summaryrefslogtreecommitdiff
path: root/cipher/primegen.c
blob: 11da16a0a54632bbdeddd9358775b11a2fc6fdaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
/* primegen.c - prime number generator
 * Copyright (C) 1998, 2000, 2001, 2002, 2003
 *               2004 Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser general Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

#include <config.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>

#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
#include "ath.h"

static gcry_mpi_t gen_prime (unsigned int nbits, int secret, int randomlevel, 
                             int (*extra_check)(void *, gcry_mpi_t),
                             void *extra_check_arg);
static int check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds,
                        gcry_prime_check_func_t cb_func, void *cb_arg );
static int is_prime (gcry_mpi_t n, int steps, unsigned int *count);
static void m_out_of_n( char *array, int m, int n );

static void (*progress_cb) (void *,const char*,int,int, int );
static void *progress_cb_data;

/* Note: 2 is not included because it can be tested more easily by
   looking at bit 0. The last entry in this list is marked by a zero */
static ushort small_prime_numbers[] = {
    3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
    47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
    103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
    157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
    211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
    269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
    331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
    389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
    449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
    509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
    587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
    643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
    709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
    773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
    853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
    919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
    991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
    1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
    1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
    1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
    1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
    1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
    1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
    1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
    1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
    1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
    1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
    1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
    1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
    1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
    1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
    1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
    1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
    1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
    2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
    2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
    2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
    2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
    2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
    2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
    2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
    2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
    2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
    2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
    2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
    2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
    2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
    2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
    2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
    3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
    3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
    3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
    3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
    3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
    3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
    3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
    3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
    3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
    3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
    3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
    3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
    3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
    3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
    3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
    4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
    4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
    4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
    4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
    4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
    4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
    4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
    4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
    4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
    4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
    4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
    4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
    4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
    4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
    4957, 4967, 4969, 4973, 4987, 4993, 4999,
    0
};
static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1;



/* An object and a list to build up a global pool of primes.  See
   save_pool_prime and get_pool_prime. */
struct primepool_s 
{
  struct primepool_s *next;
  gcry_mpi_t prime;      /* If this is NULL the entry is not used. */
  unsigned int nbits;
  gcry_random_level_t randomlevel;
};
struct primepool_s *primepool;
/* Mutex used to protect access to the primepool.  */
static ath_mutex_t primepool_lock = ATH_MUTEX_INITIALIZER;



/* Save PRIME which has been generated at RANDOMLEVEL for later
   use. Needs to be called while primepool_lock is being hold.  Note
   that PRIME should be considered released after calling this
   function. */
static void
save_pool_prime (gcry_mpi_t prime, gcry_random_level_t randomlevel)
{
  struct primepool_s *item, *item2;
  size_t n;

  for (n=0, item = primepool; item; item = item->next, n++)
    if (!item->prime)
      break;
  if (!item && n > 100)
    {
      /* Remove some of the entries.  Our strategy is removing
         the last third from the list. */
      int i;
      
      for (i=0, item2 = primepool; item2; item2 = item2->next)
        {
          if (i >= n/3*2)
            {
              gcry_mpi_release (item2->prime);
              item2->prime = NULL;
              if (!item)
                item = item2;
            }
        }
    }
  if (!item)
    {
      item = gcry_calloc (1, sizeof *item);
      if (!item)
        {
          /* Out of memory.  Silently giving up. */
          gcry_mpi_release (prime);
          return; 
        }
      item->next = primepool;
      primepool = item;
    }
  item->prime = prime;
  item->nbits = mpi_get_nbits (prime);
  item->randomlevel = randomlevel;
}


/* Return a prime for the prime pool or NULL if none has been found.
   The prime needs to match NBITS and randomlevel. This function needs
   to be called why the primepool_look is being hold. */
static gcry_mpi_t
get_pool_prime (unsigned int nbits, gcry_random_level_t randomlevel)
{
  struct primepool_s *item;

  for (item = primepool; item; item = item->next)
    if (item->prime
        && item->nbits == nbits && item->randomlevel == randomlevel)
      {
        gcry_mpi_t prime = item->prime;
        item->prime = NULL;
        assert (nbits == mpi_get_nbits (prime));
        return prime;
      }
  return NULL;
}






void
_gcry_register_primegen_progress ( void (*cb)(void *,const char*,int,int,int),
                                   void *cb_data )
{
  progress_cb = cb;
  progress_cb_data = cb_data;
}


static void
progress( int c )
{
  if ( progress_cb )
    progress_cb ( progress_cb_data, "primegen", c, 0, 0 );
}


/****************
 * Generate a prime number (stored in secure memory)
 */
gcry_mpi_t
_gcry_generate_secret_prime (unsigned int nbits,
                             int (*extra_check)(void*, gcry_mpi_t),
                             void *extra_check_arg)
{
  gcry_mpi_t prime;

  prime = gen_prime( nbits, 1, 2, extra_check, extra_check_arg);
  progress('\n');
  return prime;
}

gcry_mpi_t
_gcry_generate_public_prime( unsigned int nbits,
                             int (*extra_check)(void*, gcry_mpi_t),
                             void *extra_check_arg)
{
  gcry_mpi_t prime;

  prime = gen_prime( nbits, 0, 2, extra_check, extra_check_arg );
  progress('\n');
  return prime;
}


/* Core prime generation function.  The algorithm used to generate
   practically save primes is due to Lim and Lee as described in the
   CRYPTO '97 proceedings (ISBN3540633847) page 260.

   NEED_Q_FACTOR: If true make sure that at least one factor is of
                  size qbits.  This is for example required for DSA.
   PRIME_GENERATED: Adresss of a variable where the resulting prime
                    number will be stored.
   PBITS: Requested size of the prime number.  At least 48.
   QBITS: One factor of the prime needs to be of this size.  Maybe 0
          if this is not required.  See also MODE.
   G: If not NULL an MPI which will receive a generator for the prime
      for use with Elgamal.
   RET_FACTORS: if not NULL, an array with all factors are stored at
                that address.
   ALL_FACTORS: If set to true all factors of prime-1 are returned.
   RANDOMLEVEL:  How strong should the random numers be.
   FLAGS: Prime generation bit flags. Currently supported:
          GCRY_PRIME_FLAG_SECRET - The prime needs to be kept secret.
   CB_FUNC, CB_ARG:  Callback to be used for extra checks.

 */
static gcry_err_code_t
prime_generate_internal (int need_q_factor,
			 gcry_mpi_t *prime_generated, unsigned int pbits,
			 unsigned int qbits, gcry_mpi_t g,
			 gcry_mpi_t **ret_factors,
			 gcry_random_level_t randomlevel, unsigned int flags,
                         int all_factors,
                         gcry_prime_check_func_t cb_func, void *cb_arg)
{
  gcry_err_code_t err = 0;
  gcry_mpi_t *factors_new = NULL; /* Factors to return to the
				     caller.  */
  gcry_mpi_t *factors = NULL;	/* Current factors.  */
  gcry_random_level_t poolrandomlevel; /* Random level used for pool primes. */
  gcry_mpi_t *pool = NULL;	/* Pool of primes.  */
  int *pool_in_use = NULL;      /* Array with currently used POOL elements. */
  unsigned char *perms = NULL;	/* Permutations of POOL.  */
  gcry_mpi_t q_factor = NULL;	/* Used if QBITS is non-zero.  */
  unsigned int fbits = 0;	/* Length of prime factors.  */
  unsigned int n = 0;		/* Number of factors.  */
  unsigned int m = 0;		/* Number of primes in pool.  */
  gcry_mpi_t q = NULL;		/* First prime factor.  */
  gcry_mpi_t prime = NULL;	/* Prime candidate.  */
  unsigned int nprime = 0;	/* Bits of PRIME.  */
  unsigned int req_qbits;       /* The original QBITS value.  */
  gcry_mpi_t val_2;             /* For check_prime().  */
  int is_locked = 0;            /* Flag to help unlocking the primepool. */
  unsigned int is_secret = (flags & GCRY_PRIME_FLAG_SECRET);
  unsigned int count1 = 0, count2 = 0;
  unsigned int i = 0, j = 0;

  if (pbits < 48)
    return GPG_ERR_INV_ARG;

  /* We won't use a too strong random elvel for the pooled subprimes. */
  poolrandomlevel = (randomlevel > GCRY_STRONG_RANDOM?
                     GCRY_STRONG_RANDOM : randomlevel);


  /* If QBITS is not given, assume a reasonable value. */
  if (!qbits)
    qbits = pbits / 3;

  req_qbits = qbits;

  /* Find number of needed prime factors N.  */
  for (n = 1; (pbits - qbits - 1) / n  >= qbits; n++)
    ;
  n--;

  val_2 = mpi_alloc_set_ui (2);

  if ((! n) || ((need_q_factor) && (n < 2)))
    {
      err = GPG_ERR_INV_ARG;
      goto leave;
    }

  if (need_q_factor)
    {
      n--;  /* Need one factor less because we want a specific Q-FACTOR. */
      fbits = (pbits - 2 * req_qbits -1) / n;
      qbits =  pbits - req_qbits - n * fbits;
    }
  else
    {
      fbits = (pbits - req_qbits -1) / n;
      qbits = pbits - n * fbits;
    }
  
  if (DBG_CIPHER)
    log_debug ("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n",
               pbits, req_qbits, qbits, fbits, n);

  /* Allocate an integer to old the new prime. */
  prime = gcry_mpi_new (pbits);

  /* Generate first prime factor.  */
  q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);

  /* Generate a specific Q-Factor if requested. */
  if (need_q_factor)
    q_factor = gen_prime (req_qbits, is_secret, randomlevel, NULL, NULL);
  
  /* Allocate an array to hold all factors + 2 for later usage.  */
  factors = gcry_calloc (n + 2, sizeof (*factors));
  if (!factors)
    {
      err = gpg_err_code_from_errno (errno);
      goto leave;
    }

  /* Allocate an array to track pool usage. */
  pool_in_use = gcry_malloc (n * sizeof *pool_in_use);
  if (!pool_in_use)
    {
      err = gpg_err_code_from_errno (errno);
      goto leave;
    }
  for (i=0; i < n; i++)
    pool_in_use[i] = -1;
      
  /* Make a pool of 3n+5 primes (this is an arbitrary value).  We
     require at least 30 primes for are useful selection process. 
     
     FIXME: We need to do some reseacrh on the best formula for sizing
     the pool.
  */
  m = n * 3 + 5;
  if (need_q_factor) /* Need some more in this case. */
    m += 5;
  if (m < 30)
    m = 30;
  pool = gcry_calloc (m , sizeof (*pool));
  if (! pool)
    {
      err = gpg_err_code_from_errno (errno);
      goto leave;
    }

  /* Permutate over the pool of primes until we find a prime of the
     requested length.  */
  do
    {
    next_try:
      for (i=0; i < n; i++)
        pool_in_use[i] = -1;

      if (!perms)
        {
          /* Allocate new primes.  This is done right at the beginning
             of the loop and if we have later run out of primes. */
          for (i = 0; i < m; i++)
            {
              mpi_free (pool[i]);
              pool[i] = NULL;
            }

          /* Init m_out_of_n().  */
          perms = gcry_calloc (1, m);
          if (!perms)
            {
              err = gpg_err_code_from_errno (errno);
              goto leave;
            }

          if (ath_mutex_lock (&primepool_lock))
            {
              err = GPG_ERR_INTERNAL;
              goto leave;
            }
          is_locked = 1;
          for (i = 0; i < n; i++)
            {
              perms[i] = 1; 
              /* At a maximum we use strong random for the factors.
                 This saves us a lot of entropy. Given that Q and
                 possible Q-factor are also used in the final prime
                 this should be acceptable.  We also don't allocate in
                 secure memory to save on that scare resource too.  If
                 Q has been allocated in secure memory, the final
                 prime will be saved there anyway.  This is because
                 our MPI routines take care of that.  GnuPG has worked
                 this way ever since.  */
              pool[i] = NULL;
              if (is_locked)
                {
                  pool[i] = get_pool_prime (fbits, poolrandomlevel);
                  if (!pool[i])
                    {
                      if (ath_mutex_unlock (&primepool_lock))
                        {
                          err = GPG_ERR_INTERNAL;
                          goto leave;
                        }
                      is_locked = 0;
                    }
                }
              if (!pool[i])
                pool[i] = gen_prime (fbits, 0, poolrandomlevel, NULL, NULL);
              pool_in_use[i] = i;
              factors[i] = pool[i];
            }
          if (is_locked && ath_mutex_unlock (&primepool_lock))
            {
              err = GPG_ERR_INTERNAL;
              goto leave;
            }
          is_locked = 0;
        }
      else
        {
          /* Get next permutation. */
          m_out_of_n ( (char*)perms, n, m);
          if (ath_mutex_lock (&primepool_lock))
            {
              err = GPG_ERR_INTERNAL;
              goto leave;
            }
          is_locked = 1;
          for (i = j = 0; (i < m) && (j < n); i++)
            if (perms[i])
              {
                /* If the subprime has not yet beed generated do it now. */
                if (!pool[i] && is_locked)
                  {
                    pool[i] = get_pool_prime (fbits, poolrandomlevel);
                    if (!pool[i])
                      {
                        if (ath_mutex_unlock (&primepool_lock))
                          {
                            err = GPG_ERR_INTERNAL;
                            goto leave;
                          }
                        is_locked = 0;
                      }
                  }
                if (!pool[i])
                  pool[i] = gen_prime (fbits, 0, poolrandomlevel, NULL, NULL);
                pool_in_use[j] = i;
                factors[j++] = pool[i];
              }
          if (is_locked && ath_mutex_unlock (&primepool_lock))
            {
              err = GPG_ERR_INTERNAL;
              goto leave;
            }
          is_locked = 0;
          if (i == n)
            {
              /* Ran out of permutations: Allocate new primes.  */
              gcry_free (perms);
              perms = NULL;
              progress ('!');
              goto next_try;	
            }
        }

	/* Generate next prime candidate:
	   p = 2 * q [ * q_factor] * factor_0 * factor_1 * ... * factor_n + 1. 
         */
	mpi_set (prime, q);
	mpi_mul_ui (prime, prime, 2);
	if (need_q_factor)
	  mpi_mul (prime, prime, q_factor);
	for(i = 0; i < n; i++)
	  mpi_mul (prime, prime, factors[i]);
	mpi_add_ui (prime, prime, 1);
	nprime = mpi_get_nbits (prime);

	if (nprime < pbits)
	  {
	    if (++count1 > 20)
	      {
		count1 = 0;
		qbits++;
		progress('>');
		mpi_free (q);
		q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);
		goto next_try;
	      }
	  }
	else
	  count1 = 0;
        
	if (nprime > pbits)
	  {
	    if (++count2 > 20)
	      {
		count2 = 0;
		qbits--;
		progress('<');
		mpi_free (q);
		q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);
		goto next_try;
	      }
	  }
	else
	  count2 = 0;
    }
  while (! ((nprime == pbits) && check_prime (prime, val_2, 5,
                                              cb_func, cb_arg)));

  if (DBG_CIPHER)
    {
      progress ('\n');
      log_mpidump ("prime    : ", prime);
      log_mpidump ("factor  q: ", q);
      if (need_q_factor)
        log_mpidump ("factor q0: ", q_factor);
      for (i = 0; i < n; i++)
        log_mpidump ("factor pi: ", factors[i]);
      log_debug ("bit sizes: prime=%u, q=%u",
                 mpi_get_nbits (prime), mpi_get_nbits (q));
      if (need_q_factor)
        log_debug (", q0=%u", mpi_get_nbits (q_factor));
      for (i = 0; i < n; i++)
        log_debug (", p%d=%u", i, mpi_get_nbits (factors[i]));
      progress('\n');
    }

  if (ret_factors)
    {
      /* Caller wants the factors.  */
      factors_new = gcry_calloc (n + 4, sizeof (*factors_new));
      if (! factors_new)
        {
          err = gpg_err_code_from_errno (errno);
          goto leave;
        }

      if (all_factors)
        {
          i = 0;
          factors_new[i++] = gcry_mpi_set_ui (NULL, 2);
          factors_new[i++] = mpi_copy (q);
          if (need_q_factor)
            factors_new[i++] = mpi_copy (q_factor);
          for(j=0; j < n; j++)
            factors_new[i++] = mpi_copy (factors[j]);
        }
      else
        {
          i = 0;
          if (need_q_factor)
            {
              factors_new[i++] = mpi_copy (q_factor);
              for (; i <= n; i++)
                factors_new[i] = mpi_copy (factors[i]);
            }
          else
            for (; i < n; i++ )
              factors_new[i] = mpi_copy (factors[i]);
        }
    }
  
  if (g)
    {
      /* Create a generator (start with 3).  */
      gcry_mpi_t tmp = mpi_alloc (mpi_get_nlimbs (prime));
      gcry_mpi_t b = mpi_alloc (mpi_get_nlimbs (prime));
      gcry_mpi_t pmin1 = mpi_alloc (mpi_get_nlimbs (prime));
      
      if (need_q_factor)
        err = GPG_ERR_NOT_IMPLEMENTED;
      else
        {
          factors[n] = q;
          factors[n + 1] = mpi_alloc_set_ui (2);
          mpi_sub_ui (pmin1, prime, 1);
          mpi_set_ui (g, 2);
          do
            {
              mpi_add_ui (g, g, 1);
              if (DBG_CIPHER)
                {
                  log_debug ("checking g:");
                  gcry_mpi_dump (g);
                  log_printf ("\n");
                }
              else
                progress('^');
              for (i = 0; i < n + 2; i++)
                {
                  mpi_fdiv_q (tmp, pmin1, factors[i]);
                  /* No mpi_pow(), but it is okay to use this with mod
                     prime.  */
                  gcry_mpi_powm (b, g, tmp, prime);
                  if (! mpi_cmp_ui (b, 1))
                    break;
                }
              if (DBG_CIPHER)
                progress('\n');
            } 
          while (i < n + 2);

          mpi_free (factors[n+1]);
          mpi_free (tmp);
          mpi_free (b);
          mpi_free (pmin1);
        }
    }
  
  if (! DBG_CIPHER)
    progress ('\n');


 leave:
  if (pool)
    {
      is_locked = !ath_mutex_lock (&primepool_lock);
      for(i = 0; i < m; i++)
        {
          if (pool[i])
            {
              for (j=0; j < n; j++)
                if (pool_in_use[j] == i)
                  break;
              if (j == n && is_locked)
                {
                  /* This pooled subprime has not been used. */
                  save_pool_prime (pool[i], poolrandomlevel);
                }
              else
                mpi_free (pool[i]);
            }
        }
      if (is_locked && ath_mutex_unlock (&primepool_lock))
        err = GPG_ERR_INTERNAL;
      is_locked = 0;
      gcry_free (pool);
    }
  gcry_free (pool_in_use);
  if (factors)
    gcry_free (factors);  /* Factors are shallow copies.  */
  if (perms)
    gcry_free (perms);

  mpi_free (val_2);
  mpi_free (q);
  mpi_free (q_factor);

  if (! err)
    {
      *prime_generated = prime;
      if (ret_factors)
	*ret_factors = factors_new;
    }
  else
    {
      if (factors_new)
	{
	  for (i = 0; factors_new[i]; i++)
	    mpi_free (factors_new[i]);
	  gcry_free (factors_new);
	}
      mpi_free (prime);
    }

  return err;
}



gcry_mpi_t
_gcry_generate_elg_prime (int mode, unsigned pbits, unsigned qbits,
			  gcry_mpi_t g, gcry_mpi_t **ret_factors)
{
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
  gcry_mpi_t prime = NULL;
  
  err = prime_generate_internal ((mode == 1), &prime, pbits, qbits, g,
				 ret_factors, GCRY_WEAK_RANDOM, 0, 0,
                                 NULL, NULL);

  return prime;
}

static gcry_mpi_t
gen_prime (unsigned int nbits, int secret, int randomlevel, 
           int (*extra_check)(void *, gcry_mpi_t), void *extra_check_arg)
{
  gcry_mpi_t prime, ptest, pminus1, val_2, val_3, result;
  int i;
  unsigned int x, step;
  unsigned int count1, count2;
  int *mods;
  
/*   if (  DBG_CIPHER ) */
/*     log_debug ("generate a prime of %u bits ", nbits ); */

  if (nbits < 16)
    log_fatal ("can't generate a prime with less than %d bits\n", 16);

  mods = gcry_xmalloc( no_of_small_prime_numbers * sizeof *mods );
  /* Make nbits fit into gcry_mpi_t implementation. */
  val_2  = mpi_alloc_set_ui( 2 );
  val_3 = mpi_alloc_set_ui( 3);
  prime  = secret? gcry_mpi_snew ( nbits ): gcry_mpi_new ( nbits );
  result = mpi_alloc_like( prime );
  pminus1= mpi_alloc_like( prime );
  ptest  = mpi_alloc_like( prime );
  count1 = count2 = 0;
  for (;;)
    {  /* try forvever */
      int dotcount=0;
      
      /* generate a random number */
      gcry_mpi_randomize( prime, nbits, randomlevel );
      
      /* Set high order bit to 1, set low order bit to 1.  If we are
         generating a secret prime we are most probably doing that
         for RSA, to make sure that the modulus does have the
         requested key size we set the 2 high order bits. */
      mpi_set_highbit (prime, nbits-1);
      if (secret)
        mpi_set_bit (prime, nbits-2);
      mpi_set_bit(prime, 0);
      
      /* Calculate all remainders. */
      for (i=0; (x = small_prime_numbers[i]); i++ )
        mods[i] = mpi_fdiv_r_ui(NULL, prime, x);
      
      /* Now try some primes starting with prime. */
      for(step=0; step < 20000; step += 2 ) 
        {
          /* Check against all the small primes we have in mods. */
          count1++;
          for (i=0; (x = small_prime_numbers[i]); i++ ) 
            {
              while ( mods[i] + step >= x )
                mods[i] -= x;
              if ( !(mods[i] + step) )
                break;
	    }
          if ( x )
            continue;   /* Found a multiple of an already known prime. */
          
          mpi_add_ui( ptest, prime, step );

          /* Do a fast Fermat test now. */
          count2++;
          mpi_sub_ui( pminus1, ptest, 1);
          gcry_mpi_powm( result, val_2, pminus1, ptest );
          if ( !mpi_cmp_ui( result, 1 ) )
            { 
              /* Not composite, perform stronger tests */
              if (is_prime(ptest, 5, &count2 ))
                {
                  if (!mpi_test_bit( ptest, nbits-1-secret ))
                    {
                      progress('\n');
                      log_debug ("overflow in prime generation\n");
                      break; /* Stop loop, continue with a new prime. */
                    }

                  if (extra_check && extra_check (extra_check_arg, ptest))
                    { 
                      /* The extra check told us that this prime is
                         not of the caller's taste. */
                      progress ('/');
                    }
                  else
                    { 
                      /* Got it. */
                      mpi_free(val_2);
                      mpi_free(val_3);
                      mpi_free(result);
                      mpi_free(pminus1);
                      mpi_free(prime);
                      gcry_free(mods);
                      return ptest; 
                    }
                }
	    }
          if (++dotcount == 10 )
            {
              progress('.');
              dotcount = 0;
	    }
	}
      progress(':'); /* restart with a new random value */
    }
}

/****************
 * Returns: true if this may be a prime
 * RM_ROUNDS gives the number of Rabin-Miller tests to run.
 */
static int
check_prime( gcry_mpi_t prime, gcry_mpi_t val_2, int rm_rounds,
             gcry_prime_check_func_t cb_func, void *cb_arg)
{
  int i;
  unsigned int x;
  unsigned int count=0;

  /* Check against small primes. */
  for (i=0; (x = small_prime_numbers[i]); i++ )
    {
      if ( mpi_divisible_ui( prime, x ) )
        return 0;
    }

  /* A quick Fermat test. */
  {
    gcry_mpi_t result = mpi_alloc_like( prime );
    gcry_mpi_t pminus1 = mpi_alloc_like( prime );
    mpi_sub_ui( pminus1, prime, 1);
    gcry_mpi_powm( result, val_2, pminus1, prime );
    mpi_free( pminus1 );
    if ( mpi_cmp_ui( result, 1 ) )
      { 
        /* Is composite. */
        mpi_free( result );
        progress('.');
        return 0;
      }
    mpi_free( result );
  }

  if (!cb_func || cb_func (cb_arg, GCRY_PRIME_CHECK_AT_MAYBE_PRIME, prime))
    {
      /* Perform stronger tests. */
      if ( is_prime( prime, rm_rounds, &count ) )
        {
          if (!cb_func
              || cb_func (cb_arg, GCRY_PRIME_CHECK_AT_GOT_PRIME, prime))
            return 1; /* Probably a prime. */
        }
    }
  progress('.');
  return 0;
}


/*
 * Return true if n is probably a prime
 */
static int
is_prime (gcry_mpi_t n, int steps, unsigned int *count)
{
  gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs( n ) );
  gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs( n ) );
  gcry_mpi_t z = mpi_alloc( mpi_get_nlimbs( n ) );
  gcry_mpi_t nminus1 = mpi_alloc( mpi_get_nlimbs( n ) );
  gcry_mpi_t a2 = mpi_alloc_set_ui( 2 );
  gcry_mpi_t q;
  unsigned i, j, k;
  int rc = 0;
  unsigned nbits = mpi_get_nbits( n );

  if (steps < 5) /* Make sure that we do at least 5 rounds. */
    steps = 5; 

  mpi_sub_ui( nminus1, n, 1 );

  /* Find q and k, so that n = 1 + 2^k * q . */
  q = mpi_copy ( nminus1 );
  k = mpi_trailing_zeros ( q );
  mpi_tdiv_q_2exp (q, q, k);

  for (i=0 ; i < steps; i++ )
    {
      ++*count;
      if( !i )
        {
          mpi_set_ui( x, 2 );
        }
      else
        {
          gcry_mpi_randomize( x, nbits, GCRY_WEAK_RANDOM );

          /* Make sure that the number is smaller than the prime and
             keep the randomness of the high bit. */
          if ( mpi_test_bit ( x, nbits-2) )
            {
              mpi_set_highbit ( x, nbits-2); /* Clear all higher bits. */
            }
          else
            {
              mpi_set_highbit( x, nbits-2 );
              mpi_clear_bit( x, nbits-2 );
            }
          assert ( mpi_cmp( x, nminus1 ) < 0 && mpi_cmp_ui( x, 1 ) > 0 );
	}
      gcry_mpi_powm ( y, x, q, n);
      if ( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) )
        {
          for ( j=1; j < k && mpi_cmp( y, nminus1 ); j++ )
            {
              gcry_mpi_powm(y, y, a2, n);
              if( !mpi_cmp_ui( y, 1 ) )
                goto leave; /* Not a prime. */
            }
          if (mpi_cmp( y, nminus1 ) )
            goto leave; /* Not a prime. */
	}
      progress('+');
    }
  rc = 1; /* May be a prime. */

 leave:
  mpi_free( x );
  mpi_free( y );
  mpi_free( z );
  mpi_free( nminus1 );
  mpi_free( q );
  mpi_free( a2 );

  return rc;
}


/* Given ARRAY of size N with M elements set to true produce a
   modified array with the next permutation of M elements.  Note, that
   ARRAY is used in a one-bit-per-byte approach.  To detected the last
   permutation it is useful to intialize the array with the first M
   element set to true and use this test:
       m_out_of_n (array, m, n);
       for (i = j = 0; i < n && j < m; i++)
         if (array[i])
           j++;
       if (j == m)
         goto ready;
     
   This code is based on the algorithm 452 from the "Collected
   Algorithms From ACM, Volume II" by C. N. Liu and D. T. Tang.
*/
static void
m_out_of_n ( char *array, int m, int n )
{
  int i=0, i1=0, j=0, jp=0,  j1=0, k1=0, k2=0;

  if( !m || m >= n )
    return;

  /* Need to handle this simple case separately. */
  if( m == 1 )
    { 
      for (i=0; i < n; i++ )
        {
          if ( array[i] )
            {
              array[i++] = 0;
              if( i >= n )
                i = 0;
              array[i] = 1;
              return;
            }
        }
      BUG();
    }


  for (j=1; j < n; j++ )
    {
      if ( array[n-1] == array[n-j-1])
        continue;
      j1 = j;
      break;
    }

  if ( (m & 1) )
    {
      /* M is odd. */
      if( array[n-1] )
        {
          if( j1 & 1 )
            {
              k1 = n - j1;
              k2 = k1+2;
              if( k2 > n )
                k2 = n;
              goto leave;
            }
          goto scan;
        }
      k2 = n - j1 - 1;
      if( k2 == 0 )
        {
          k1 = i;
          k2 = n - j1;
        }
      else if( array[k2] && array[k2-1] )
        k1 = n;
      else
        k1 = k2 + 1;
    }
  else 
    {
      /* M is even. */
      if( !array[n-1] )
        {
          k1 = n - j1;
          k2 = k1 + 1;
          goto leave;
        }
        
      if( !(j1 & 1) )
        {
          k1 = n - j1;
          k2 = k1+2;
          if( k2 > n )
            k2 = n;
          goto leave;
        }
    scan:
      jp = n - j1 - 1;
      for (i=1; i <= jp; i++ ) 
        {
          i1 = jp + 2 - i;
          if( array[i1-1]  )
            {
              if( array[i1-2] )
                {
                  k1 = i1 - 1;
                  k2 = n - j1;
		}
              else
                {
                  k1 = i1 - 1;
                  k2 = n + 1 - j1;
                }
              goto leave;
            }
        }
      k1 = 1;
      k2 = n + 1 - m;
    }
 leave:
  /* Now complement the two selected bits. */
  array[k1-1] = !array[k1-1];
  array[k2-1] = !array[k2-1];
}


/* Generate a new prime number of PRIME_BITS bits and store it in
   PRIME.  If FACTOR_BITS is non-zero, one of the prime factors of
   (prime - 1) / 2 must be FACTOR_BITS bits long.  If FACTORS is
   non-zero, allocate a new, NULL-terminated array holding the prime
   factors and store it in FACTORS.  FLAGS might be used to influence
   the prime number generation process.  */
gcry_error_t
gcry_prime_generate (gcry_mpi_t *prime, unsigned int prime_bits,
		     unsigned int factor_bits, gcry_mpi_t **factors,
		     gcry_prime_check_func_t cb_func, void *cb_arg,
		     gcry_random_level_t random_level,
		     unsigned int flags)
{
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
  gcry_mpi_t *factors_generated = NULL;
  gcry_mpi_t prime_generated = NULL;
  unsigned int mode = 0;

  if (!prime)
    return gpg_error (GPG_ERR_INV_ARG);
  *prime = NULL; 

  if (flags & GCRY_PRIME_FLAG_SPECIAL_FACTOR)
    mode = 1;

  /* Generate.  */
  err = prime_generate_internal ((mode==1), &prime_generated, prime_bits,
				 factor_bits, NULL,
                                 factors? &factors_generated : NULL,
				 random_level, flags, 1,
                                 cb_func, cb_arg);

  if (! err)
    if (cb_func)
      {
	/* Additional check. */
	if ( !cb_func (cb_arg, GCRY_PRIME_CHECK_AT_FINISH, prime_generated))
	  {
	    /* Failed, deallocate resources.  */
	    unsigned int i;

	    mpi_free (prime_generated);
            if (factors)
              {
                for (i = 0; factors_generated[i]; i++)
                  mpi_free (factors_generated[i]);
                gcry_free (factors_generated);
              }
	    err = GPG_ERR_GENERAL; 
	  }
      }

  if (! err)
    {
      if (factors)
        *factors = factors_generated;
      *prime = prime_generated;
    }

  return gcry_error (err);
}

/* Check wether the number X is prime.  */
gcry_error_t
gcry_prime_check (gcry_mpi_t x, unsigned int flags)
{
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
  gcry_mpi_t val_2 = mpi_alloc_set_ui (2); /* Used by the Fermat test. */

  (void)flags;

  /* We use 64 rounds because the prime we are going to test is not
     guaranteed to be a random one. */
  if (! check_prime (x, val_2, 64, NULL, NULL))
    err = GPG_ERR_NO_PRIME;

  mpi_free (val_2);

  return gcry_error (err);
}

/* Find a generator for PRIME where the factorization of (prime-1) is
   in the NULL terminated array FACTORS. Return the generator as a
   newly allocated MPI in R_G.  If START_G is not NULL, use this as s
   atart for the search. Returns 0 on success.*/
gcry_error_t
gcry_prime_group_generator (gcry_mpi_t *r_g,
                            gcry_mpi_t prime, gcry_mpi_t *factors,
                            gcry_mpi_t start_g)
{
  gcry_mpi_t tmp = gcry_mpi_new (0);
  gcry_mpi_t b = gcry_mpi_new (0);
  gcry_mpi_t pmin1 = gcry_mpi_new (0);
  gcry_mpi_t g = start_g? gcry_mpi_copy (start_g) : gcry_mpi_set_ui (NULL, 3);
  int first = 1;
  int i, n;

  if (!factors || !r_g || !prime)
    return gpg_error (GPG_ERR_INV_ARG);
  *r_g = NULL; 

  for (n=0; factors[n]; n++)
    ;
  if (n < 2)
    return gpg_error (GPG_ERR_INV_ARG);

  /* Extra sanity check - usually disabled. */  
/*   mpi_set (tmp, factors[0]); */
/*   for(i = 1; i < n; i++) */
/*     mpi_mul (tmp, tmp, factors[i]); */
/*   mpi_add_ui (tmp, tmp, 1); */
/*   if (mpi_cmp (prime, tmp)) */
/*     return gpg_error (GPG_ERR_INV_ARG); */
  
  gcry_mpi_sub_ui (pmin1, prime, 1);      
  do         
    {
      if (first)
        first = 0;
      else
        gcry_mpi_add_ui (g, g, 1);
      
      if (DBG_CIPHER)
        {
          log_debug ("checking g:");
          gcry_mpi_dump (g);
          log_debug ("\n");
        }
      else
        progress('^');
      
      for (i = 0; i < n; i++)
        {
          mpi_fdiv_q (tmp, pmin1, factors[i]);
          gcry_mpi_powm (b, g, tmp, prime);
          if (! mpi_cmp_ui (b, 1))
            break;
        }
      if (DBG_CIPHER)
        progress('\n');
    }
  while (i < n);
  
  gcry_mpi_release (tmp);
  gcry_mpi_release (b); 
  gcry_mpi_release (pmin1); 
  *r_g = g; 

  return 0; 
}

/* Convenience function to release the factors array. */
void
gcry_prime_release_factors (gcry_mpi_t *factors)
{
  if (factors)
    {
      int i;
      
      for (i=0; factors[i]; i++)
        mpi_free (factors[i]);
      gcry_free (factors);
    }
}