diff options
author | minfrin <minfrin@13f79535-47bb-0310-9956-ffa450edef68> | 2012-10-05 14:46:27 +0000 |
---|---|---|
committer | minfrin <minfrin@13f79535-47bb-0310-9956-ffa450edef68> | 2012-10-05 14:46:27 +0000 |
commit | 18d77592632ecae0ff058ff0eefad3f5559cebf8 (patch) | |
tree | f7da87327c9402bbcf98705ae8e2212d83c59d60 /crypto | |
parent | 4355b677e72664039771e1bdc6004b1dc403cc97 (diff) | |
download | libapr-18d77592632ecae0ff058ff0eefad3f5559cebf8.tar.gz |
apr_crypto: Add a native CommonCrypto implementation for iOS and OSX
where OpenSSL has been deprecated.
git-svn-id: http://svn.apache.org/repos/asf/apr/apr/trunk@1394552 13f79535-47bb-0310-9956-ffa450edef68
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/apr_crypto.c | 5 | ||||
-rw-r--r-- | crypto/apr_crypto_commoncrypto.c | 814 |
2 files changed, 819 insertions, 0 deletions
diff --git a/crypto/apr_crypto.c b/crypto/apr_crypto.c index 396528d96..dbc108f7e 100644 --- a/crypto/apr_crypto.c +++ b/crypto/apr_crypto.c @@ -215,6 +215,11 @@ APR_DECLARE(apr_status_t) apr_crypto_get_driver( DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result); } #endif +#if APU_HAVE_COMMONCRYPTO + if (name[0] == 'c' && !strcmp(name, "commoncrypto")) { + DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result); + } +#endif #if APU_HAVE_MSCAPI if (name[0] == 'm' && !strcmp(name, "mscapi")) { DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result); diff --git a/crypto/apr_crypto_commoncrypto.c b/crypto/apr_crypto_commoncrypto.c new file mode 100644 index 000000000..e9136c93a --- /dev/null +++ b/crypto/apr_crypto_commoncrypto.c @@ -0,0 +1,814 @@ +/* Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "apr_lib.h" +#include "apu.h" +#include "apr_private.h" +#include "apu_errno.h" + +#include <ctype.h> +#include <assert.h> +#include <stdlib.h> + +#include "apr_strings.h" +#include "apr_time.h" +#include "apr_buckets.h" +#include "apr_random.h" + +#include "apr_crypto_internal.h" + +#if APU_HAVE_CRYPTO + +#include <CommonCrypto/CommonCrypto.h> + +#define LOG_PREFIX "apr_crypto_commoncrypto: " + +struct apr_crypto_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + apu_err_t *result; + apr_array_header_t *keys; + apr_hash_t *types; + apr_hash_t *modes; + apr_random_t *rng; +}; + +struct apr_crypto_key_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + const apr_crypto_t *f; + CCAlgorithm algorithm; + CCOptions options; + unsigned char *key; + int keyLen; + int ivSize; + apr_size_t blockSize; +}; + +struct apr_crypto_block_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + const apr_crypto_t *f; + const apr_crypto_key_t *key; + CCCryptorRef ref; +}; + +static int key_3des_192 = APR_KEY_3DES_192; +static int key_aes_128 = APR_KEY_AES_128; +static int key_aes_192 = APR_KEY_AES_192; +static int key_aes_256 = APR_KEY_AES_256; + +static int mode_ecb = APR_MODE_ECB; +static int mode_cbc = APR_MODE_CBC; + +/** + * Fetch the most recent error from this driver. + */ +static apr_status_t crypto_error(const apu_err_t **result, + const apr_crypto_t *f) +{ + *result = f->result; + return APR_SUCCESS; +} + +/** + * Shutdown the crypto library and release resources. + */ +static apr_status_t crypto_shutdown(void) +{ + return APR_SUCCESS; +} + +static apr_status_t crypto_shutdown_helper(void *data) +{ + return crypto_shutdown(); +} + +/** + * Initialise the crypto library and perform one time initialisation. + */ +static apr_status_t crypto_init(apr_pool_t *pool, const char *params, + const apu_err_t **result) +{ + + apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper, + apr_pool_cleanup_null); + + return APR_SUCCESS; +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param ctx The block context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx) +{ + + if (ctx->ref) { + CCCryptorRelease(ctx->ref); + ctx->ref = NULL; + } + + return APR_SUCCESS; + +} + +static apr_status_t crypto_block_cleanup_helper(void *data) +{ + apr_crypto_block_t *block = (apr_crypto_block_t *) data; + return crypto_block_cleanup(block); +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param f The context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +static apr_status_t crypto_cleanup(apr_crypto_t *f) +{ + + return APR_SUCCESS; + +} + +static apr_status_t crypto_cleanup_helper(void *data) +{ + apr_crypto_t *f = (apr_crypto_t *) data; + return crypto_cleanup(f); +} + +/** + * @brief Create a context for supporting encryption. Keys, certificates, + * algorithms and other parameters will be set per context. More than + * one context can be created at one time. A cleanup will be automatically + * registered with the given pool to guarantee a graceful shutdown. + * @param f - context pointer will be written here + * @param provider - provider to use + * @param params - array of key parameters + * @param pool - process pool + * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE + * if the engine cannot be initialised. + */ +static apr_status_t crypto_make(apr_crypto_t **ff, + const apr_crypto_driver_t *provider, const char *params, + apr_pool_t *pool) +{ + apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t)); + apr_status_t rv; + + if (!f) { + return APR_ENOMEM; + } + *ff = f; + f->pool = pool; + f->provider = provider; + + /* seed the secure random number generator */ + f->rng = apr_random_standard_new(pool); + if (!f->rng) { + return APR_ENOMEM; + } + do { + unsigned char seed[8]; + rv = apr_generate_random_bytes(seed, sizeof(seed)); + if (rv != APR_SUCCESS) { + return rv; + } + apr_random_add_entropy(f->rng, seed, sizeof(seed)); + rv = apr_random_secure_ready(f->rng); + } while (rv == APR_ENOTENOUGHENTROPY); + + f->result = apr_pcalloc(pool, sizeof(apu_err_t)); + if (!f->result) { + return APR_ENOMEM; + } + + f->keys = apr_array_make(pool, 10, sizeof(apr_crypto_key_t)); + if (!f->keys) { + return APR_ENOMEM; + } + + f->types = apr_hash_make(pool); + if (!f->types) { + return APR_ENOMEM; + } + apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_3des_192)); + apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_aes_128)); + apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_aes_192)); + apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_aes_256)); + + f->modes = apr_hash_make(pool); + if (!f->modes) { + return APR_ENOMEM; + } + apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(mode_ecb)); + apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(mode_cbc)); + + apr_pool_cleanup_register(pool, f, crypto_cleanup_helper, + apr_pool_cleanup_null); + + return APR_SUCCESS; + +} + +/** + * @brief Get a hash table of key types, keyed by the name of the type against + * an integer pointer constant. + * + * @param types - hashtable of key types keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +static apr_status_t crypto_get_block_key_types(apr_hash_t **types, + const apr_crypto_t *f) +{ + *types = f->types; + return APR_SUCCESS; +} + +/** + * @brief Get a hash table of key modes, keyed by the name of the mode against + * an integer pointer constant. + * + * @param modes - hashtable of key modes keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes, + const apr_crypto_t *f) +{ + *modes = f->modes; + return APR_SUCCESS; +} + +/** + * @brief Create a key from the given passphrase. By default, the PBKDF2 + * algorithm is used to generate the key from the passphrase. It is expected + * that the same pass phrase will generate the same key, regardless of the + * backend crypto platform used. The key is cleaned up when the context + * is cleaned, and may be reused with multiple encryption or decryption + * operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param ivSize The size of the initialisation vector will be returned, based + * on whether an IV is relevant for this type of crypto. + * @param pass The passphrase to use. + * @param passLen The passphrase length in bytes + * @param salt The salt to use. + * @param saltLen The salt length in bytes + * @param type 3DES_192, AES_128, AES_192, AES_256. + * @param mode Electronic Code Book / Cipher Block Chaining. + * @param doPad Pad if necessary. + * @param iterations Iteration count + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize, + const char *pass, apr_size_t passLen, const unsigned char * salt, + apr_size_t saltLen, const apr_crypto_block_key_type_e type, + const apr_crypto_block_key_mode_e mode, const int doPad, + const int iterations, const apr_crypto_t *f, apr_pool_t *p) +{ + apr_crypto_key_t *key = *k; + + if (!key) { + *k = key = apr_array_push(f->keys); + } + if (!key) { + return APR_ENOMEM; + } + + key->f = f; + key->provider = f->provider; + + /* handle padding */ + key->options = doPad ? kCCOptionPKCS7Padding : 0; + + /* determine the algorithm to be used */ + switch (type) { + + case (APR_KEY_3DES_192): + + /* A 3DES key */ + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithm3DES; + key->keyLen = kCCKeySize3DES; + key->ivSize = kCCBlockSize3DES; + key->blockSize = kCCBlockSize3DES; + } + else { + key->algorithm = kCCAlgorithm3DES; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySize3DES; + key->ivSize = 0; + key->blockSize = kCCBlockSize3DES; + } + break; + + case (APR_KEY_AES_128): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES128; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES128; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + case (APR_KEY_AES_192): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES192; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES192; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + case (APR_KEY_AES_256): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES256; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES256; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + default: + + /* TODO: Support CAST, Blowfish */ + + /* unknown key type, give up */ + return APR_EKEYTYPE; + + } + + /* make space for the key */ + key->key = apr_pcalloc(p, key->keyLen); + if (!key->key) { + return APR_ENOMEM; + } + apr_crypto_clear(p, key->key, key->keyLen); + + /* generate the key */ + if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, pass, passLen, salt, + saltLen, kCCPRFHmacAlgSHA1, iterations, key->key, key->keyLen)) + == kCCParamError) { + return APR_ENOKEY; + } + + if (ivSize) { + *ivSize = key->ivSize; + } + + return APR_SUCCESS; +} + +/** + * @brief Initialise a context for encrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer pointed to is not NULL, the IV in the buffer will be + * used. + * @param key The key structure. + * @param blockSize The block size of the cipher. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx, + const unsigned char **iv, const apr_crypto_key_t *key, + apr_size_t *blockSize, apr_pool_t *p) +{ + unsigned char *usedIv; + apr_crypto_block_t *block = *ctx; + if (!block) { + *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); + } + if (!block) { + return APR_ENOMEM; + } + block->f = key->f; + block->pool = p; + block->provider = key->provider; + block->key = key; + + apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, + apr_pool_cleanup_null); + + /* generate an IV, if necessary */ + usedIv = NULL; + if (key->ivSize) { + if (iv == NULL) { + return APR_ENOIV; + } + if (*iv == NULL) { + apr_status_t status; + usedIv = apr_pcalloc(p, key->ivSize); + if (!usedIv) { + return APR_ENOMEM; + } + apr_crypto_clear(p, usedIv, key->ivSize); + status = apr_random_secure_bytes(block->f->rng, usedIv, + key->ivSize); + if (APR_SUCCESS != status) { + return status; + } + *iv = usedIv; + } + else { + usedIv = (unsigned char *) *iv; + } + } + + /* create a new context for encryption */ + switch ((block->f->result->rc = CCCryptorCreate(kCCEncrypt, key->algorithm, + key->options, key->key, key->keyLen, usedIv, &block->ref))) { + case kCCSuccess: { + break; + } + case kCCParamError: { + return APR_EINIT; + } + case kCCMemoryFailure: { + return APR_ENOMEM; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCUnimplemented: { + return APR_ENOTIMPL; + } + default: { + return APR_EINIT; + } + } + + if (blockSize) { + *blockSize = key->blockSize; + } + + return APR_SUCCESS; + +} + +/** + * @brief Encrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_encrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +static apr_status_t crypto_block_encrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + apr_size_t outl = *outlen; + unsigned char *buffer; + + /* are we after the maximum size of the out buffer? */ + if (!out) { + *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + return APR_SUCCESS; + } + + /* must we allocate the output buffer from a pool? */ + if (!*out) { + outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + buffer = apr_palloc(ctx->pool, outl); + if (!buffer) { + return APR_ENOMEM; + } + apr_crypto_clear(ctx->pool, buffer, outl); + *out = buffer; + } + + switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out), + outl, &outl))) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + default: { + return APR_ECRYPT; + } + } + *outlen = outl; + + return APR_SUCCESS; + +} + +/** + * @brief Encrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_encrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_encrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_encrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_encrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + apr_size_t len = *outlen; + + ctx->f->result->rc = CCCryptorFinal(ctx->ref, out, + CCCryptorGetOutputLength(ctx->ref, 0, 1), &len); + + /* always clean up */ + crypto_block_cleanup(ctx); + + switch (ctx->f->result->rc) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCDecodeError: { + return APR_ECRYPT; + } + default: { + return APR_ECRYPT; + } + } + *outlen = len; + + return APR_SUCCESS; + +} + +/** + * @brief Initialise a context for decrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param blockSize The block size of the cipher. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer is not NULL, the IV in the buffer will be used. + * @param key The key structure. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx, + apr_size_t *blockSize, const unsigned char *iv, + const apr_crypto_key_t *key, apr_pool_t *p) +{ + apr_crypto_block_t *block = *ctx; + if (!block) { + *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); + } + if (!block) { + return APR_ENOMEM; + } + block->f = key->f; + block->pool = p; + block->provider = key->provider; + + apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, + apr_pool_cleanup_null); + + /* generate an IV, if necessary */ + if (key->ivSize) { + if (iv == NULL) { + return APR_ENOIV; + } + } + + /* create a new context for decryption */ + switch ((block->f->result->rc = CCCryptorCreate(kCCDecrypt, key->algorithm, + key->options, key->key, key->keyLen, iv, &block->ref))) { + case kCCSuccess: { + break; + } + case kCCParamError: { + return APR_EINIT; + } + case kCCMemoryFailure: { + return APR_ENOMEM; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCUnimplemented: { + return APR_ENOTIMPL; + } + default: { + return APR_EINIT; + } + } + + if (blockSize) { + *blockSize = key->blockSize; + } + + return APR_SUCCESS; + +} + +/** + * @brief Decrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_decrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +static apr_status_t crypto_block_decrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + apr_size_t outl = *outlen; + unsigned char *buffer; + + /* are we after the maximum size of the out buffer? */ + if (!out) { + *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + return APR_SUCCESS; + } + + /* must we allocate the output buffer from a pool? */ + if (!*out) { + outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + buffer = apr_palloc(ctx->pool, outl); + if (!buffer) { + return APR_ENOMEM; + } + apr_crypto_clear(ctx->pool, buffer, outl); + *out = buffer; + } + + switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out), + outl, &outl))) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + default: { + return APR_ECRYPT; + } + } + *outlen = outl; + + return APR_SUCCESS; + +} + +/** + * @brief Decrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_decrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_decrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_decrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_decrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + apr_size_t len = *outlen; + + ctx->f->result->rc = CCCryptorFinal(ctx->ref, out, + CCCryptorGetOutputLength(ctx->ref, 0, 1), &len); + + /* always clean up */ + crypto_block_cleanup(ctx); + + switch (ctx->f->result->rc) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCDecodeError: { + return APR_ECRYPT; + } + default: { + return APR_ECRYPT; + } + } + *outlen = len; + + return APR_SUCCESS; + +} + +/** + * OSX Common Crypto module. + */ +APR_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_commoncrypto_driver = +{ + "commoncrypto", crypto_init, crypto_make, crypto_get_block_key_types, + crypto_get_block_key_modes, crypto_passphrase, + crypto_block_encrypt_init, crypto_block_encrypt, + crypto_block_encrypt_finish, crypto_block_decrypt_init, + crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup, + crypto_cleanup, crypto_shutdown, crypto_error +}; + +#endif |