pc; pc = pc->next) {
+ if (apr_proc_wait(pc->proc, NULL, NULL, APR_NOWAIT) != APR_CHILD_NOTDONE)
+ pc->kill_how = APR_KILL_NEVER;
+ }
+#endif /* !defined(NEED_WAITPID) */
+
+ for (pc = procs; pc; pc = pc->next) {
+#ifndef WIN32
+ if ((pc->kill_how == APR_KILL_AFTER_TIMEOUT)
+ || (pc->kill_how == APR_KILL_ONLY_ONCE)) {
+ /*
+ * Subprocess may be dead already. Only need the timeout if not.
+ * Note: apr_proc_kill on Windows is TerminateProcess(), which is
+ * similar to a SIGKILL, so always give the process a timeout
+ * under Windows before killing it.
+ */
+ if (apr_proc_kill(pc->proc, SIGTERM) == APR_SUCCESS)
+ need_timeout = 1;
+ }
+ else if (pc->kill_how == APR_KILL_ALWAYS) {
+#else /* WIN32 knows only one fast, clean method of killing processes today */
+ if (pc->kill_how != APR_KILL_NEVER) {
+ need_timeout = 1;
+ pc->kill_how = APR_KILL_ALWAYS;
+#endif
+ apr_proc_kill(pc->proc, SIGKILL);
+ }
+ }
+
+ /* Sleep only if we have to. The sleep algorithm grows
+ * by a factor of two on each iteration. TIMEOUT_INTERVAL
+ * is equal to TIMEOUT_USECS / 64.
+ */
+ if (need_timeout) {
+ timeout_interval = TIMEOUT_INTERVAL;
+ apr_sleep(timeout_interval);
+
+ do {
+ /* check the status of the subprocesses */
+ need_timeout = 0;
+ for (pc = procs; pc; pc = pc->next) {
+ if (pc->kill_how == APR_KILL_AFTER_TIMEOUT) {
+ if (apr_proc_wait(pc->proc, NULL, NULL, APR_NOWAIT)
+ == APR_CHILD_NOTDONE)
+ need_timeout = 1; /* subprocess is still active */
+ else
+ pc->kill_how = APR_KILL_NEVER; /* subprocess has exited */
+ }
+ }
+ if (need_timeout) {
+ if (timeout_interval >= TIMEOUT_USECS) {
+ break;
+ }
+ apr_sleep(timeout_interval);
+ timeout_interval *= 2;
+ }
+ } while (need_timeout);
+ }
+
+ /* OK, the scripts we just timed out for have had a chance to clean up
+ * --- now, just get rid of them, and also clean up the system accounting
+ * goop...
+ */
+ for (pc = procs; pc; pc = pc->next) {
+ if (pc->kill_how == APR_KILL_AFTER_TIMEOUT)
+ apr_proc_kill(pc->proc, SIGKILL);
+ }
+
+ /* Now wait for all the signaled processes to die */
+ for (pc = procs; pc; pc = pc->next) {
+ if (pc->kill_how != APR_KILL_NEVER)
+ (void)apr_proc_wait(pc->proc, NULL, NULL, APR_WAIT);
+ }
+}
+
+
+/*
+ * Pool creation/destruction stubs, for people who are running
+ * mixed release/debug enviroments.
+ */
+
+#if !APR_POOL_DEBUG
+APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *pool, apr_size_t size,
+ const char *file_line)
+{
+ return apr_palloc(pool, size);
+}
+
+APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *pool, apr_size_t size,
+ const char *file_line)
+{
+ return apr_pcalloc(pool, size);
+}
+
+APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *pool,
+ const char *file_line)
+{
+ apr_pool_clear(pool);
+}
+
+APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *pool,
+ const char *file_line)
+{
+ apr_pool_destroy(pool);
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
+ apr_pool_t *parent,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator,
+ const char *file_line)
+{
+ return apr_pool_create_ex(newpool, parent, abort_fn, allocator);
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator,
+ const char *file_line)
+{
+ return apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator);
+}
+
+APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator,
+ const char *file_line)
+{
+ return apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator);
+}
+
+#else /* APR_POOL_DEBUG */
+
+#undef apr_palloc
+APR_DECLARE(void *) apr_palloc(apr_pool_t *pool, apr_size_t size);
+
+APR_DECLARE(void *) apr_palloc(apr_pool_t *pool, apr_size_t size)
+{
+ return apr_palloc_debug(pool, size, "undefined");
+}
+
+#undef apr_pcalloc
+APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size);
+
+APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size)
+{
+ return apr_pcalloc_debug(pool, size, "undefined");
+}
+
+#undef apr_pool_clear
+APR_DECLARE(void) apr_pool_clear(apr_pool_t *pool);
+
+APR_DECLARE(void) apr_pool_clear(apr_pool_t *pool)
+{
+ apr_pool_clear_debug(pool, "undefined");
+}
+
+#undef apr_pool_destroy
+APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool);
+
+APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool)
+{
+ apr_pool_destroy_debug(pool, "undefined");
+}
+
+#undef apr_pool_create_ex
+APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
+ apr_pool_t *parent,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator);
+
+APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
+ apr_pool_t *parent,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator)
+{
+ return apr_pool_create_ex_debug(newpool, parent,
+ abort_fn, allocator,
+ "undefined");
+}
+
+#undef apr_pool_create_core_ex
+APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator);
+
+APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator)
+{
+ return apr_pool_create_unmanaged_ex_debug(newpool, abort_fn,
+ allocator, "undefined");
+}
+
+#undef apr_pool_create_unmanaged_ex
+APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator);
+
+APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
+ apr_abortfunc_t abort_fn,
+ apr_allocator_t *allocator)
+{
+ return apr_pool_create_unmanaged_ex_debug(newpool, abort_fn,
+ allocator, "undefined");
+}
+
+#endif /* APR_POOL_DEBUG */