summaryrefslogtreecommitdiff
path: root/crypto
diff options
context:
space:
mode:
authorminfrin <minfrin@13f79535-47bb-0310-9956-ffa450edef68>2012-10-05 14:46:27 +0000
committerminfrin <minfrin@13f79535-47bb-0310-9956-ffa450edef68>2012-10-05 14:46:27 +0000
commit18d77592632ecae0ff058ff0eefad3f5559cebf8 (patch)
treef7da87327c9402bbcf98705ae8e2212d83c59d60 /crypto
parent4355b677e72664039771e1bdc6004b1dc403cc97 (diff)
downloadlibapr-18d77592632ecae0ff058ff0eefad3f5559cebf8.tar.gz
apr_crypto: Add a native CommonCrypto implementation for iOS and OSX
where OpenSSL has been deprecated. git-svn-id: http://svn.apache.org/repos/asf/apr/apr/trunk@1394552 13f79535-47bb-0310-9956-ffa450edef68
Diffstat (limited to 'crypto')
-rw-r--r--crypto/apr_crypto.c5
-rw-r--r--crypto/apr_crypto_commoncrypto.c814
2 files changed, 819 insertions, 0 deletions
diff --git a/crypto/apr_crypto.c b/crypto/apr_crypto.c
index 396528d96..dbc108f7e 100644
--- a/crypto/apr_crypto.c
+++ b/crypto/apr_crypto.c
@@ -215,6 +215,11 @@ APR_DECLARE(apr_status_t) apr_crypto_get_driver(
DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result);
}
#endif
+#if APU_HAVE_COMMONCRYPTO
+ if (name[0] == 'c' && !strcmp(name, "commoncrypto")) {
+ DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result);
+ }
+#endif
#if APU_HAVE_MSCAPI
if (name[0] == 'm' && !strcmp(name, "mscapi")) {
DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result);
diff --git a/crypto/apr_crypto_commoncrypto.c b/crypto/apr_crypto_commoncrypto.c
new file mode 100644
index 000000000..e9136c93a
--- /dev/null
+++ b/crypto/apr_crypto_commoncrypto.c
@@ -0,0 +1,814 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "apr_lib.h"
+#include "apu.h"
+#include "apr_private.h"
+#include "apu_errno.h"
+
+#include <ctype.h>
+#include <assert.h>
+#include <stdlib.h>
+
+#include "apr_strings.h"
+#include "apr_time.h"
+#include "apr_buckets.h"
+#include "apr_random.h"
+
+#include "apr_crypto_internal.h"
+
+#if APU_HAVE_CRYPTO
+
+#include <CommonCrypto/CommonCrypto.h>
+
+#define LOG_PREFIX "apr_crypto_commoncrypto: "
+
+struct apr_crypto_t
+{
+ apr_pool_t *pool;
+ const apr_crypto_driver_t *provider;
+ apu_err_t *result;
+ apr_array_header_t *keys;
+ apr_hash_t *types;
+ apr_hash_t *modes;
+ apr_random_t *rng;
+};
+
+struct apr_crypto_key_t
+{
+ apr_pool_t *pool;
+ const apr_crypto_driver_t *provider;
+ const apr_crypto_t *f;
+ CCAlgorithm algorithm;
+ CCOptions options;
+ unsigned char *key;
+ int keyLen;
+ int ivSize;
+ apr_size_t blockSize;
+};
+
+struct apr_crypto_block_t
+{
+ apr_pool_t *pool;
+ const apr_crypto_driver_t *provider;
+ const apr_crypto_t *f;
+ const apr_crypto_key_t *key;
+ CCCryptorRef ref;
+};
+
+static int key_3des_192 = APR_KEY_3DES_192;
+static int key_aes_128 = APR_KEY_AES_128;
+static int key_aes_192 = APR_KEY_AES_192;
+static int key_aes_256 = APR_KEY_AES_256;
+
+static int mode_ecb = APR_MODE_ECB;
+static int mode_cbc = APR_MODE_CBC;
+
+/**
+ * Fetch the most recent error from this driver.
+ */
+static apr_status_t crypto_error(const apu_err_t **result,
+ const apr_crypto_t *f)
+{
+ *result = f->result;
+ return APR_SUCCESS;
+}
+
+/**
+ * Shutdown the crypto library and release resources.
+ */
+static apr_status_t crypto_shutdown(void)
+{
+ return APR_SUCCESS;
+}
+
+static apr_status_t crypto_shutdown_helper(void *data)
+{
+ return crypto_shutdown();
+}
+
+/**
+ * Initialise the crypto library and perform one time initialisation.
+ */
+static apr_status_t crypto_init(apr_pool_t *pool, const char *params,
+ const apu_err_t **result)
+{
+
+ apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper,
+ apr_pool_cleanup_null);
+
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param ctx The block context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx)
+{
+
+ if (ctx->ref) {
+ CCCryptorRelease(ctx->ref);
+ ctx->ref = NULL;
+ }
+
+ return APR_SUCCESS;
+
+}
+
+static apr_status_t crypto_block_cleanup_helper(void *data)
+{
+ apr_crypto_block_t *block = (apr_crypto_block_t *) data;
+ return crypto_block_cleanup(block);
+}
+
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param f The context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+static apr_status_t crypto_cleanup(apr_crypto_t *f)
+{
+
+ return APR_SUCCESS;
+
+}
+
+static apr_status_t crypto_cleanup_helper(void *data)
+{
+ apr_crypto_t *f = (apr_crypto_t *) data;
+ return crypto_cleanup(f);
+}
+
+/**
+ * @brief Create a context for supporting encryption. Keys, certificates,
+ * algorithms and other parameters will be set per context. More than
+ * one context can be created at one time. A cleanup will be automatically
+ * registered with the given pool to guarantee a graceful shutdown.
+ * @param f - context pointer will be written here
+ * @param provider - provider to use
+ * @param params - array of key parameters
+ * @param pool - process pool
+ * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
+ * if the engine cannot be initialised.
+ */
+static apr_status_t crypto_make(apr_crypto_t **ff,
+ const apr_crypto_driver_t *provider, const char *params,
+ apr_pool_t *pool)
+{
+ apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t));
+ apr_status_t rv;
+
+ if (!f) {
+ return APR_ENOMEM;
+ }
+ *ff = f;
+ f->pool = pool;
+ f->provider = provider;
+
+ /* seed the secure random number generator */
+ f->rng = apr_random_standard_new(pool);
+ if (!f->rng) {
+ return APR_ENOMEM;
+ }
+ do {
+ unsigned char seed[8];
+ rv = apr_generate_random_bytes(seed, sizeof(seed));
+ if (rv != APR_SUCCESS) {
+ return rv;
+ }
+ apr_random_add_entropy(f->rng, seed, sizeof(seed));
+ rv = apr_random_secure_ready(f->rng);
+ } while (rv == APR_ENOTENOUGHENTROPY);
+
+ f->result = apr_pcalloc(pool, sizeof(apu_err_t));
+ if (!f->result) {
+ return APR_ENOMEM;
+ }
+
+ f->keys = apr_array_make(pool, 10, sizeof(apr_crypto_key_t));
+ if (!f->keys) {
+ return APR_ENOMEM;
+ }
+
+ f->types = apr_hash_make(pool);
+ if (!f->types) {
+ return APR_ENOMEM;
+ }
+ apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_3des_192));
+ apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_aes_128));
+ apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_aes_192));
+ apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_aes_256));
+
+ f->modes = apr_hash_make(pool);
+ if (!f->modes) {
+ return APR_ENOMEM;
+ }
+ apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(mode_ecb));
+ apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(mode_cbc));
+
+ apr_pool_cleanup_register(pool, f, crypto_cleanup_helper,
+ apr_pool_cleanup_null);
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Get a hash table of key types, keyed by the name of the type against
+ * an integer pointer constant.
+ *
+ * @param types - hashtable of key types keyed to constants.
+ * @param f - encryption context
+ * @return APR_SUCCESS for success
+ */
+static apr_status_t crypto_get_block_key_types(apr_hash_t **types,
+ const apr_crypto_t *f)
+{
+ *types = f->types;
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Get a hash table of key modes, keyed by the name of the mode against
+ * an integer pointer constant.
+ *
+ * @param modes - hashtable of key modes keyed to constants.
+ * @param f - encryption context
+ * @return APR_SUCCESS for success
+ */
+static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes,
+ const apr_crypto_t *f)
+{
+ *modes = f->modes;
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Create a key from the given passphrase. By default, the PBKDF2
+ * algorithm is used to generate the key from the passphrase. It is expected
+ * that the same pass phrase will generate the same key, regardless of the
+ * backend crypto platform used. The key is cleaned up when the context
+ * is cleaned, and may be reused with multiple encryption or decryption
+ * operations.
+ * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
+ * *key is not NULL, *key must point at a previously created structure.
+ * @param key The key returned, see note.
+ * @param ivSize The size of the initialisation vector will be returned, based
+ * on whether an IV is relevant for this type of crypto.
+ * @param pass The passphrase to use.
+ * @param passLen The passphrase length in bytes
+ * @param salt The salt to use.
+ * @param saltLen The salt length in bytes
+ * @param type 3DES_192, AES_128, AES_192, AES_256.
+ * @param mode Electronic Code Book / Cipher Block Chaining.
+ * @param doPad Pad if necessary.
+ * @param iterations Iteration count
+ * @param f The context to use.
+ * @param p The pool to use.
+ * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
+ * error occurred while generating the key. APR_ENOCIPHER if the type or mode
+ * is not supported by the particular backend. APR_EKEYTYPE if the key type is
+ * not known. APR_EPADDING if padding was requested but is not supported.
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize,
+ const char *pass, apr_size_t passLen, const unsigned char * salt,
+ apr_size_t saltLen, const apr_crypto_block_key_type_e type,
+ const apr_crypto_block_key_mode_e mode, const int doPad,
+ const int iterations, const apr_crypto_t *f, apr_pool_t *p)
+{
+ apr_crypto_key_t *key = *k;
+
+ if (!key) {
+ *k = key = apr_array_push(f->keys);
+ }
+ if (!key) {
+ return APR_ENOMEM;
+ }
+
+ key->f = f;
+ key->provider = f->provider;
+
+ /* handle padding */
+ key->options = doPad ? kCCOptionPKCS7Padding : 0;
+
+ /* determine the algorithm to be used */
+ switch (type) {
+
+ case (APR_KEY_3DES_192):
+
+ /* A 3DES key */
+ if (mode == APR_MODE_CBC) {
+ key->algorithm = kCCAlgorithm3DES;
+ key->keyLen = kCCKeySize3DES;
+ key->ivSize = kCCBlockSize3DES;
+ key->blockSize = kCCBlockSize3DES;
+ }
+ else {
+ key->algorithm = kCCAlgorithm3DES;
+ key->options += kCCOptionECBMode;
+ key->keyLen = kCCKeySize3DES;
+ key->ivSize = 0;
+ key->blockSize = kCCBlockSize3DES;
+ }
+ break;
+
+ case (APR_KEY_AES_128):
+
+ if (mode == APR_MODE_CBC) {
+ key->algorithm = kCCAlgorithmAES128;
+ key->keyLen = kCCKeySizeAES128;
+ key->ivSize = kCCBlockSizeAES128;
+ key->blockSize = kCCBlockSizeAES128;
+ }
+ else {
+ key->algorithm = kCCAlgorithmAES128;
+ key->options += kCCOptionECBMode;
+ key->keyLen = kCCKeySizeAES128;
+ key->ivSize = 0;
+ key->blockSize = kCCBlockSizeAES128;
+ }
+ break;
+
+ case (APR_KEY_AES_192):
+
+ if (mode == APR_MODE_CBC) {
+ key->algorithm = kCCAlgorithmAES128;
+ key->keyLen = kCCKeySizeAES192;
+ key->ivSize = kCCBlockSizeAES128;
+ key->blockSize = kCCBlockSizeAES128;
+ }
+ else {
+ key->algorithm = kCCAlgorithmAES128;
+ key->options += kCCOptionECBMode;
+ key->keyLen = kCCKeySizeAES192;
+ key->ivSize = 0;
+ key->blockSize = kCCBlockSizeAES128;
+ }
+ break;
+
+ case (APR_KEY_AES_256):
+
+ if (mode == APR_MODE_CBC) {
+ key->algorithm = kCCAlgorithmAES128;
+ key->keyLen = kCCKeySizeAES256;
+ key->ivSize = kCCBlockSizeAES128;
+ key->blockSize = kCCBlockSizeAES128;
+ }
+ else {
+ key->algorithm = kCCAlgorithmAES128;
+ key->options += kCCOptionECBMode;
+ key->keyLen = kCCKeySizeAES256;
+ key->ivSize = 0;
+ key->blockSize = kCCBlockSizeAES128;
+ }
+ break;
+
+ default:
+
+ /* TODO: Support CAST, Blowfish */
+
+ /* unknown key type, give up */
+ return APR_EKEYTYPE;
+
+ }
+
+ /* make space for the key */
+ key->key = apr_pcalloc(p, key->keyLen);
+ if (!key->key) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(p, key->key, key->keyLen);
+
+ /* generate the key */
+ if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, pass, passLen, salt,
+ saltLen, kCCPRFHmacAlgSHA1, iterations, key->key, key->keyLen))
+ == kCCParamError) {
+ return APR_ENOKEY;
+ }
+
+ if (ivSize) {
+ *ivSize = key->ivSize;
+ }
+
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Initialise a context for encrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param ctx The block context returned, see note.
+ * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
+ * an IV will be created at random, in space allocated from the pool.
+ * If the buffer pointed to is not NULL, the IV in the buffer will be
+ * used.
+ * @param key The key structure.
+ * @param blockSize The block size of the cipher.
+ * @param p The pool to use.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx,
+ const unsigned char **iv, const apr_crypto_key_t *key,
+ apr_size_t *blockSize, apr_pool_t *p)
+{
+ unsigned char *usedIv;
+ apr_crypto_block_t *block = *ctx;
+ if (!block) {
+ *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
+ }
+ if (!block) {
+ return APR_ENOMEM;
+ }
+ block->f = key->f;
+ block->pool = p;
+ block->provider = key->provider;
+ block->key = key;
+
+ apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
+ apr_pool_cleanup_null);
+
+ /* generate an IV, if necessary */
+ usedIv = NULL;
+ if (key->ivSize) {
+ if (iv == NULL) {
+ return APR_ENOIV;
+ }
+ if (*iv == NULL) {
+ apr_status_t status;
+ usedIv = apr_pcalloc(p, key->ivSize);
+ if (!usedIv) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(p, usedIv, key->ivSize);
+ status = apr_random_secure_bytes(block->f->rng, usedIv,
+ key->ivSize);
+ if (APR_SUCCESS != status) {
+ return status;
+ }
+ *iv = usedIv;
+ }
+ else {
+ usedIv = (unsigned char *) *iv;
+ }
+ }
+
+ /* create a new context for encryption */
+ switch ((block->f->result->rc = CCCryptorCreate(kCCEncrypt, key->algorithm,
+ key->options, key->key, key->keyLen, usedIv, &block->ref))) {
+ case kCCSuccess: {
+ break;
+ }
+ case kCCParamError: {
+ return APR_EINIT;
+ }
+ case kCCMemoryFailure: {
+ return APR_ENOMEM;
+ }
+ case kCCAlignmentError: {
+ return APR_EPADDING;
+ }
+ case kCCUnimplemented: {
+ return APR_ENOTIMPL;
+ }
+ default: {
+ return APR_EINIT;
+ }
+ }
+
+ if (blockSize) {
+ *blockSize = key->blockSize;
+ }
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Encrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_encrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+static apr_status_t crypto_block_encrypt(unsigned char **out,
+ apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
+ apr_crypto_block_t *ctx)
+{
+ apr_size_t outl = *outlen;
+ unsigned char *buffer;
+
+ /* are we after the maximum size of the out buffer? */
+ if (!out) {
+ *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
+ return APR_SUCCESS;
+ }
+
+ /* must we allocate the output buffer from a pool? */
+ if (!*out) {
+ outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
+ buffer = apr_palloc(ctx->pool, outl);
+ if (!buffer) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(ctx->pool, buffer, outl);
+ *out = buffer;
+ }
+
+ switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out),
+ outl, &outl))) {
+ case kCCSuccess: {
+ break;
+ }
+ case kCCBufferTooSmall: {
+ return APR_ENOSPACE;
+ }
+ default: {
+ return APR_ECRYPT;
+ }
+ }
+ *outlen = outl;
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Encrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_encrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_encrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_encrypt_init().
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_encrypt_finish(unsigned char *out,
+ apr_size_t *outlen, apr_crypto_block_t *ctx)
+{
+ apr_size_t len = *outlen;
+
+ ctx->f->result->rc = CCCryptorFinal(ctx->ref, out,
+ CCCryptorGetOutputLength(ctx->ref, 0, 1), &len);
+
+ /* always clean up */
+ crypto_block_cleanup(ctx);
+
+ switch (ctx->f->result->rc) {
+ case kCCSuccess: {
+ break;
+ }
+ case kCCBufferTooSmall: {
+ return APR_ENOSPACE;
+ }
+ case kCCAlignmentError: {
+ return APR_EPADDING;
+ }
+ case kCCDecodeError: {
+ return APR_ECRYPT;
+ }
+ default: {
+ return APR_ECRYPT;
+ }
+ }
+ *outlen = len;
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Initialise a context for decrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param ctx The block context returned, see note.
+ * @param blockSize The block size of the cipher.
+ * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
+ * an IV will be created at random, in space allocated from the pool.
+ * If the buffer is not NULL, the IV in the buffer will be used.
+ * @param key The key structure.
+ * @param p The pool to use.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx,
+ apr_size_t *blockSize, const unsigned char *iv,
+ const apr_crypto_key_t *key, apr_pool_t *p)
+{
+ apr_crypto_block_t *block = *ctx;
+ if (!block) {
+ *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
+ }
+ if (!block) {
+ return APR_ENOMEM;
+ }
+ block->f = key->f;
+ block->pool = p;
+ block->provider = key->provider;
+
+ apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
+ apr_pool_cleanup_null);
+
+ /* generate an IV, if necessary */
+ if (key->ivSize) {
+ if (iv == NULL) {
+ return APR_ENOIV;
+ }
+ }
+
+ /* create a new context for decryption */
+ switch ((block->f->result->rc = CCCryptorCreate(kCCDecrypt, key->algorithm,
+ key->options, key->key, key->keyLen, iv, &block->ref))) {
+ case kCCSuccess: {
+ break;
+ }
+ case kCCParamError: {
+ return APR_EINIT;
+ }
+ case kCCMemoryFailure: {
+ return APR_ENOMEM;
+ }
+ case kCCAlignmentError: {
+ return APR_EPADDING;
+ }
+ case kCCUnimplemented: {
+ return APR_ENOTIMPL;
+ }
+ default: {
+ return APR_EINIT;
+ }
+ }
+
+ if (blockSize) {
+ *blockSize = key->blockSize;
+ }
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Decrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_decrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+static apr_status_t crypto_block_decrypt(unsigned char **out,
+ apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
+ apr_crypto_block_t *ctx)
+{
+ apr_size_t outl = *outlen;
+ unsigned char *buffer;
+
+ /* are we after the maximum size of the out buffer? */
+ if (!out) {
+ *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
+ return APR_SUCCESS;
+ }
+
+ /* must we allocate the output buffer from a pool? */
+ if (!*out) {
+ outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
+ buffer = apr_palloc(ctx->pool, outl);
+ if (!buffer) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(ctx->pool, buffer, outl);
+ *out = buffer;
+ }
+
+ switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out),
+ outl, &outl))) {
+ case kCCSuccess: {
+ break;
+ }
+ case kCCBufferTooSmall: {
+ return APR_ENOSPACE;
+ }
+ default: {
+ return APR_ECRYPT;
+ }
+ }
+ *outlen = outl;
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Decrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_decrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_decrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_decrypt_init().
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_decrypt_finish(unsigned char *out,
+ apr_size_t *outlen, apr_crypto_block_t *ctx)
+{
+ apr_size_t len = *outlen;
+
+ ctx->f->result->rc = CCCryptorFinal(ctx->ref, out,
+ CCCryptorGetOutputLength(ctx->ref, 0, 1), &len);
+
+ /* always clean up */
+ crypto_block_cleanup(ctx);
+
+ switch (ctx->f->result->rc) {
+ case kCCSuccess: {
+ break;
+ }
+ case kCCBufferTooSmall: {
+ return APR_ENOSPACE;
+ }
+ case kCCAlignmentError: {
+ return APR_EPADDING;
+ }
+ case kCCDecodeError: {
+ return APR_ECRYPT;
+ }
+ default: {
+ return APR_ECRYPT;
+ }
+ }
+ *outlen = len;
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * OSX Common Crypto module.
+ */
+APR_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_commoncrypto_driver =
+{
+ "commoncrypto", crypto_init, crypto_make, crypto_get_block_key_types,
+ crypto_get_block_key_modes, crypto_passphrase,
+ crypto_block_encrypt_init, crypto_block_encrypt,
+ crypto_block_encrypt_finish, crypto_block_decrypt_init,
+ crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup,
+ crypto_cleanup, crypto_shutdown, crypto_error
+};
+
+#endif