diff options
author | ylavic <ylavic@13f79535-47bb-0310-9956-ffa450edef68> | 2016-09-26 12:01:17 +0000 |
---|---|---|
committer | ylavic <ylavic@13f79535-47bb-0310-9956-ffa450edef68> | 2016-09-26 12:01:17 +0000 |
commit | ce66dfdd3a2d5e7363f304250cc6c394fb3686e2 (patch) | |
tree | 87363f5b8e063c4546acb47134def315bc060b60 /crypto | |
parent | 1fa171eec8e51b799390077416d489e770193d9b (diff) | |
download | libapr-ce66dfdd3a2d5e7363f304250cc6c394fb3686e2.tar.gz |
apr_crypto_commoncrypto: set native eol.
git-svn-id: http://svn.apache.org/repos/asf/apr/apr/trunk@1762325 13f79535-47bb-0310-9956-ffa450edef68
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/apr_crypto_commoncrypto.c | 1824 |
1 files changed, 912 insertions, 912 deletions
diff --git a/crypto/apr_crypto_commoncrypto.c b/crypto/apr_crypto_commoncrypto.c index ab216cc8f..f06f2ca3c 100644 --- a/crypto/apr_crypto_commoncrypto.c +++ b/crypto/apr_crypto_commoncrypto.c @@ -1,912 +1,912 @@ -/* Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "apr_lib.h"
-#include "apu.h"
-#include "apr_private.h"
-#include "apu_errno.h"
-
-#include <ctype.h>
-#include <assert.h>
-#include <stdlib.h>
-
-#include "apr_strings.h"
-#include "apr_time.h"
-#include "apr_buckets.h"
-#include "apr_random.h"
-
-#include "apr_crypto_internal.h"
-
-#if APU_HAVE_CRYPTO
-
-#include <CommonCrypto/CommonCrypto.h>
-
-#define LOG_PREFIX "apr_crypto_commoncrypto: "
-
-struct apr_crypto_t
-{
- apr_pool_t *pool;
- const apr_crypto_driver_t *provider;
- apu_err_t *result;
- apr_array_header_t *keys;
- apr_hash_t *types;
- apr_hash_t *modes;
- apr_random_t *rng;
-};
-
-struct apr_crypto_key_t
-{
- apr_pool_t *pool;
- const apr_crypto_driver_t *provider;
- const apr_crypto_t *f;
- CCAlgorithm algorithm;
- CCOptions options;
- unsigned char *key;
- int keyLen;
- int ivSize;
- apr_size_t blockSize;
-};
-
-struct apr_crypto_block_t
-{
- apr_pool_t *pool;
- const apr_crypto_driver_t *provider;
- const apr_crypto_t *f;
- const apr_crypto_key_t *key;
- CCCryptorRef ref;
-};
-
-static struct apr_crypto_block_key_type_t key_types[] =
-{
-{ APR_KEY_3DES_192, 24, 8, 8 },
-{ APR_KEY_AES_128, 16, 16, 16 },
-{ APR_KEY_AES_192, 24, 16, 16 },
-{ APR_KEY_AES_256, 32, 16, 16 } };
-
-static struct apr_crypto_block_key_mode_t key_modes[] =
-{
-{ APR_MODE_ECB },
-{ APR_MODE_CBC } };
-
-/**
- * Fetch the most recent error from this driver.
- */
-static apr_status_t crypto_error(const apu_err_t **result,
- const apr_crypto_t *f)
-{
- *result = f->result;
- return APR_SUCCESS;
-}
-
-/**
- * Shutdown the crypto library and release resources.
- */
-static apr_status_t crypto_shutdown(void)
-{
- return APR_SUCCESS;
-}
-
-static apr_status_t crypto_shutdown_helper(void *data)
-{
- return crypto_shutdown();
-}
-
-/**
- * Initialise the crypto library and perform one time initialisation.
- */
-static apr_status_t crypto_init(apr_pool_t *pool, const char *params,
- const apu_err_t **result)
-{
-
- apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper,
- apr_pool_cleanup_null);
-
- return APR_SUCCESS;
-}
-
-/**
- * @brief Clean encryption / decryption context.
- * @note After cleanup, a context is free to be reused if necessary.
- * @param ctx The block context to use.
- * @return Returns APR_ENOTIMPL if not supported.
- */
-static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx)
-{
-
- if (ctx->ref) {
- CCCryptorRelease(ctx->ref);
- ctx->ref = NULL;
- }
-
- return APR_SUCCESS;
-
-}
-
-static apr_status_t crypto_block_cleanup_helper(void *data)
-{
- apr_crypto_block_t *block = (apr_crypto_block_t *) data;
- return crypto_block_cleanup(block);
-}
-
-/**
- * @brief Clean encryption / decryption context.
- * @note After cleanup, a context is free to be reused if necessary.
- * @param f The context to use.
- * @return Returns APR_ENOTIMPL if not supported.
- */
-static apr_status_t crypto_cleanup(apr_crypto_t *f)
-{
-
- return APR_SUCCESS;
-
-}
-
-static apr_status_t crypto_cleanup_helper(void *data)
-{
- apr_crypto_t *f = (apr_crypto_t *) data;
- return crypto_cleanup(f);
-}
-
-/**
- * @brief Create a context for supporting encryption. Keys, certificates,
- * algorithms and other parameters will be set per context. More than
- * one context can be created at one time. A cleanup will be automatically
- * registered with the given pool to guarantee a graceful shutdown.
- * @param f - context pointer will be written here
- * @param provider - provider to use
- * @param params - array of key parameters
- * @param pool - process pool
- * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
- * if the engine cannot be initialised.
- */
-static apr_status_t crypto_make(apr_crypto_t **ff,
- const apr_crypto_driver_t *provider, const char *params,
- apr_pool_t *pool)
-{
- apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t));
- apr_status_t rv;
-
- if (!f) {
- return APR_ENOMEM;
- }
- *ff = f;
- f->pool = pool;
- f->provider = provider;
-
- /* seed the secure random number generator */
- f->rng = apr_random_standard_new(pool);
- if (!f->rng) {
- return APR_ENOMEM;
- }
- do {
- unsigned char seed[8];
- rv = apr_generate_random_bytes(seed, sizeof(seed));
- if (rv != APR_SUCCESS) {
- return rv;
- }
- apr_random_add_entropy(f->rng, seed, sizeof(seed));
- rv = apr_random_secure_ready(f->rng);
- } while (rv == APR_ENOTENOUGHENTROPY);
-
- f->result = apr_pcalloc(pool, sizeof(apu_err_t));
- if (!f->result) {
- return APR_ENOMEM;
- }
-
- f->keys = apr_array_make(pool, 10, sizeof(apr_crypto_key_t));
- if (!f->keys) {
- return APR_ENOMEM;
- }
-
- f->types = apr_hash_make(pool);
- if (!f->types) {
- return APR_ENOMEM;
- }
- apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[0]));
- apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[1]));
- apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[2]));
- apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[3]));
-
- f->modes = apr_hash_make(pool);
- if (!f->modes) {
- return APR_ENOMEM;
- }
- apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[0]));
- apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[1]));
-
- apr_pool_cleanup_register(pool, f, crypto_cleanup_helper,
- apr_pool_cleanup_null);
-
- return APR_SUCCESS;
-
-}
-
-/**
- * @brief Get a hash table of key types, keyed by the name of the type against
- * a pointer to apr_crypto_block_key_type_t.
- *
- * @param types - hashtable of key types keyed to constants.
- * @param f - encryption context
- * @return APR_SUCCESS for success
- */
-static apr_status_t crypto_get_block_key_types(apr_hash_t **types,
- const apr_crypto_t *f)
-{
- *types = f->types;
- return APR_SUCCESS;
-}
-
-/**
- * @brief Get a hash table of key modes, keyed by the name of the mode against
- * a pointer to apr_crypto_block_key_mode_t.
- *
- * @param modes - hashtable of key modes keyed to constants.
- * @param f - encryption context
- * @return APR_SUCCESS for success
- */
-static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes,
- const apr_crypto_t *f)
-{
- *modes = f->modes;
- return APR_SUCCESS;
-}
-
-/*
- * Work out which mechanism to use.
- */
-static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key,
- const apr_crypto_block_key_type_e type,
- const apr_crypto_block_key_mode_e mode, const int doPad, apr_pool_t *p)
-{
- /* handle padding */
- key->options = doPad ? kCCOptionPKCS7Padding : 0;
-
- /* determine the algorithm to be used */
- switch (type) {
-
- case (APR_KEY_3DES_192):
-
- /* A 3DES key */
- if (mode == APR_MODE_CBC) {
- key->algorithm = kCCAlgorithm3DES;
- key->keyLen = kCCKeySize3DES;
- key->ivSize = kCCBlockSize3DES;
- key->blockSize = kCCBlockSize3DES;
- }
- else {
- key->algorithm = kCCAlgorithm3DES;
- key->options += kCCOptionECBMode;
- key->keyLen = kCCKeySize3DES;
- key->ivSize = 0;
- key->blockSize = kCCBlockSize3DES;
- }
- break;
-
- case (APR_KEY_AES_128):
-
- if (mode == APR_MODE_CBC) {
- key->algorithm = kCCAlgorithmAES128;
- key->keyLen = kCCKeySizeAES128;
- key->ivSize = kCCBlockSizeAES128;
- key->blockSize = kCCBlockSizeAES128;
- }
- else {
- key->algorithm = kCCAlgorithmAES128;
- key->options += kCCOptionECBMode;
- key->keyLen = kCCKeySizeAES128;
- key->ivSize = 0;
- key->blockSize = kCCBlockSizeAES128;
- }
- break;
-
- case (APR_KEY_AES_192):
-
- if (mode == APR_MODE_CBC) {
- key->algorithm = kCCAlgorithmAES128;
- key->keyLen = kCCKeySizeAES192;
- key->ivSize = kCCBlockSizeAES128;
- key->blockSize = kCCBlockSizeAES128;
- }
- else {
- key->algorithm = kCCAlgorithmAES128;
- key->options += kCCOptionECBMode;
- key->keyLen = kCCKeySizeAES192;
- key->ivSize = 0;
- key->blockSize = kCCBlockSizeAES128;
- }
- break;
-
- case (APR_KEY_AES_256):
-
- if (mode == APR_MODE_CBC) {
- key->algorithm = kCCAlgorithmAES128;
- key->keyLen = kCCKeySizeAES256;
- key->ivSize = kCCBlockSizeAES128;
- key->blockSize = kCCBlockSizeAES128;
- }
- else {
- key->algorithm = kCCAlgorithmAES128;
- key->options += kCCOptionECBMode;
- key->keyLen = kCCKeySizeAES256;
- key->ivSize = 0;
- key->blockSize = kCCBlockSizeAES128;
- }
- break;
-
- default:
-
- /* TODO: Support CAST, Blowfish */
-
- /* unknown key type, give up */
- return APR_EKEYTYPE;
-
- }
-
- /* make space for the key */
- key->key = apr_palloc(p, key->keyLen);
- if (!key->key) {
- return APR_ENOMEM;
- }
- apr_crypto_clear(p, key->key, key->keyLen);
-
- return APR_SUCCESS;
-}
-
-/**
- * @brief Create a key from the provided secret or passphrase. The key is cleaned
- * up when the context is cleaned, and may be reused with multiple encryption
- * or decryption operations.
- * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
- * *key is not NULL, *key must point at a previously created structure.
- * @param key The key returned, see note.
- * @param rec The key record, from which the key will be derived.
- * @param f The context to use.
- * @param p The pool to use.
- * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
- * error occurred while generating the key. APR_ENOCIPHER if the type or mode
- * is not supported by the particular backend. APR_EKEYTYPE if the key type is
- * not known. APR_EPADDING if padding was requested but is not supported.
- * APR_ENOTIMPL if not implemented.
- */
-static apr_status_t crypto_key(apr_crypto_key_t **k,
- const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
-{
- apr_status_t rv;
- apr_crypto_key_t *key = *k;
-
- if (!key) {
- *k = key = apr_array_push(f->keys);
- }
- if (!key) {
- return APR_ENOMEM;
- }
-
- key->f = f;
- key->provider = f->provider;
-
- /* decide on what cipher mechanism we will be using */
- rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad, p);
- if (APR_SUCCESS != rv) {
- return rv;
- }
-
- switch (rec->ktype) {
-
- case APR_CRYPTO_KTYPE_PASSPHRASE: {
-
- /* generate the key */
- if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2,
- rec->k.passphrase.pass, rec->k.passphrase.passLen,
- rec->k.passphrase.salt, rec->k.passphrase.saltLen,
- kCCPRFHmacAlgSHA1, rec->k.passphrase.iterations, key->key,
- key->keyLen)) == kCCParamError) {
- return APR_ENOKEY;
- }
-
- break;
- }
-
- case APR_CRYPTO_KTYPE_SECRET: {
-
- /* sanity check - key correct size? */
- if (rec->k.secret.secretLen != key->keyLen) {
- return APR_EKEYLENGTH;
- }
-
- /* copy the key */
- memcpy(key->key, rec->k.secret.secret, rec->k.secret.secretLen);
-
- break;
- }
-
- default: {
-
- return APR_ENOKEY;
-
- }
- }
-
- return APR_SUCCESS;
-}
-
-/**
- * @brief Create a key from the given passphrase. By default, the PBKDF2
- * algorithm is used to generate the key from the passphrase. It is expected
- * that the same pass phrase will generate the same key, regardless of the
- * backend crypto platform used. The key is cleaned up when the context
- * is cleaned, and may be reused with multiple encryption or decryption
- * operations.
- * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
- * *key is not NULL, *key must point at a previously created structure.
- * @param key The key returned, see note.
- * @param ivSize The size of the initialisation vector will be returned, based
- * on whether an IV is relevant for this type of crypto.
- * @param pass The passphrase to use.
- * @param passLen The passphrase length in bytes
- * @param salt The salt to use.
- * @param saltLen The salt length in bytes
- * @param type 3DES_192, AES_128, AES_192, AES_256.
- * @param mode Electronic Code Book / Cipher Block Chaining.
- * @param doPad Pad if necessary.
- * @param iterations Iteration count
- * @param f The context to use.
- * @param p The pool to use.
- * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
- * error occurred while generating the key. APR_ENOCIPHER if the type or mode
- * is not supported by the particular backend. APR_EKEYTYPE if the key type is
- * not known. APR_EPADDING if padding was requested but is not supported.
- * APR_ENOTIMPL if not implemented.
- */
-static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize,
- const char *pass, apr_size_t passLen, const unsigned char * salt,
- apr_size_t saltLen, const apr_crypto_block_key_type_e type,
- const apr_crypto_block_key_mode_e mode, const int doPad,
- const int iterations, const apr_crypto_t *f, apr_pool_t *p)
-{
- apr_status_t rv;
- apr_crypto_key_t *key = *k;
-
- if (!key) {
- *k = key = apr_array_push(f->keys);
- }
- if (!key) {
- return APR_ENOMEM;
- }
-
- key->f = f;
- key->provider = f->provider;
-
- /* decide on what cipher mechanism we will be using */
- rv = crypto_cipher_mechanism(key, type, mode, doPad, p);
- if (APR_SUCCESS != rv) {
- return rv;
- }
-
- /* generate the key */
- if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, pass, passLen, salt,
- saltLen, kCCPRFHmacAlgSHA1, iterations, key->key, key->keyLen))
- == kCCParamError) {
- return APR_ENOKEY;
- }
-
- if (ivSize) {
- *ivSize = key->ivSize;
- }
-
- return APR_SUCCESS;
-}
-
-/**
- * @brief Initialise a context for encrypting arbitrary data using the given key.
- * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
- * *ctx is not NULL, *ctx must point at a previously created structure.
- * @param ctx The block context returned, see note.
- * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
- * an IV will be created at random, in space allocated from the pool.
- * If the buffer pointed to is not NULL, the IV in the buffer will be
- * used.
- * @param key The key structure.
- * @param blockSize The block size of the cipher.
- * @param p The pool to use.
- * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
- * Returns APR_EINIT if the backend failed to initialise the context. Returns
- * APR_ENOTIMPL if not implemented.
- */
-static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx,
- const unsigned char **iv, const apr_crypto_key_t *key,
- apr_size_t *blockSize, apr_pool_t *p)
-{
- unsigned char *usedIv;
- apr_crypto_block_t *block = *ctx;
- if (!block) {
- *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
- }
- if (!block) {
- return APR_ENOMEM;
- }
- block->f = key->f;
- block->pool = p;
- block->provider = key->provider;
- block->key = key;
-
- apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
- apr_pool_cleanup_null);
-
- /* generate an IV, if necessary */
- usedIv = NULL;
- if (key->ivSize) {
- if (iv == NULL) {
- return APR_ENOIV;
- }
- if (*iv == NULL) {
- apr_status_t status;
- usedIv = apr_pcalloc(p, key->ivSize);
- if (!usedIv) {
- return APR_ENOMEM;
- }
- apr_crypto_clear(p, usedIv, key->ivSize);
- status = apr_random_secure_bytes(block->f->rng, usedIv,
- key->ivSize);
- if (APR_SUCCESS != status) {
- return status;
- }
- *iv = usedIv;
- }
- else {
- usedIv = (unsigned char *) *iv;
- }
- }
-
- /* create a new context for encryption */
- switch ((block->f->result->rc = CCCryptorCreate(kCCEncrypt, key->algorithm,
- key->options, key->key, key->keyLen, usedIv, &block->ref))) {
- case kCCSuccess: {
- break;
- }
- case kCCParamError: {
- return APR_EINIT;
- }
- case kCCMemoryFailure: {
- return APR_ENOMEM;
- }
- case kCCAlignmentError: {
- return APR_EPADDING;
- }
- case kCCUnimplemented: {
- return APR_ENOTIMPL;
- }
- default: {
- return APR_EINIT;
- }
- }
-
- if (blockSize) {
- *blockSize = key->blockSize;
- }
-
- return APR_SUCCESS;
-
-}
-
-/**
- * @brief Encrypt data provided by in, write it to out.
- * @note The number of bytes written will be written to outlen. If
- * out is NULL, outlen will contain the maximum size of the
- * buffer needed to hold the data, including any data
- * generated by apr_crypto_block_encrypt_finish below. If *out points
- * to NULL, a buffer sufficiently large will be created from
- * the pool provided. If *out points to a not-NULL value, this
- * value will be used as a buffer instead.
- * @param out Address of a buffer to which data will be written,
- * see note.
- * @param outlen Length of the output will be written here.
- * @param in Address of the buffer to read.
- * @param inlen Length of the buffer to read.
- * @param ctx The block context to use.
- * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
- * not implemented.
- */
-static apr_status_t crypto_block_encrypt(unsigned char **out,
- apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
- apr_crypto_block_t *ctx)
-{
- apr_size_t outl = *outlen;
- unsigned char *buffer;
-
- /* are we after the maximum size of the out buffer? */
- if (!out) {
- *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
- return APR_SUCCESS;
- }
-
- /* must we allocate the output buffer from a pool? */
- if (!*out) {
- outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
- buffer = apr_palloc(ctx->pool, outl);
- if (!buffer) {
- return APR_ENOMEM;
- }
- apr_crypto_clear(ctx->pool, buffer, outl);
- *out = buffer;
- }
-
- switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out),
- outl, &outl))) {
- case kCCSuccess: {
- break;
- }
- case kCCBufferTooSmall: {
- return APR_ENOSPACE;
- }
- default: {
- return APR_ECRYPT;
- }
- }
- *outlen = outl;
-
- return APR_SUCCESS;
-
-}
-
-/**
- * @brief Encrypt final data block, write it to out.
- * @note If necessary the final block will be written out after being
- * padded. Typically the final block will be written to the
- * same buffer used by apr_crypto_block_encrypt, offset by the
- * number of bytes returned as actually written by the
- * apr_crypto_block_encrypt() call. After this call, the context
- * is cleaned and can be reused by apr_crypto_block_encrypt_init().
- * @param out Address of a buffer to which data will be written. This
- * buffer must already exist, and is usually the same
- * buffer used by apr_evp_crypt(). See note.
- * @param outlen Length of the output will be written here.
- * @param ctx The block context to use.
- * @return APR_ECRYPT if an error occurred.
- * @return APR_EPADDING if padding was enabled and the block was incorrectly
- * formatted.
- * @return APR_ENOTIMPL if not implemented.
- */
-static apr_status_t crypto_block_encrypt_finish(unsigned char *out,
- apr_size_t *outlen, apr_crypto_block_t *ctx)
-{
- apr_size_t len = *outlen;
-
- ctx->f->result->rc = CCCryptorFinal(ctx->ref, out,
- CCCryptorGetOutputLength(ctx->ref, 0, 1), &len);
-
- /* always clean up */
- crypto_block_cleanup(ctx);
-
- switch (ctx->f->result->rc) {
- case kCCSuccess: {
- break;
- }
- case kCCBufferTooSmall: {
- return APR_ENOSPACE;
- }
- case kCCAlignmentError: {
- return APR_EPADDING;
- }
- case kCCDecodeError: {
- return APR_ECRYPT;
- }
- default: {
- return APR_ECRYPT;
- }
- }
- *outlen = len;
-
- return APR_SUCCESS;
-
-}
-
-/**
- * @brief Initialise a context for decrypting arbitrary data using the given key.
- * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
- * *ctx is not NULL, *ctx must point at a previously created structure.
- * @param ctx The block context returned, see note.
- * @param blockSize The block size of the cipher.
- * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
- * an IV will be created at random, in space allocated from the pool.
- * If the buffer is not NULL, the IV in the buffer will be used.
- * @param key The key structure.
- * @param p The pool to use.
- * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
- * Returns APR_EINIT if the backend failed to initialise the context. Returns
- * APR_ENOTIMPL if not implemented.
- */
-static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx,
- apr_size_t *blockSize, const unsigned char *iv,
- const apr_crypto_key_t *key, apr_pool_t *p)
-{
- apr_crypto_block_t *block = *ctx;
- if (!block) {
- *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
- }
- if (!block) {
- return APR_ENOMEM;
- }
- block->f = key->f;
- block->pool = p;
- block->provider = key->provider;
-
- apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
- apr_pool_cleanup_null);
-
- /* generate an IV, if necessary */
- if (key->ivSize) {
- if (iv == NULL) {
- return APR_ENOIV;
- }
- }
-
- /* create a new context for decryption */
- switch ((block->f->result->rc = CCCryptorCreate(kCCDecrypt, key->algorithm,
- key->options, key->key, key->keyLen, iv, &block->ref))) {
- case kCCSuccess: {
- break;
- }
- case kCCParamError: {
- return APR_EINIT;
- }
- case kCCMemoryFailure: {
- return APR_ENOMEM;
- }
- case kCCAlignmentError: {
- return APR_EPADDING;
- }
- case kCCUnimplemented: {
- return APR_ENOTIMPL;
- }
- default: {
- return APR_EINIT;
- }
- }
-
- if (blockSize) {
- *blockSize = key->blockSize;
- }
-
- return APR_SUCCESS;
-
-}
-
-/**
- * @brief Decrypt data provided by in, write it to out.
- * @note The number of bytes written will be written to outlen. If
- * out is NULL, outlen will contain the maximum size of the
- * buffer needed to hold the data, including any data
- * generated by apr_crypto_block_decrypt_finish below. If *out points
- * to NULL, a buffer sufficiently large will be created from
- * the pool provided. If *out points to a not-NULL value, this
- * value will be used as a buffer instead.
- * @param out Address of a buffer to which data will be written,
- * see note.
- * @param outlen Length of the output will be written here.
- * @param in Address of the buffer to read.
- * @param inlen Length of the buffer to read.
- * @param ctx The block context to use.
- * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
- * not implemented.
- */
-static apr_status_t crypto_block_decrypt(unsigned char **out,
- apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
- apr_crypto_block_t *ctx)
-{
- apr_size_t outl = *outlen;
- unsigned char *buffer;
-
- /* are we after the maximum size of the out buffer? */
- if (!out) {
- *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
- return APR_SUCCESS;
- }
-
- /* must we allocate the output buffer from a pool? */
- if (!*out) {
- outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
- buffer = apr_palloc(ctx->pool, outl);
- if (!buffer) {
- return APR_ENOMEM;
- }
- apr_crypto_clear(ctx->pool, buffer, outl);
- *out = buffer;
- }
-
- switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out),
- outl, &outl))) {
- case kCCSuccess: {
- break;
- }
- case kCCBufferTooSmall: {
- return APR_ENOSPACE;
- }
- default: {
- return APR_ECRYPT;
- }
- }
- *outlen = outl;
-
- return APR_SUCCESS;
-
-}
-
-/**
- * @brief Decrypt final data block, write it to out.
- * @note If necessary the final block will be written out after being
- * padded. Typically the final block will be written to the
- * same buffer used by apr_crypto_block_decrypt, offset by the
- * number of bytes returned as actually written by the
- * apr_crypto_block_decrypt() call. After this call, the context
- * is cleaned and can be reused by apr_crypto_block_decrypt_init().
- * @param out Address of a buffer to which data will be written. This
- * buffer must already exist, and is usually the same
- * buffer used by apr_evp_crypt(). See note.
- * @param outlen Length of the output will be written here.
- * @param ctx The block context to use.
- * @return APR_ECRYPT if an error occurred.
- * @return APR_EPADDING if padding was enabled and the block was incorrectly
- * formatted.
- * @return APR_ENOTIMPL if not implemented.
- */
-static apr_status_t crypto_block_decrypt_finish(unsigned char *out,
- apr_size_t *outlen, apr_crypto_block_t *ctx)
-{
- apr_size_t len = *outlen;
-
- ctx->f->result->rc = CCCryptorFinal(ctx->ref, out,
- CCCryptorGetOutputLength(ctx->ref, 0, 1), &len);
-
- /* always clean up */
- crypto_block_cleanup(ctx);
-
- switch (ctx->f->result->rc) {
- case kCCSuccess: {
- break;
- }
- case kCCBufferTooSmall: {
- return APR_ENOSPACE;
- }
- case kCCAlignmentError: {
- return APR_EPADDING;
- }
- case kCCDecodeError: {
- return APR_ECRYPT;
- }
- default: {
- return APR_ECRYPT;
- }
- }
- *outlen = len;
-
- return APR_SUCCESS;
-
-}
-
-/**
- * OSX Common Crypto module.
- */
-APR_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_commoncrypto_driver =
-{
- "commoncrypto", crypto_init, crypto_make, crypto_get_block_key_types,
- crypto_get_block_key_modes, crypto_passphrase,
- crypto_block_encrypt_init, crypto_block_encrypt,
- crypto_block_encrypt_finish, crypto_block_decrypt_init,
- crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup,
- crypto_cleanup, crypto_shutdown, crypto_error, crypto_key
-};
-
-#endif
+/* Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "apr_lib.h" +#include "apu.h" +#include "apr_private.h" +#include "apu_errno.h" + +#include <ctype.h> +#include <assert.h> +#include <stdlib.h> + +#include "apr_strings.h" +#include "apr_time.h" +#include "apr_buckets.h" +#include "apr_random.h" + +#include "apr_crypto_internal.h" + +#if APU_HAVE_CRYPTO + +#include <CommonCrypto/CommonCrypto.h> + +#define LOG_PREFIX "apr_crypto_commoncrypto: " + +struct apr_crypto_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + apu_err_t *result; + apr_array_header_t *keys; + apr_hash_t *types; + apr_hash_t *modes; + apr_random_t *rng; +}; + +struct apr_crypto_key_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + const apr_crypto_t *f; + CCAlgorithm algorithm; + CCOptions options; + unsigned char *key; + int keyLen; + int ivSize; + apr_size_t blockSize; +}; + +struct apr_crypto_block_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + const apr_crypto_t *f; + const apr_crypto_key_t *key; + CCCryptorRef ref; +}; + +static struct apr_crypto_block_key_type_t key_types[] = +{ +{ APR_KEY_3DES_192, 24, 8, 8 }, +{ APR_KEY_AES_128, 16, 16, 16 }, +{ APR_KEY_AES_192, 24, 16, 16 }, +{ APR_KEY_AES_256, 32, 16, 16 } }; + +static struct apr_crypto_block_key_mode_t key_modes[] = +{ +{ APR_MODE_ECB }, +{ APR_MODE_CBC } }; + +/** + * Fetch the most recent error from this driver. + */ +static apr_status_t crypto_error(const apu_err_t **result, + const apr_crypto_t *f) +{ + *result = f->result; + return APR_SUCCESS; +} + +/** + * Shutdown the crypto library and release resources. + */ +static apr_status_t crypto_shutdown(void) +{ + return APR_SUCCESS; +} + +static apr_status_t crypto_shutdown_helper(void *data) +{ + return crypto_shutdown(); +} + +/** + * Initialise the crypto library and perform one time initialisation. + */ +static apr_status_t crypto_init(apr_pool_t *pool, const char *params, + const apu_err_t **result) +{ + + apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper, + apr_pool_cleanup_null); + + return APR_SUCCESS; +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param ctx The block context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx) +{ + + if (ctx->ref) { + CCCryptorRelease(ctx->ref); + ctx->ref = NULL; + } + + return APR_SUCCESS; + +} + +static apr_status_t crypto_block_cleanup_helper(void *data) +{ + apr_crypto_block_t *block = (apr_crypto_block_t *) data; + return crypto_block_cleanup(block); +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param f The context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +static apr_status_t crypto_cleanup(apr_crypto_t *f) +{ + + return APR_SUCCESS; + +} + +static apr_status_t crypto_cleanup_helper(void *data) +{ + apr_crypto_t *f = (apr_crypto_t *) data; + return crypto_cleanup(f); +} + +/** + * @brief Create a context for supporting encryption. Keys, certificates, + * algorithms and other parameters will be set per context. More than + * one context can be created at one time. A cleanup will be automatically + * registered with the given pool to guarantee a graceful shutdown. + * @param f - context pointer will be written here + * @param provider - provider to use + * @param params - array of key parameters + * @param pool - process pool + * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE + * if the engine cannot be initialised. + */ +static apr_status_t crypto_make(apr_crypto_t **ff, + const apr_crypto_driver_t *provider, const char *params, + apr_pool_t *pool) +{ + apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t)); + apr_status_t rv; + + if (!f) { + return APR_ENOMEM; + } + *ff = f; + f->pool = pool; + f->provider = provider; + + /* seed the secure random number generator */ + f->rng = apr_random_standard_new(pool); + if (!f->rng) { + return APR_ENOMEM; + } + do { + unsigned char seed[8]; + rv = apr_generate_random_bytes(seed, sizeof(seed)); + if (rv != APR_SUCCESS) { + return rv; + } + apr_random_add_entropy(f->rng, seed, sizeof(seed)); + rv = apr_random_secure_ready(f->rng); + } while (rv == APR_ENOTENOUGHENTROPY); + + f->result = apr_pcalloc(pool, sizeof(apu_err_t)); + if (!f->result) { + return APR_ENOMEM; + } + + f->keys = apr_array_make(pool, 10, sizeof(apr_crypto_key_t)); + if (!f->keys) { + return APR_ENOMEM; + } + + f->types = apr_hash_make(pool); + if (!f->types) { + return APR_ENOMEM; + } + apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[0])); + apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[1])); + apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[2])); + apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[3])); + + f->modes = apr_hash_make(pool); + if (!f->modes) { + return APR_ENOMEM; + } + apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[0])); + apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[1])); + + apr_pool_cleanup_register(pool, f, crypto_cleanup_helper, + apr_pool_cleanup_null); + + return APR_SUCCESS; + +} + +/** + * @brief Get a hash table of key types, keyed by the name of the type against + * a pointer to apr_crypto_block_key_type_t. + * + * @param types - hashtable of key types keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +static apr_status_t crypto_get_block_key_types(apr_hash_t **types, + const apr_crypto_t *f) +{ + *types = f->types; + return APR_SUCCESS; +} + +/** + * @brief Get a hash table of key modes, keyed by the name of the mode against + * a pointer to apr_crypto_block_key_mode_t. + * + * @param modes - hashtable of key modes keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes, + const apr_crypto_t *f) +{ + *modes = f->modes; + return APR_SUCCESS; +} + +/* + * Work out which mechanism to use. + */ +static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key, + const apr_crypto_block_key_type_e type, + const apr_crypto_block_key_mode_e mode, const int doPad, apr_pool_t *p) +{ + /* handle padding */ + key->options = doPad ? kCCOptionPKCS7Padding : 0; + + /* determine the algorithm to be used */ + switch (type) { + + case (APR_KEY_3DES_192): + + /* A 3DES key */ + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithm3DES; + key->keyLen = kCCKeySize3DES; + key->ivSize = kCCBlockSize3DES; + key->blockSize = kCCBlockSize3DES; + } + else { + key->algorithm = kCCAlgorithm3DES; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySize3DES; + key->ivSize = 0; + key->blockSize = kCCBlockSize3DES; + } + break; + + case (APR_KEY_AES_128): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES128; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES128; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + case (APR_KEY_AES_192): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES192; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES192; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + case (APR_KEY_AES_256): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES256; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES256; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + default: + + /* TODO: Support CAST, Blowfish */ + + /* unknown key type, give up */ + return APR_EKEYTYPE; + + } + + /* make space for the key */ + key->key = apr_palloc(p, key->keyLen); + if (!key->key) { + return APR_ENOMEM; + } + apr_crypto_clear(p, key->key, key->keyLen); + + return APR_SUCCESS; +} + +/** + * @brief Create a key from the provided secret or passphrase. The key is cleaned + * up when the context is cleaned, and may be reused with multiple encryption + * or decryption operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param rec The key record, from which the key will be derived. + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_key(apr_crypto_key_t **k, + const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p) +{ + apr_status_t rv; + apr_crypto_key_t *key = *k; + + if (!key) { + *k = key = apr_array_push(f->keys); + } + if (!key) { + return APR_ENOMEM; + } + + key->f = f; + key->provider = f->provider; + + /* decide on what cipher mechanism we will be using */ + rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad, p); + if (APR_SUCCESS != rv) { + return rv; + } + + switch (rec->ktype) { + + case APR_CRYPTO_KTYPE_PASSPHRASE: { + + /* generate the key */ + if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, + rec->k.passphrase.pass, rec->k.passphrase.passLen, + rec->k.passphrase.salt, rec->k.passphrase.saltLen, + kCCPRFHmacAlgSHA1, rec->k.passphrase.iterations, key->key, + key->keyLen)) == kCCParamError) { + return APR_ENOKEY; + } + + break; + } + + case APR_CRYPTO_KTYPE_SECRET: { + + /* sanity check - key correct size? */ + if (rec->k.secret.secretLen != key->keyLen) { + return APR_EKEYLENGTH; + } + + /* copy the key */ + memcpy(key->key, rec->k.secret.secret, rec->k.secret.secretLen); + + break; + } + + default: { + + return APR_ENOKEY; + + } + } + + return APR_SUCCESS; +} + +/** + * @brief Create a key from the given passphrase. By default, the PBKDF2 + * algorithm is used to generate the key from the passphrase. It is expected + * that the same pass phrase will generate the same key, regardless of the + * backend crypto platform used. The key is cleaned up when the context + * is cleaned, and may be reused with multiple encryption or decryption + * operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param ivSize The size of the initialisation vector will be returned, based + * on whether an IV is relevant for this type of crypto. + * @param pass The passphrase to use. + * @param passLen The passphrase length in bytes + * @param salt The salt to use. + * @param saltLen The salt length in bytes + * @param type 3DES_192, AES_128, AES_192, AES_256. + * @param mode Electronic Code Book / Cipher Block Chaining. + * @param doPad Pad if necessary. + * @param iterations Iteration count + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize, + const char *pass, apr_size_t passLen, const unsigned char * salt, + apr_size_t saltLen, const apr_crypto_block_key_type_e type, + const apr_crypto_block_key_mode_e mode, const int doPad, + const int iterations, const apr_crypto_t *f, apr_pool_t *p) +{ + apr_status_t rv; + apr_crypto_key_t *key = *k; + + if (!key) { + *k = key = apr_array_push(f->keys); + } + if (!key) { + return APR_ENOMEM; + } + + key->f = f; + key->provider = f->provider; + + /* decide on what cipher mechanism we will be using */ + rv = crypto_cipher_mechanism(key, type, mode, doPad, p); + if (APR_SUCCESS != rv) { + return rv; + } + + /* generate the key */ + if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, pass, passLen, salt, + saltLen, kCCPRFHmacAlgSHA1, iterations, key->key, key->keyLen)) + == kCCParamError) { + return APR_ENOKEY; + } + + if (ivSize) { + *ivSize = key->ivSize; + } + + return APR_SUCCESS; +} + +/** + * @brief Initialise a context for encrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer pointed to is not NULL, the IV in the buffer will be + * used. + * @param key The key structure. + * @param blockSize The block size of the cipher. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx, + const unsigned char **iv, const apr_crypto_key_t *key, + apr_size_t *blockSize, apr_pool_t *p) +{ + unsigned char *usedIv; + apr_crypto_block_t *block = *ctx; + if (!block) { + *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); + } + if (!block) { + return APR_ENOMEM; + } + block->f = key->f; + block->pool = p; + block->provider = key->provider; + block->key = key; + + apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, + apr_pool_cleanup_null); + + /* generate an IV, if necessary */ + usedIv = NULL; + if (key->ivSize) { + if (iv == NULL) { + return APR_ENOIV; + } + if (*iv == NULL) { + apr_status_t status; + usedIv = apr_pcalloc(p, key->ivSize); + if (!usedIv) { + return APR_ENOMEM; + } + apr_crypto_clear(p, usedIv, key->ivSize); + status = apr_random_secure_bytes(block->f->rng, usedIv, + key->ivSize); + if (APR_SUCCESS != status) { + return status; + } + *iv = usedIv; + } + else { + usedIv = (unsigned char *) *iv; + } + } + + /* create a new context for encryption */ + switch ((block->f->result->rc = CCCryptorCreate(kCCEncrypt, key->algorithm, + key->options, key->key, key->keyLen, usedIv, &block->ref))) { + case kCCSuccess: { + break; + } + case kCCParamError: { + return APR_EINIT; + } + case kCCMemoryFailure: { + return APR_ENOMEM; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCUnimplemented: { + return APR_ENOTIMPL; + } + default: { + return APR_EINIT; + } + } + + if (blockSize) { + *blockSize = key->blockSize; + } + + return APR_SUCCESS; + +} + +/** + * @brief Encrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_encrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +static apr_status_t crypto_block_encrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + apr_size_t outl = *outlen; + unsigned char *buffer; + + /* are we after the maximum size of the out buffer? */ + if (!out) { + *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + return APR_SUCCESS; + } + + /* must we allocate the output buffer from a pool? */ + if (!*out) { + outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + buffer = apr_palloc(ctx->pool, outl); + if (!buffer) { + return APR_ENOMEM; + } + apr_crypto_clear(ctx->pool, buffer, outl); + *out = buffer; + } + + switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out), + outl, &outl))) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + default: { + return APR_ECRYPT; + } + } + *outlen = outl; + + return APR_SUCCESS; + +} + +/** + * @brief Encrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_encrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_encrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_encrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_encrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + apr_size_t len = *outlen; + + ctx->f->result->rc = CCCryptorFinal(ctx->ref, out, + CCCryptorGetOutputLength(ctx->ref, 0, 1), &len); + + /* always clean up */ + crypto_block_cleanup(ctx); + + switch (ctx->f->result->rc) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCDecodeError: { + return APR_ECRYPT; + } + default: { + return APR_ECRYPT; + } + } + *outlen = len; + + return APR_SUCCESS; + +} + +/** + * @brief Initialise a context for decrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param blockSize The block size of the cipher. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer is not NULL, the IV in the buffer will be used. + * @param key The key structure. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx, + apr_size_t *blockSize, const unsigned char *iv, + const apr_crypto_key_t *key, apr_pool_t *p) +{ + apr_crypto_block_t *block = *ctx; + if (!block) { + *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); + } + if (!block) { + return APR_ENOMEM; + } + block->f = key->f; + block->pool = p; + block->provider = key->provider; + + apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, + apr_pool_cleanup_null); + + /* generate an IV, if necessary */ + if (key->ivSize) { + if (iv == NULL) { + return APR_ENOIV; + } + } + + /* create a new context for decryption */ + switch ((block->f->result->rc = CCCryptorCreate(kCCDecrypt, key->algorithm, + key->options, key->key, key->keyLen, iv, &block->ref))) { + case kCCSuccess: { + break; + } + case kCCParamError: { + return APR_EINIT; + } + case kCCMemoryFailure: { + return APR_ENOMEM; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCUnimplemented: { + return APR_ENOTIMPL; + } + default: { + return APR_EINIT; + } + } + + if (blockSize) { + *blockSize = key->blockSize; + } + + return APR_SUCCESS; + +} + +/** + * @brief Decrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_decrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +static apr_status_t crypto_block_decrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + apr_size_t outl = *outlen; + unsigned char *buffer; + + /* are we after the maximum size of the out buffer? */ + if (!out) { + *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + return APR_SUCCESS; + } + + /* must we allocate the output buffer from a pool? */ + if (!*out) { + outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + buffer = apr_palloc(ctx->pool, outl); + if (!buffer) { + return APR_ENOMEM; + } + apr_crypto_clear(ctx->pool, buffer, outl); + *out = buffer; + } + + switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out), + outl, &outl))) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + default: { + return APR_ECRYPT; + } + } + *outlen = outl; + + return APR_SUCCESS; + +} + +/** + * @brief Decrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_decrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_decrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_decrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_decrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + apr_size_t len = *outlen; + + ctx->f->result->rc = CCCryptorFinal(ctx->ref, out, + CCCryptorGetOutputLength(ctx->ref, 0, 1), &len); + + /* always clean up */ + crypto_block_cleanup(ctx); + + switch (ctx->f->result->rc) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCDecodeError: { + return APR_ECRYPT; + } + default: { + return APR_ECRYPT; + } + } + *outlen = len; + + return APR_SUCCESS; + +} + +/** + * OSX Common Crypto module. + */ +APR_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_commoncrypto_driver = +{ + "commoncrypto", crypto_init, crypto_make, crypto_get_block_key_types, + crypto_get_block_key_modes, crypto_passphrase, + crypto_block_encrypt_init, crypto_block_encrypt, + crypto_block_encrypt_finish, crypto_block_decrypt_init, + crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup, + crypto_cleanup, crypto_shutdown, crypto_error, crypto_key +}; + +#endif |