1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
/* -----------------------------------------------------------------------
ffi.c
m68k Foreign Function Interface
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <unistd.h>
#ifdef __rtems__
void rtems_cache_flush_multiple_data_lines( const void *, size_t );
#else
#include <sys/syscall.h>
#ifdef __MINT__
#include <mint/mintbind.h>
#include <mint/ssystem.h>
#else
#include <asm/cachectl.h>
#endif
#endif
void ffi_call_SYSV (extended_cif *,
unsigned, unsigned,
void *, void (*fn) ());
void *ffi_prep_args (void *stack, extended_cif *ecif);
void ffi_closure_SYSV (ffi_closure *);
void ffi_closure_struct_SYSV (ffi_closure *);
unsigned int ffi_closure_SYSV_inner (ffi_closure *closure,
void *resp, void *args);
/* ffi_prep_args is called by the assembly routine once stack space has
been allocated for the function's arguments. */
void *
ffi_prep_args (void *stack, extended_cif *ecif)
{
unsigned int i;
void **p_argv;
char *argp;
ffi_type **p_arg;
void *struct_value_ptr;
argp = stack;
if (
#ifdef __MINT__
(ecif->cif->rtype->type == FFI_TYPE_LONGDOUBLE) ||
#endif
(((ecif->cif->rtype->type == FFI_TYPE_STRUCT)
&& !ecif->cif->flags)))
struct_value_ptr = ecif->rvalue;
else
struct_value_ptr = NULL;
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z = (*p_arg)->size;
int type = (*p_arg)->type;
if (z < sizeof (int))
{
switch (type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int) *(SINT8 *) *p_argv;
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int) *(UINT8 *) *p_argv;
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int) *(SINT16 *) *p_argv;
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int) *(UINT16 *) *p_argv;
break;
case FFI_TYPE_STRUCT:
#ifdef __MINT__
if (z == 1 || z == 2)
memcpy (argp + 2, *p_argv, z);
else
memcpy (argp, *p_argv, z);
#else
memcpy (argp + sizeof (int) - z, *p_argv, z);
#endif
break;
default:
FFI_ASSERT (0);
}
z = sizeof (int);
}
else
{
memcpy (argp, *p_argv, z);
/* Align if necessary. */
if ((sizeof(int) - 1) & z)
z = FFI_ALIGN(z, sizeof(int));
}
p_argv++;
argp += z;
}
return struct_value_ptr;
}
#define CIF_FLAGS_INT 1
#define CIF_FLAGS_DINT 2
#define CIF_FLAGS_FLOAT 4
#define CIF_FLAGS_DOUBLE 8
#define CIF_FLAGS_LDOUBLE 16
#define CIF_FLAGS_POINTER 32
#define CIF_FLAGS_STRUCT1 64
#define CIF_FLAGS_STRUCT2 128
#define CIF_FLAGS_SINT8 256
#define CIF_FLAGS_SINT16 512
/* Perform machine dependent cif processing */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
cif->flags = 0;
break;
case FFI_TYPE_STRUCT:
if (cif->rtype->elements[0]->type == FFI_TYPE_STRUCT &&
cif->rtype->elements[1])
{
cif->flags = 0;
break;
}
switch (cif->rtype->size)
{
case 1:
#ifdef __MINT__
cif->flags = CIF_FLAGS_STRUCT2;
#else
cif->flags = CIF_FLAGS_STRUCT1;
#endif
break;
case 2:
cif->flags = CIF_FLAGS_STRUCT2;
break;
#ifdef __MINT__
case 3:
#endif
case 4:
cif->flags = CIF_FLAGS_INT;
break;
#ifdef __MINT__
case 7:
#endif
case 8:
cif->flags = CIF_FLAGS_DINT;
break;
default:
cif->flags = 0;
break;
}
break;
case FFI_TYPE_FLOAT:
cif->flags = CIF_FLAGS_FLOAT;
break;
case FFI_TYPE_DOUBLE:
cif->flags = CIF_FLAGS_DOUBLE;
break;
#if (FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE)
case FFI_TYPE_LONGDOUBLE:
#ifdef __MINT__
cif->flags = 0;
#else
cif->flags = CIF_FLAGS_LDOUBLE;
#endif
break;
#endif
case FFI_TYPE_POINTER:
cif->flags = CIF_FLAGS_POINTER;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
cif->flags = CIF_FLAGS_DINT;
break;
case FFI_TYPE_SINT16:
cif->flags = CIF_FLAGS_SINT16;
break;
case FFI_TYPE_SINT8:
cif->flags = CIF_FLAGS_SINT8;
break;
default:
cif->flags = CIF_FLAGS_INT;
break;
}
return FFI_OK;
}
void
ffi_call (ffi_cif *cif, void (*fn) (), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return value
address then we need to make one. */
if (rvalue == NULL
&& cif->rtype->type == FFI_TYPE_STRUCT
&& cif->rtype->size > 8)
ecif.rvalue = alloca (cif->rtype->size);
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (&ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
default:
FFI_ASSERT (0);
break;
}
}
static void
ffi_prep_incoming_args_SYSV (char *stack, void **avalue, ffi_cif *cif)
{
unsigned int i;
void **p_argv;
char *argp;
ffi_type **p_arg;
argp = stack;
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
z = (*p_arg)->size;
#ifdef __MINT__
if (cif->flags &&
cif->rtype->type == FFI_TYPE_STRUCT &&
(z == 1 || z == 2))
{
*p_argv = (void *) (argp + 2);
z = 4;
}
else
if (cif->flags &&
cif->rtype->type == FFI_TYPE_STRUCT &&
(z == 3 || z == 4))
{
*p_argv = (void *) (argp);
z = 4;
}
else
#endif
if (z <= 4)
{
*p_argv = (void *) (argp + 4 - z);
z = 4;
}
else
{
*p_argv = (void *) argp;
/* Align if necessary */
if ((sizeof(int) - 1) & z)
z = FFI_ALIGN(z, sizeof(int));
}
p_argv++;
argp += z;
}
}
unsigned int
ffi_closure_SYSV_inner (ffi_closure *closure, void *resp, void *args)
{
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void *));
ffi_prep_incoming_args_SYSV(args, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
return cif->flags;
}
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
*(unsigned short *)closure->tramp = 0x207c;
*(void **)(closure->tramp + 2) = codeloc;
*(unsigned short *)(closure->tramp + 6) = 0x4ef9;
if (
#ifdef __MINT__
(cif->rtype->type == FFI_TYPE_LONGDOUBLE) ||
#endif
(((cif->rtype->type == FFI_TYPE_STRUCT)
&& !cif->flags)))
*(void **)(closure->tramp + 8) = ffi_closure_struct_SYSV;
else
*(void **)(closure->tramp + 8) = ffi_closure_SYSV;
#ifdef __rtems__
rtems_cache_flush_multiple_data_lines( codeloc, FFI_TRAMPOLINE_SIZE );
#elif defined(__MINT__)
Ssystem(S_FLUSHCACHE, codeloc, FFI_TRAMPOLINE_SIZE);
#else
syscall(SYS_cacheflush, codeloc, FLUSH_SCOPE_LINE,
FLUSH_CACHE_BOTH, FFI_TRAMPOLINE_SIZE);
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
|