summaryrefslogtreecommitdiff
path: root/cipher/cipher-gcm-ppc.c
blob: 550864c140c33d5eeef6b83cd0d59abb635dc622 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/* cipher-gcm-ppc.c  -  Power 8 vpmsum accelerated Galois Counter Mode
 *                      implementation
 * Copyright (C) 2019 Shawn Landden <shawn@git.icu>
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser general Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * Based on GHASH implementation by Andy Polyakov from CRYPTOGAMS
 * distribution (ppc/ghashp8-ppc.pl). Specifically, it uses his register
 * allocation (which then defers to your compiler's register allocation),
 * instead of re-implementing Gerald Estrin's Scheme of parallelized
 * multiplication of polynomials, as I did not understand this algorithm at
 * the time.
 *
 * Original copyright license follows:
 *
 *  Copyright (c) 2006, CRYPTOGAMS by <appro@openssl.org>
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *        * Redistributions of source code must retain copyright notices,
 *          this list of conditions and the following disclaimer.
 *
 *        * Redistributions in binary form must reproduce the above
 *          copyright notice, this list of conditions and the following
 *          disclaimer in the documentation and/or other materials
 *          provided with the distribution.
 *
 *        * Neither the name of the CRYPTOGAMS nor the names of its
 *          copyright holder and contributors may be used to endorse or
 *          promote products derived from this software without specific
 *          prior written permission.
 *
 *  ALTERNATIVELY, provided that this notice is retained in full, this
 *  product may be distributed under the terms of the GNU General Public
 *  License (GPL), in which case the provisions of the GPL apply INSTEAD OF
 *  those given above.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
 */

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>

#include "g10lib.h"
#include "cipher.h"
#include "bufhelp.h"
#include "./cipher-internal.h"

#ifdef GCM_USE_PPC_VPMSUM

#include <altivec.h>

#define ALWAYS_INLINE inline __attribute__((always_inline))
#define NO_INSTRUMENT_FUNCTION __attribute__((no_instrument_function))

#define ASM_FUNC_ATTR        NO_INSTRUMENT_FUNCTION
#define ASM_FUNC_ATTR_INLINE ASM_FUNC_ATTR ALWAYS_INLINE

#define ALIGNED_16 __attribute__ ((aligned (16)))

typedef vector unsigned char vector16x_u8;
typedef vector signed char vector16x_s8;
typedef vector unsigned long long vector2x_u64;
typedef vector unsigned long long block;

static ASM_FUNC_ATTR_INLINE block
asm_xor(block a, block b)
{
  block r;
  __asm__ volatile ("xxlxor %x0, %x1, %x2"
		    : "=wa" (r)
		    : "wa" (a), "wa" (b));
  return r;
}

static ASM_FUNC_ATTR_INLINE block
asm_vpmsumd(block a, block b)
{
  block r;
  __asm__ volatile ("vpmsumd %0, %1, %2"
		    : "=v" (r)
		    : "v" (a), "v" (b));
  return r;
}

static ASM_FUNC_ATTR_INLINE block
asm_swap_u64(block a)
{
  block r;
  __asm__ volatile ("xxswapd %x0, %x1"
		    : "=wa" (r)
		    : "wa" (a));
  return r;
}

static ASM_FUNC_ATTR_INLINE block
asm_mergelo(block l, block r)
{
  block ret;
  __asm__ volatile ("xxmrgld %x0, %x1, %x2\n\t"
		    : "=wa" (ret)
		    : "wa" (l), "wa" (r));
  return ret;
}

static ASM_FUNC_ATTR_INLINE block
asm_mergehi(block l, block r)
{
  block ret;
  __asm__ volatile ("xxmrghd %x0, %x1, %x2\n\t"
		    : "=wa" (ret)
		    : "wa" (l), "wa" (r));
  return ret;
}

static ASM_FUNC_ATTR_INLINE block
asm_rot_block_left(block a)
{
  block r;
  block zero = { 0, 0 };
  __asm__ volatile ("xxmrgld %x0, %x1, %x2"
		    : "=wa" (r)
		    : "wa" (a), "wa" (zero));
  return r;
}

static ASM_FUNC_ATTR_INLINE block
asm_rot_block_right(block a)
{
  block r;
  block zero = { 0, 0 };
  __asm__ volatile ("xxsldwi %x0, %x2, %x1, 2"
		    : "=wa" (r)
		    : "wa" (a), "wa" (zero));
  return r;
}

/* vsl is a slightly strange function in the way the shift is passed... */
static ASM_FUNC_ATTR_INLINE block
asm_ashl_128(block a, vector16x_u8 shift)
{
  block r;
  __asm__ volatile ("vsl %0, %1, %2"
		    : "=v" (r)
		    : "v" (a), "v" (shift));
  return r;
}

#define STORE_TABLE(gcm_table, slot, vec) \
  vec_store_he (((block)vec), slot * 16, (unsigned char *)(gcm_table));

static ASM_FUNC_ATTR_INLINE void
vec_store_he(block vec, unsigned long offset, unsigned char *ptr)
{
  /* GCC vec_vsx_ld is generating two instructions on little-endian. Use
   * lxvd2x directly instead. */
#if __GNUC__ >= 4
  if (__builtin_constant_p (offset) && offset == 0)
    __asm__ volatile ("stxvd2x %x0, 0, %1\n\t"
		    :
		    : "wa" (vec), "r" ((uintptr_t)ptr)
		    : "memory", "r0");
  else
#endif
    __asm__ volatile ("stxvd2x %x0, %1, %2\n\t"
		      :
		      : "wa" (vec), "r" (offset), "r" ((uintptr_t)ptr)
		      : "memory", "r0");
}

#define VEC_LOAD_BE(in_ptr, bswap_const) \
  vec_be_swap(vec_load_he (0, (const unsigned char *)(in_ptr)), bswap_const)

static ASM_FUNC_ATTR_INLINE block
vec_load_he(unsigned long offset, const unsigned char *ptr)
{
  block vec;
  /* GCC vec_vsx_ld is generating two instructions on little-endian. Use
   * lxvd2x directly instead. */
#if __GNUC__ >= 4
  if (__builtin_constant_p (offset) && offset == 0)
    __asm__ volatile ("lxvd2x %x0, 0, %1\n\t"
		    : "=wa" (vec)
		    : "r" ((uintptr_t)ptr)
		    : "memory", "r0");
  else
#endif
    __asm__ volatile ("lxvd2x %x0, %1, %2\n\t"
		      : "=wa" (vec)
		      : "r" (offset), "r" ((uintptr_t)ptr)
		      : "memory", "r0");
  return vec;
}

static ASM_FUNC_ATTR_INLINE block
vec_be_swap(block vec, vector16x_u8 be_bswap_const)
{
#ifndef WORDS_BIGENDIAN
  __asm__ volatile ("vperm %0, %1, %1, %2\n\t"
		    : "=v" (vec)
		    : "v" (vec), "v" (be_bswap_const));
#else
  (void)be_bswap_const;
#endif
  return vec;
}

static ASM_FUNC_ATTR_INLINE block
vec_dup_byte_elem(block vec, int idx)
{
#ifndef WORDS_BIGENDIAN
  return (block)vec_splat((vector16x_s8)vec, idx);
#else
  return (block)vec_splat((vector16x_s8)vec, (15 - idx) & 15);
#endif
}

/* Power ghash based on papers:
   "The Galois/Counter Mode of Operation (GCM)"; David A. McGrew, John Viega
   "IntelĀ® Carry-Less Multiplication Instruction and its Usage for Computing
    the GCM Mode - Rev 2.01"; Shay Gueron, Michael E. Kounavis.

   After saving the magic c2 constant and pre-formatted version of the key,
   we pre-process the key for parallel hashing. This takes advantage of the
   identity of addition over a galois field being identital to XOR, and thus
   can be parellized (S 2.2, page 3). We multiply and add (galois field
   versions) the key over multiple iterations and save the result. This can
   later be galois added (XORed) with parallel processed input (Estrin's
   Scheme).

   The ghash "key" is a salt. */
void ASM_FUNC_ATTR
_gcry_ghash_setup_ppc_vpmsum (void *gcm_table_arg, void *gcm_key)
{
  static const vector16x_u8 bswap_const ALIGNED_16 =
    { ~7, ~6, ~5, ~4, ~3, ~2, ~1, ~0, ~15, ~14, ~13, ~12, ~11, ~10, ~9, ~8 };
  static const byte c2[16] ALIGNED_16 =
    { 0xc2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
  static const vector16x_u8 one ALIGNED_16 =
    { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
  uint64_t *gcm_table = gcm_table_arg;
  block T0, T1, T2;
  block C2, H, H1, H1l, H1h, H2, H2l, H2h;
  block H3l, H3, H3h, H4l, H4, H4h, T3, T4;
  vector16x_s8 most_sig_of_H, t7, carry;

  H = VEC_LOAD_BE(gcm_key, bswap_const);
  C2 = VEC_LOAD_BE(c2, bswap_const);
  most_sig_of_H = (vector16x_s8)vec_dup_byte_elem(H, 15);
  t7 = vec_splat_s8(7);
  carry = most_sig_of_H >> t7;
  carry &= (vector16x_s8)C2; /* only interested in certain carries. */
  H1 = asm_ashl_128(H, one);
  H1 ^= (block)carry; /* complete the <<< 1 */

  T1 = asm_swap_u64 (H1);
  H1l = asm_rot_block_right (T1);
  H1h = asm_rot_block_left (T1);
  C2 = asm_rot_block_right (C2);

  STORE_TABLE (gcm_table, 0, C2);
  STORE_TABLE (gcm_table, 1, H1l);
  STORE_TABLE (gcm_table, 2, T1);
  STORE_TABLE (gcm_table, 3, H1h);

  /* pre-process coefficients for Gerald Estrin's scheme for parallel
   * multiplication of polynomials
   */
  H2l = asm_vpmsumd (H1l, H1); /* do not need to mask in
                                  because 0 * anything -> 0 */
  H2 = asm_vpmsumd (T1, H1);
  H2h = asm_vpmsumd (H1h, H1);

  /* reduce 1 */
  T0 = asm_vpmsumd (H2l, C2);

  H2l ^= asm_rot_block_left (H2);
  H2h ^= asm_rot_block_right (H2);
  H2l = asm_swap_u64 (H2l);
  H2l ^= T0;
  /* reduce 2 */
  T0 = asm_swap_u64 (H2l);
  H2l = asm_vpmsumd (H2l, C2);
  H2 = H2l ^ H2h ^ T0;

  T2 = asm_swap_u64 (H2);
  H2l = asm_rot_block_right (T2);
  H2h = asm_rot_block_left (T2);

  STORE_TABLE (gcm_table, 4, H2l);
  STORE_TABLE (gcm_table, 5, T2);
  STORE_TABLE (gcm_table, 6, H2h);

  H3l = asm_vpmsumd (H2l, H1);
  H4l = asm_vpmsumd (H2l, H2);
  H3 = asm_vpmsumd (T2, H1);
  H4 = asm_vpmsumd (T2, H2);
  H3h = asm_vpmsumd (H2h, H1);
  H4h = asm_vpmsumd (H2h, H2);

  T3 = asm_vpmsumd (H3l, C2);
  T4 = asm_vpmsumd (H4l, C2);

  H3l ^= asm_rot_block_left (H3);
  H3h ^= asm_rot_block_right (H3);
  H4l ^= asm_rot_block_left (H4);
  H4h ^= asm_rot_block_right (H4);

  H3 = asm_swap_u64 (H3l);
  H4 = asm_swap_u64 (H4l);

  H3 ^= T3;
  H4 ^= T4;

  /* We could have also b64 switched reduce and reduce2, however as we are
     using the unrotated H and H2 above to vpmsum, this is marginally better. */
  T3 = asm_swap_u64 (H3);
  T4 = asm_swap_u64 (H4);

  H3 = asm_vpmsumd (H3, C2);
  H4 = asm_vpmsumd (H4, C2);

  T3 ^= H3h;
  T4 ^= H4h;
  H3 ^= T3;
  H4 ^= T4;
  H3 = asm_swap_u64 (H3);
  H4 = asm_swap_u64 (H4);

  H3l = asm_rot_block_right (H3);
  H3h = asm_rot_block_left (H3);
  H4l = asm_rot_block_right (H4);
  H4h = asm_rot_block_left (H4);

  STORE_TABLE (gcm_table, 7, H3l);
  STORE_TABLE (gcm_table, 8, H3);
  STORE_TABLE (gcm_table, 9, H3h);
  STORE_TABLE (gcm_table, 10, H4l);
  STORE_TABLE (gcm_table, 11, H4);
  STORE_TABLE (gcm_table, 12, H4h);
}

unsigned int ASM_FUNC_ATTR
_gcry_ghash_ppc_vpmsum (byte *result, void *gcm_table,
			const byte *buf, const size_t nblocks)
{
  static const vector16x_u8 bswap_const ALIGNED_16 =
    { ~7, ~6, ~5, ~4, ~3, ~2, ~1, ~0, ~15, ~14, ~13, ~12, ~11, ~10, ~9, ~8 };
  block c2, H0l, H0m, H0h, H4l, H4m, H4h, H2m, H3l, H3m, H3h, Hl;
  block Hm, Hh, in, in0, in1, in2, in3, Hm_right, Hl_rotate, cur;
  size_t blocks_remaining = nblocks;
  size_t not_multiple_of_four;
  block t0;

  cur = vec_be_swap (vec_load_he (0, result), bswap_const);

  c2 = vec_load_he (0, gcm_table);
  H0l = vec_load_he (16, gcm_table);
  H0m = vec_load_he (32, gcm_table);
  H0h = vec_load_he (48, gcm_table);

  for (not_multiple_of_four = nblocks % 4; not_multiple_of_four;
       not_multiple_of_four--)
    {
      in = vec_be_swap (vec_load_he (0, buf), bswap_const);
      buf += 16;
      blocks_remaining--;
      cur ^= in;

      Hl = asm_vpmsumd (cur, H0l);
      Hm = asm_vpmsumd (cur, H0m);
      Hh = asm_vpmsumd (cur, H0h);

      t0 = asm_vpmsumd (Hl, c2);

      Hl ^= asm_rot_block_left (Hm);

      Hm_right = asm_rot_block_right (Hm);
      Hh ^= Hm_right;
      Hl_rotate = asm_swap_u64 (Hl);
      Hl_rotate ^= t0;
      Hl = asm_swap_u64 (Hl_rotate);
      Hl_rotate = asm_vpmsumd (Hl_rotate, c2);
      Hl ^= Hh;
      Hl ^= Hl_rotate;

      cur = Hl;
  }

  if (blocks_remaining > 0)
    {
      block Xl, Xm, Xh, Xl1, Xm1, Xh1, Xm2, Xl3, Xm3, Xh3, Xl_rotate;
      block H21l, H21h, merge_l, merge_h;
      block t1, t2;

      H2m = vec_load_he (48 + 32, gcm_table);
      H3l = vec_load_he (48 * 2 + 16, gcm_table);
      H3m = vec_load_he (48 * 2 + 32, gcm_table);
      H3h = vec_load_he (48 * 2 + 48, gcm_table);
      H4l = vec_load_he (48 * 3 + 16, gcm_table);
      H4m = vec_load_he (48 * 3 + 32, gcm_table);
      H4h = vec_load_he (48 * 3 + 48, gcm_table);

      in0 = vec_load_he (0, buf);
      in1 = vec_load_he (16, buf);
      in2 = vec_load_he (32, buf);
      in3 = vec_load_he (48, buf);
      buf += 64;
      in0 = vec_be_swap(in0, bswap_const);
      in1 = vec_be_swap(in1, bswap_const);
      in2 = vec_be_swap(in2, bswap_const);
      in3 = vec_be_swap(in3, bswap_const);

      Xh = asm_xor (in0, cur);

      Xl1 = asm_vpmsumd (in1, H3l);
      Xm1 = asm_vpmsumd (in1, H3m);
      Xh1 = asm_vpmsumd (in1, H3h);

      H21l = asm_mergehi (H2m, H0m);
      H21h = asm_mergelo (H2m, H0m);
      merge_l = asm_mergelo (in2, in3);
      merge_h = asm_mergehi (in2, in3);

      Xm2 = asm_vpmsumd (in2, H2m);
      Xl3 = asm_vpmsumd (merge_l, H21l);
      Xm3 = asm_vpmsumd (in3, H0m);
      Xh3 = asm_vpmsumd (merge_h, H21h);

      Xm2 = asm_xor (Xm2, Xm1);
      Xl3 = asm_xor (Xl3, Xl1);
      Xm3 = asm_xor (Xm3, Xm2);
      Xh3 = asm_xor (Xh3, Xh1);

      /* Gerald Estrin's scheme for parallel multiplication of polynomials */
      for (; blocks_remaining > 4; blocks_remaining -= 4)
        {
	  in0 = vec_load_he (0, buf);
	  in1 = vec_load_he (16, buf);
	  in2 = vec_load_he (32, buf);
	  in3 = vec_load_he (48, buf);
	  buf += 64;
	  in1 = vec_be_swap(in1, bswap_const);
	  in2 = vec_be_swap(in2, bswap_const);
	  in3 = vec_be_swap(in3, bswap_const);
	  in0 = vec_be_swap(in0, bswap_const);

	  Xl = asm_vpmsumd (Xh, H4l);
	  Xm = asm_vpmsumd (Xh, H4m);
	  Xh = asm_vpmsumd (Xh, H4h);
	  Xl1 = asm_vpmsumd (in1, H3l);
	  Xm1 = asm_vpmsumd (in1, H3m);
	  Xh1 = asm_vpmsumd (in1, H3h);

	  Xl = asm_xor (Xl, Xl3);
	  Xm = asm_xor (Xm, Xm3);
	  Xh = asm_xor (Xh, Xh3);
	  merge_l = asm_mergelo (in2, in3);
	  merge_h = asm_mergehi (in2, in3);

	  t0 = asm_vpmsumd (Xl, c2);
	  Xl3 = asm_vpmsumd (merge_l, H21l);
	  Xh3 = asm_vpmsumd (merge_h, H21h);

	  t1 = asm_rot_block_left (Xm);
	  t2 = asm_rot_block_right (Xm);
	  Xl = asm_xor(Xl, t1);
	  Xh = asm_xor(Xh, t2);

	  Xl = asm_swap_u64 (Xl);
	  Xl = asm_xor(Xl, t0);

	  Xl_rotate = asm_swap_u64 (Xl);
	  Xm2 = asm_vpmsumd (in2, H2m);
	  Xm3 = asm_vpmsumd (in3, H0m);
	  Xl = asm_vpmsumd (Xl, c2);

	  Xl3 = asm_xor (Xl3, Xl1);
	  Xh3 = asm_xor (Xh3, Xh1);
	  Xh = asm_xor (Xh, in0);
	  Xm2 = asm_xor (Xm2, Xm1);
	  Xh = asm_xor (Xh, Xl_rotate);
	  Xm3 = asm_xor (Xm3, Xm2);
	  Xh = asm_xor (Xh, Xl);
	}

      Xl = asm_vpmsumd (Xh, H4l);
      Xm = asm_vpmsumd (Xh, H4m);
      Xh = asm_vpmsumd (Xh, H4h);

      Xl = asm_xor (Xl, Xl3);
      Xm = asm_xor (Xm, Xm3);

      t0 = asm_vpmsumd (Xl, c2);

      Xh = asm_xor (Xh, Xh3);
      t1 = asm_rot_block_left (Xm);
      t2 = asm_rot_block_right (Xm);
      Xl = asm_xor (Xl, t1);
      Xh = asm_xor (Xh, t2);

      Xl = asm_swap_u64 (Xl);
      Xl = asm_xor (Xl, t0);

      Xl_rotate = asm_swap_u64 (Xl);
      Xl = asm_vpmsumd (Xl, c2);
      Xh = asm_xor (Xh, Xl_rotate);
      cur = asm_xor (Xh, Xl);
    }

  vec_store_he (vec_be_swap (cur, bswap_const), 0, result);

  return 0;
}

#endif /* GCM_USE_PPC_VPMSUM */