summaryrefslogtreecommitdiff
path: root/doc/libffi.texi
diff options
context:
space:
mode:
Diffstat (limited to 'doc/libffi.texi')
-rw-r--r--doc/libffi.texi541
1 files changed, 541 insertions, 0 deletions
diff --git a/doc/libffi.texi b/doc/libffi.texi
new file mode 100644
index 0000000..90c676a
--- /dev/null
+++ b/doc/libffi.texi
@@ -0,0 +1,541 @@
+\input texinfo @c -*-texinfo-*-
+@c %**start of header
+@setfilename libffi.info
+@settitle libffi
+@setchapternewpage off
+@c %**end of header
+
+@c Merge the standard indexes into a single one.
+@syncodeindex fn cp
+@syncodeindex vr cp
+@syncodeindex ky cp
+@syncodeindex pg cp
+@syncodeindex tp cp
+
+@include version.texi
+
+@copying
+
+This manual is for Libffi, a portable foreign-function interface
+library.
+
+Copyright @copyright{} 2008 Red Hat, Inc.
+
+@quotation
+Permission is granted to copy, distribute and/or modify this document
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version. A copy of the license is included in the
+section entitled ``GNU General Public License''.
+
+@end quotation
+@end copying
+
+@dircategory
+@direntry
+* libffi: (libffi). Portable foreign-function interface library.
+@end direntry
+
+@titlepage
+@title Libffi
+@page
+@vskip 0pt plus 1filll
+@insertcopying
+@end titlepage
+
+
+@ifnottex
+@node Top
+@top libffi
+
+@insertcopying
+
+@menu
+* Introduction:: What is libffi?
+* Using libffi:: How to use libffi.
+* Missing Features:: Things libffi can't do.
+* Index:: Index.
+@end menu
+
+@end ifnottex
+
+
+@node Introduction
+@chapter What is libffi?
+
+Compilers for high level languages generate code that follow certain
+conventions. These conventions are necessary, in part, for separate
+compilation to work. One such convention is the @dfn{calling
+convention}. The calling convention is a set of assumptions made by
+the compiler about where function arguments will be found on entry to
+a function. A calling convention also specifies where the return
+value for a function is found. The calling convention is also
+sometimes called the @dfn{ABI} or @dfn{Application Binary Interface}.
+@cindex calling convention
+@cindex ABI
+@cindex Application Binary Interface
+
+Some programs may not know at the time of compilation what arguments
+are to be passed to a function. For instance, an interpreter may be
+told at run-time about the number and types of arguments used to call
+a given function. @samp{Libffi} can be used in such programs to
+provide a bridge from the interpreter program to compiled code.
+
+The @samp{libffi} library provides a portable, high level programming
+interface to various calling conventions. This allows a programmer to
+call any function specified by a call interface description at run
+time.
+
+@acronym{FFI} stands for Foreign Function Interface. A foreign
+function interface is the popular name for the interface that allows
+code written in one language to call code written in another language.
+The @samp{libffi} library really only provides the lowest, machine
+dependent layer of a fully featured foreign function interface. A
+layer must exist above @samp{libffi} that handles type conversions for
+values passed between the two languages.
+@cindex FFI
+@cindex Foreign Function Interface
+
+
+@node Using libffi
+@chapter Using libffi
+
+@menu
+* The Basics:: The basic libffi API.
+* Simple Example:: A simple example.
+* Types:: libffi type descriptions.
+* Multiple ABIs:: Different passing styles on one platform.
+* The Closure API:: Writing a generic function.
+@end menu
+
+
+@node The Basics
+@section The Basics
+
+@samp{Libffi} assumes that you have a pointer to the function you wish
+to call and that you know the number and types of arguments to pass
+it, as well as the return type of the function.
+
+The first thing you must do is create an @code{ffi_cif} object that
+matches the signature of the function you wish to call. This is a
+separate step because it is common to make multiple calls using a
+single @code{ffi_cif}. The @dfn{cif} in @code{ffi_cif} stands for
+Call InterFace. To prepare a call interface object, use the function
+@code{ffi_prep_cif}.
+@cindex cif
+
+@findex ffi_prep_cif
+@defun ffi_status ffi_prep_cif (ffi_cif *@var{cif}, ffi_abi @var{abi}, unsigned int @var{nargs}, ffi_type *@var{rtype}, ffi_type **@var{argtypes})
+This initializes @var{cif} according to the given parameters.
+
+@var{abi} is the ABI to use; normally @code{FFI_DEFAULT_ABI} is what
+you want. @ref{Multiple ABIs} for more information.
+
+@var{nargs} is the number of arguments that this function accepts.
+@samp{libffi} does not yet handle varargs functions; see @ref{Missing
+Features} for more information.
+
+@var{rtype} is a pointer to an @code{ffi_type} structure that
+describes the return type of the function. @xref{Types}.
+
+@var{argtypes} is a vector of @code{ffi_type} pointers.
+@var{argtypes} must have @var{nargs} elements. If @var{nargs} is 0,
+this argument is ignored.
+
+@code{ffi_prep_cif} returns a @code{libffi} status code, of type
+@code{ffi_status}. This will be either @code{FFI_OK} if everything
+worked properly; @code{FFI_BAD_TYPEDEF} if one of the @code{ffi_type}
+objects is incorrect; or @code{FFI_BAD_ABI} if the @var{abi} parameter
+is invalid.
+@end defun
+
+
+To call a function using an initialized @code{ffi_cif}, use the
+@code{ffi_call} function:
+
+@findex ffi_call
+@defun void ffi_call (ffi_cif *@var{cif}, void *@var{fn}, void *@var{rvalue}, void **@var{avalues})
+This calls the function @var{fn} according to the description given in
+@var{cif}. @var{cif} must have already been prepared using
+@code{ffi_prep_cif}.
+
+@var{rvalue} is a pointer to a chunk of memory that will hold the
+result of the function call. This must be large enough to hold the
+result and must be suitably aligned; it is the caller's responsibility
+to ensure this. If @var{cif} declares that the function returns
+@code{void} (using @code{ffi_type_void}), then @var{rvalue} is
+ignored. If @var{rvalue} is @samp{NULL}, then the return value is
+discarded.
+
+@var{avalues} is a vector of @code{void *} pointers that point to the
+memory locations holding the argument values for a call. If @var{cif}
+declares that the function has no arguments (i.e., @var{nargs} was 0),
+then @var{avalues} is ignored.
+@end defun
+
+
+@node Simple Example
+@section Simple Example
+
+Here is a trivial example that calls @code{puts} a few times.
+
+@example
+#include <stdio.h>
+#include <ffi.h>
+
+int main()
+@{
+ ffi_cif cif;
+ ffi_type *args[1];
+ void *values[1];
+ char *s;
+ int rc;
+
+ /* Initialize the argument info vectors */
+ args[0] = &ffi_type_pointer;
+ values[0] = &s;
+
+ /* Initialize the cif */
+ if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
+ &ffi_type_uint, args) == FFI_OK)
+ @{
+ s = "Hello World!";
+ ffi_call(&cif, puts, &rc, values);
+ /* rc now holds the result of the call to puts */
+
+ /* values holds a pointer to the function's arg, so to
+ call puts() again all we need to do is change the
+ value of s */
+ s = "This is cool!";
+ ffi_call(&cif, puts, &rc, values);
+ @}
+
+ return 0;
+@}
+@end example
+
+
+@node Types
+@section Types
+
+@menu
+* Primitive Types:: Built-in types.
+* Structures:: Structure types.
+* Type Example:: Structure type example.
+@end menu
+
+@node Primitive Types
+@subsection Primitive Types
+
+@code{Libffi} provides a number of built-in type descriptors that can
+be used to describe argument and return types:
+
+@table @code
+@item ffi_type_void
+@tindex ffi_type_void
+The type @code{void}. This cannot be used for argument types, only
+for return values.
+
+@item ffi_type_uint8
+@tindex ffi_type_uint8
+An unsigned, 8-bit integer type.
+
+@item ffi_type_sint8
+@tindex ffi_type_sint8
+A signed, 8-bit integer type.
+
+@item ffi_type_uint16
+@tindex ffi_type_uint16
+An unsigned, 16-bit integer type.
+
+@item ffi_type_sint16
+@tindex ffi_type_sint16
+A signed, 16-bit integer type.
+
+@item ffi_type_uint32
+@tindex ffi_type_uint32
+An unsigned, 32-bit integer type.
+
+@item ffi_type_sint32
+@tindex ffi_type_sint32
+A signed, 32-bit integer type.
+
+@item ffi_type_uint64
+@tindex ffi_type_uint64
+An unsigned, 64-bit integer type.
+
+@item ffi_type_sint64
+@tindex ffi_type_sint64
+A signed, 64-bit integer type.
+
+@item ffi_type_float
+@tindex ffi_type_float
+The C @code{float} type.
+
+@item ffi_type_double
+@tindex ffi_type_double
+The C @code{double} type.
+
+@item ffi_type_uchar
+@tindex ffi_type_uchar
+The C @code{unsigned char} type.
+
+@item ffi_type_schar
+@tindex ffi_type_schar
+The C @code{signed char} type. (Note that there is not an exact
+equivalent to the C @code{char} type in @code{libffi}; ordinarily you
+should either use @code{ffi_type_schar} or @code{ffi_type_uchar}
+depending on whether @code{char} is signed.)
+
+@item ffi_type_ushort
+@tindex ffi_type_ushort
+The C @code{unsigned short} type.
+
+@item ffi_type_sshort
+@tindex ffi_type_sshort
+The C @code{short} type.
+
+@item ffi_type_uint
+@tindex ffi_type_uint
+The C @code{unsigned int} type.
+
+@item ffi_type_sint
+@tindex ffi_type_sint
+The C @code{int} type.
+
+@item ffi_type_ulong
+@tindex ffi_type_ulong
+The C @code{unsigned long} type.
+
+@item ffi_type_slong
+@tindex ffi_type_slong
+The C @code{long} type.
+
+@item ffi_type_longdouble
+@tindex ffi_type_longdouble
+On platforms that have a C @code{long double} type, this is defined.
+On other platforms, it is not.
+
+@item ffi_type_pointer
+@tindex ffi_type_pointer
+A generic @code{void *} pointer. You should use this for all
+pointers, regardless of their real type.
+@end table
+
+Each of these is of type @code{ffi_type}, so you must take the address
+when passing to @code{ffi_prep_cif}.
+
+
+@node Structures
+@subsection Structures
+
+Although @samp{libffi} has no special support for unions or
+bit-fields, it is perfectly happy passing structures back and forth.
+You must first describe the structure to @samp{libffi} by creating a
+new @code{ffi_type} object for it.
+
+@tindex ffi_type
+@deftp ffi_type
+The @code{ffi_type} has the following members:
+@table @code
+@item size_t size
+This is set by @code{libffi}; you should initialize it to zero.
+
+@item unsigned short alignment
+This is set by @code{libffi}; you should initialize it to zero.
+
+@item unsigned short type
+For a structure, this should be set to @code{FFI_TYPE_STRUCT}.
+
+@item ffi_type **elements
+This is a @samp{NULL}-terminated array of pointers to @code{ffi_type}
+objects. There is one element per field of the struct.
+@end table
+@end deftp
+
+
+@node Type Example
+@subsection Type Example
+
+The following example initializes a @code{ffi_type} object
+representing the @code{tm} struct from Linux's @file{time.h}.
+
+Here is how the struct is defined:
+
+@example
+struct tm @{
+ int tm_sec;
+ int tm_min;
+ int tm_hour;
+ int tm_mday;
+ int tm_mon;
+ int tm_year;
+ int tm_wday;
+ int tm_yday;
+ int tm_isdst;
+ /* Those are for future use. */
+ long int __tm_gmtoff__;
+ __const char *__tm_zone__;
+@};
+@end example
+
+Here is the corresponding code to describe this struct to
+@code{libffi}:
+
+@example
+ @{
+ ffi_type tm_type;
+ ffi_type *tm_type_elements[12];
+ int i;
+
+ tm_type.size = tm_type.alignment = 0;
+ tm_type.elements = &tm_type_elements;
+
+ for (i = 0; i < 9; i++)
+ tm_type_elements[i] = &ffi_type_sint;
+
+ tm_type_elements[9] = &ffi_type_slong;
+ tm_type_elements[10] = &ffi_type_pointer;
+ tm_type_elements[11] = NULL;
+
+ /* tm_type can now be used to represent tm argument types and
+ return types for ffi_prep_cif() */
+ @}
+@end example
+
+
+@node Multiple ABIs
+@section Multiple ABIs
+
+A given platform may provide multiple different ABIs at once. For
+instance, the x86 platform has both @samp{stdcall} and @samp{fastcall}
+functions.
+
+@code{libffi} provides some support for this. However, this is
+necessarily platform-specific.
+
+@c FIXME: document the platforms
+
+@node The Closure API
+@section The Closure API
+
+@code{libffi} also provides a way to write a generic function -- a
+function that can accept and decode any combination of arguments.
+This can be useful when writing an interpreter, or to provide wrappers
+for arbitrary functions.
+
+This facility is called the @dfn{closure API}. Closures are not
+supported on all platforms; you can check the @code{FFI_CLOSURES}
+define to determine whether they are supported on the current
+platform.
+@cindex closures
+@cindex closure API
+@findex FFI_CLOSURES
+
+Because closures work by assembling a tiny function at runtime, they
+require special allocation on platforms that have a non-executable
+heap. Memory management for closures is handled by a pair of
+functions:
+
+@findex ffi_closure_alloca
+@defun void *ffi_closure_alloc (size_t @var{size}, void **@var{code})
+Allocate a chunk of memory holding @var{size} bytes. This returns a
+pointer to the writable address, and sets *@var{code} to the
+corresponding executable address.
+
+@var{size} should be sufficient to hold a @code{ffi_closure} object.
+@end defun
+
+@findex ffi_closure_free
+@defun void ffi_closure_free (void *@var{writable})
+Free memory allocated using @code{ffi_closure_alloc}. The argument is
+the writable address that was returned.
+@end defun
+
+
+Once you have allocated the memory for a closure, you must construct a
+@code{ffi_cif} describing the function call. Finally you can prepare
+the closure function:
+
+@findex ffi_prep_closure_loc
+@defun ffi_status ffi_prep_closure_loc (ffi_closure *@var{closure}, ffi_cif *@var{cif}, void (*@var{fun}) (ffi_cif *@var{cif}, void *@var{ret}, void **@var{args}, void *@var{user_data}), void *@var{user_data}, void *@var{codeloc})
+Prepare a closure function.
+
+@var{closure} is the address of a @code{ffi_closure} object; this is
+the writable address returned by @code{ffi_closure_alloc}.
+
+@var{cif} is the @code{ffi_cif} describing the function parameters.
+
+@var{user_data} is an arbitrary datum that is passed, uninterpreted,
+to your closure function.
+
+@var{codeloc} is the executable address returned by
+@code{ffi_closure_alloc}.
+
+@var{fun} is the function which will be called when the closure is
+invoked. It is called with the arguments:
+@table @var
+@item cif
+The @code{ffi_cif} passed to @code{ffi_prep_closure_loc}.
+
+@item ret
+A pointer to the memory used for the function's return value.
+@var{fun} must fill this, unless the function is declared as returning
+@code{void}.
+@c FIXME: is this NULL for void-returning functions?
+
+@item args
+A vector of pointers to memory holding the arguments to the function.
+
+@item user_data
+The same @var{user_data} that was passed to
+@code{ffi_prep_closure_loc}.
+@end table
+
+@code{ffi_prep_closure_loc} will return @code{FFI_OK} if everything
+went ok, and something else on error.
+@c FIXME: what?
+
+After calling @code{ffi_prep_closure_loc}, you can cast @var{codeloc}
+to the appropriate pointer-to-function type.
+@end defun
+
+@c FIXME: example
+
+You may see old code referring to @code{ffi_prep_closure}. This
+function is deprecated, as it cannot handle the need for separate
+writable and executable addresses.
+
+
+@node Missing Features
+@chapter Missing Features
+
+@code{libffi} is missing a few features. We welcome patches to add
+support for these.
+
+@itemize @bullet
+@item
+There is no support for calling varargs functions. This may work on
+some platforms, depending on how the ABI is defined, but it is not
+reliable.
+
+@item
+There is no support for bit fields in structures.
+
+@item
+The closure API is
+
+@item
+The ``raw'' API is undocumented.
+@c argument promotion?
+@c unions?
+@c anything else?
+@end itemize
+
+
+@node Index
+@unnumbered Index
+
+@printindex cp
+
+@bye