1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
|
/* Rijndael (AES) for GnuPG - s390x/zSeries AES implementation
* Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "rijndael-internal.h"
#include "cipher-internal.h"
#include "bufhelp.h"
#ifdef USE_S390X_CRYPTO
#include "asm-inline-s390x.h"
#define NO_INLINE __attribute__((noinline))
struct aes_s390x_gcm_params_s
{
u32 reserved[3];
u32 counter_value;
u64 tag[2];
u64 hash_subkey[2];
u64 total_aad_length;
u64 total_cipher_length;
u32 initial_counter_value[4];
u64 key[4];
};
#define DECL_QUERY_FUNC(instruction, opcode) \
static u128_t instruction ##_query(void) \
{ \
static u128_t function_codes = 0; \
static int initialized = 0; \
register unsigned long reg0 asm("0") = 0; \
register void *reg1 asm("1") = &function_codes; \
u128_t r1, r2; \
\
if (initialized) \
return function_codes; \
\
asm volatile ("0: .insn rre," #opcode " << 16, %[r1], %[r2]\n\t" \
" brc 1,0b\n\t" \
: [r1] "=a" (r1), [r2] "=a" (r2) \
: [reg0] "r" (reg0), [reg1] "r" (reg1) \
: "cc", "memory"); \
\
initialized = 1; \
return function_codes; \
}
#define DECL_EXECUTE_FUNC(instruction, opcode, param_const) \
static ALWAYS_INLINE size_t \
instruction ##_execute(unsigned int func, param_const void *param_block, \
void *dst, const void *src, size_t src_len) \
{ \
register unsigned long reg0 asm("0") = func; \
register param_const byte *reg1 asm("1") = param_block; \
u128_t r1 = ((u128_t)(uintptr_t)dst << 64); \
u128_t r2 = ((u128_t)(uintptr_t)src << 64) | (u64)src_len; \
\
asm volatile ("0: .insn rre," #opcode " << 16, %[r1], %[r2]\n\t" \
" brc 1,0b\n\t" \
: [r1] "+a" (r1), [r2] "+a" (r2) \
: [func] "r" (reg0), [param_ptr] "r" (reg1) \
: "cc", "memory"); \
\
return (u64)r2; \
}
DECL_QUERY_FUNC(km, 0xb92e);
DECL_QUERY_FUNC(kmc, 0xb92f);
DECL_QUERY_FUNC(kmac, 0xb91e);
DECL_QUERY_FUNC(kmf, 0xb92a);
DECL_QUERY_FUNC(kmo, 0xb92b);
DECL_EXECUTE_FUNC(km, 0xb92e, const);
DECL_EXECUTE_FUNC(kmc, 0xb92f, );
DECL_EXECUTE_FUNC(kmac, 0xb91e, );
DECL_EXECUTE_FUNC(kmf, 0xb92a, );
DECL_EXECUTE_FUNC(kmo, 0xb92b, );
static u128_t kma_query(void)
{
static u128_t function_codes = 0;
static int initialized = 0;
register unsigned long reg0 asm("0") = 0;
register void *reg1 asm("1") = &function_codes;
u128_t r1, r2, r3;
if (initialized)
return function_codes;
asm volatile ("0: .insn rrf,0xb929 << 16, %[r1], %[r2], %[r3], 0\n\t"
" brc 1,0b\n\t"
: [r1] "=a" (r1), [r2] "=a" (r2), [r3] "=a" (r3)
: [reg0] "r" (reg0), [reg1] "r" (reg1)
: "cc", "memory");
initialized = 1;
return function_codes;
}
static ALWAYS_INLINE void
kma_execute(unsigned int func, void *param_block, byte *dst, const byte *src,
size_t src_len, const byte *aad, size_t aad_len)
{
register unsigned long reg0 asm("0") = func;
register byte *reg1 asm("1") = param_block;
u128_t r1 = ((u128_t)(uintptr_t)dst << 64);
u128_t r2 = ((u128_t)(uintptr_t)src << 64) | (u64)src_len;
u128_t r3 = ((u128_t)(uintptr_t)aad << 64) | (u64)aad_len;
asm volatile ("0: .insn rrf,0xb929 << 16, %[r1], %[r2], %[r3], 0\n\t"
" brc 1,0b\n\t"
: [r1] "+a" (r1), [r2] "+a" (r2), [r3] "+a" (r3),
[func] "+r" (reg0)
: [param_ptr] "r" (reg1)
: "cc", "memory");
}
unsigned int _gcry_aes_s390x_encrypt(const RIJNDAEL_context *ctx,
unsigned char *dst,
const unsigned char *src)
{
km_execute (ctx->km_func | KM_ENCRYPT, ctx->keyschenc, dst, src,
BLOCKSIZE);
return 0;
}
unsigned int _gcry_aes_s390x_decrypt(const RIJNDAEL_context *ctx,
unsigned char *dst,
const unsigned char *src)
{
km_execute (ctx->km_func | KM_DECRYPT, ctx->keyschenc, dst, src,
BLOCKSIZE);
return 0;
}
static void aes_s390x_cbc_enc(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks, int cbc_mac)
{
RIJNDAEL_context *ctx = context;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
u128_t params[3];
/* Prepare parameter block. */
memcpy (¶ms[0], iv, BLOCKSIZE);
memcpy (¶ms[1], ctx->keyschenc, 32);
if (cbc_mac)
{
kmac_execute (ctx->kmac_func | KM_ENCRYPT, ¶ms, NULL, in,
nblocks * BLOCKSIZE);
memcpy (out, ¶ms[0], BLOCKSIZE);
}
else
{
kmc_execute (ctx->kmc_func | KM_ENCRYPT, ¶ms, out, in,
nblocks * BLOCKSIZE);
}
/* Update IV with OCV. */
memcpy (iv, ¶ms[0], BLOCKSIZE);
wipememory (¶ms, sizeof(params));
}
static void aes_s390x_cbc_dec(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
u128_t params[3];
/* Prepare parameter block (ICV & key). */
memcpy (¶ms[0], iv, BLOCKSIZE);
memcpy (¶ms[1], ctx->keyschenc, 32);
kmc_execute (ctx->kmc_func | KM_DECRYPT, ¶ms, out, in,
nblocks * BLOCKSIZE);
/* Update IV with OCV. */
memcpy (iv, ¶ms[0], BLOCKSIZE);
wipememory (¶ms, sizeof(params));
}
static void aes_s390x_cfb128_enc(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
unsigned int function;
u128_t params[3];
/* Prepare parameter block. */
memcpy (¶ms[0], iv, BLOCKSIZE);
memcpy (¶ms[1], ctx->keyschenc, 32);
function = ctx->kmf_func | KM_ENCRYPT | KMF_LCFB_16;
kmf_execute (function, ¶ms, out, in, nblocks * BLOCKSIZE);
/* Update IV with OCV. */
memcpy (iv, ¶ms[0], BLOCKSIZE);
wipememory (¶ms, sizeof(params));
}
static void aes_s390x_cfb128_dec(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
u128_t blocks[64];
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
size_t max_blocks_used = 0;
/* AES128-CFB128 decryption speed using KMF was observed to be the same as
* the KMF encryption, ~1.03 cpb. Expection was to see similar performance
* as for AES128-CBC decryption as decryption for both modes should be
* parallalizeble (CBC shows ~0.22 cpb). Therefore there is quite a bit
* of room for improvement and implementation below using KM instruction
* shows ~0.70 cpb speed, ~30% improvement over KMF instruction.
*/
while (nblocks >= 64)
{
/* Copy IV to encrypt buffer, copy (nblocks - 1) input blocks to
* encrypt buffer and update IV. */
asm volatile ("mvc 0(16, %[blocks]), 0(%[iv])\n\t"
"mvc 16(240, %[blocks]), 0(%[in])\n\t"
"mvc 256(256, %[blocks]), 240(%[in])\n\t"
"mvc 512(256, %[blocks]), 496(%[in])\n\t"
"mvc 768(256, %[blocks]), 752(%[in])\n\t"
"mvc 0(16, %[iv]), 1008(%[in])\n\t"
:
: [in] "a" (in), [out] "a" (out), [blocks] "a" (blocks),
[iv] "a" (iv)
: "memory");
/* Perform encryption of temporary buffer. */
km_execute (ctx->km_func | KM_ENCRYPT, ctx->keyschenc, blocks, blocks,
64 * BLOCKSIZE);
/* Xor encrypt buffer with input blocks and store to output blocks. */
asm volatile ("xc 0(256, %[blocks]), 0(%[in])\n\t"
"xc 256(256, %[blocks]), 256(%[in])\n\t"
"xc 512(256, %[blocks]), 512(%[in])\n\t"
"xc 768(256, %[blocks]), 768(%[in])\n\t"
"mvc 0(256, %[out]), 0(%[blocks])\n\t"
"mvc 256(256, %[out]), 256(%[blocks])\n\t"
"mvc 512(256, %[out]), 512(%[blocks])\n\t"
"mvc 768(256, %[out]), 768(%[blocks])\n\t"
:
: [in] "a" (in), [out] "a" (out), [blocks] "a" (blocks)
: "memory");
max_blocks_used = 64;
in += 64 * BLOCKSIZE;
out += 64 * BLOCKSIZE;
nblocks -= 64;
}
if (nblocks)
{
unsigned int pos = 0;
size_t in_nblocks = nblocks;
size_t num_in = 0;
max_blocks_used = max_blocks_used < nblocks ? nblocks : max_blocks_used;
/* Copy IV to encrypt buffer. */
asm volatile ("mvc 0(16, %[blocks]), 0(%[iv])\n\t"
:
: [blocks] "a" (blocks), [iv] "a" (iv)
: "memory");
pos += 1;
#define CFB_MOVE_BLOCKS(block_oper, move_nbytes) \
block_oper (in_nblocks - 1 >= move_nbytes / BLOCKSIZE) \
{ \
unsigned int move_nblocks = move_nbytes / BLOCKSIZE; \
asm volatile ("mvc 0(" #move_nbytes ", %[blocks_x]), 0(%[in])\n\t" \
: \
: [blocks_x] "a" (&blocks[pos]), [in] "a" (in) \
: "memory"); \
num_in += move_nblocks; \
in += move_nblocks * BLOCKSIZE; \
pos += move_nblocks; \
in_nblocks -= move_nblocks; \
}
/* Copy (nblocks - 1) input blocks to encrypt buffer. */
CFB_MOVE_BLOCKS(while, 256);
CFB_MOVE_BLOCKS(if, 128);
CFB_MOVE_BLOCKS(if, 64);
CFB_MOVE_BLOCKS(if, 32);
CFB_MOVE_BLOCKS(if, 16);
#undef CFB_MOVE_BLOCKS
/* Update IV. */
asm volatile ("mvc 0(16, %[iv]), 0(%[in])\n\t"
:
: [iv] "a" (iv), [in] "a" (in)
: "memory");
num_in += 1;
in += BLOCKSIZE;
/* Perform encryption of temporary buffer. */
km_execute (ctx->km_func | KM_ENCRYPT, ctx->keyschenc, blocks, blocks,
nblocks * BLOCKSIZE);
/* Xor encrypt buffer with input blocks and store to output blocks. */
pos = 0;
in -= nblocks * BLOCKSIZE;
#define CFB_XOR_BLOCKS(block_oper, xor_nbytes) \
block_oper (nblocks >= xor_nbytes / BLOCKSIZE) \
{ \
unsigned int xor_nblocks = xor_nbytes / BLOCKSIZE; \
asm volatile ("xc 0(" #xor_nbytes ", %[blocks_x]), 0(%[in])\n\t" \
"mvc 0(" #xor_nbytes ", %[out]), 0(%[blocks_x])\n\t" \
: \
: [blocks_x] "a" (&blocks[pos]), [out] "a" (out), \
[in] "a" (in) \
: "memory"); \
out += xor_nblocks * BLOCKSIZE; \
in += xor_nblocks * BLOCKSIZE; \
nblocks -= xor_nblocks; \
pos += xor_nblocks; \
}
CFB_XOR_BLOCKS(while, 256);
CFB_XOR_BLOCKS(if, 128);
CFB_XOR_BLOCKS(if, 64);
CFB_XOR_BLOCKS(if, 32);
CFB_XOR_BLOCKS(if, 16);
#undef CFB_XOR_BLOCKS
}
if (max_blocks_used)
wipememory (&blocks, max_blocks_used * BLOCKSIZE);
}
static void aes_s390x_ofb_enc(void *context, unsigned char *iv,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
unsigned int function;
u128_t params[3];
/* Prepare parameter block. */
memcpy (¶ms[0], iv, BLOCKSIZE);
memcpy (¶ms[1], ctx->keyschenc, 32);
function = ctx->kmo_func | KM_ENCRYPT;
kmo_execute (function, ¶ms, out, in, nblocks * BLOCKSIZE);
/* Update IV with OCV. */
memcpy (iv, ¶ms[0], BLOCKSIZE);
wipememory (¶ms, sizeof(params));
}
static void aes_s390x_ctr128_enc(void *context, unsigned char *ctr,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks)
{
RIJNDAEL_context *ctx = context;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
unsigned int function;
struct aes_s390x_gcm_params_s params;
memset (¶ms.hash_subkey, 0, sizeof(params.hash_subkey));
memcpy (¶ms.key, ctx->keyschenc, 32);
function = ctx->kma_func | KM_DECRYPT | KMA_HS | KMA_LAAD;
while (nblocks)
{
u64 to_overflow = (u64)0xFFFFFFFFU + 1 - buf_get_be32 (ctr + 12);
u64 ncurr = nblocks > to_overflow ? to_overflow : nblocks;
/* Prepare parameter block. */
memset (¶ms.reserved, 0, sizeof(params.reserved));
buf_put_be32 (¶ms.counter_value, buf_get_be32(ctr + 12) - 1);
memcpy (¶ms.initial_counter_value, ctr, 16);
params.initial_counter_value[3] = params.counter_value;
memset (¶ms.tag, 0, sizeof(params.tag));
params.total_aad_length = 0;
params.total_cipher_length = 0;
/* Update counter. */
cipher_block_add (ctr, ncurr, BLOCKSIZE);
if (ncurr == (u64)0xFFFFFFFFU + 1)
cipher_block_add (ctr, 1, BLOCKSIZE);
/* Perform CTR using KMA-GCM. */
kma_execute (function, ¶ms, out, in, ncurr * BLOCKSIZE, NULL, 0);
out += ncurr * BLOCKSIZE;
in += ncurr * BLOCKSIZE;
nblocks -= ncurr;
}
wipememory (¶ms, sizeof(params));
}
static size_t aes_s390x_gcm_crypt(gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks,
int encrypt)
{
RIJNDAEL_context *ctx = (void *)&c->context.c;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
byte *ctr = c->u_ctr.ctr;
unsigned int function;
struct aes_s390x_gcm_params_s params;
function = ctx->kma_func | (encrypt ? KM_ENCRYPT : KM_DECRYPT)
| KMA_HS | KMA_LAAD;
/* Prepare parameter block. */
memset (¶ms.reserved, 0, sizeof(params.reserved));
buf_put_be32 (¶ms.counter_value, buf_get_be32(ctr + 12) - 1);
memcpy (¶ms.tag, c->u_mode.gcm.u_tag.tag, 16);
memcpy (¶ms.hash_subkey, c->u_mode.gcm.u_ghash_key.key, 16);
params.total_aad_length = 0;
params.total_cipher_length = 0;
memcpy (¶ms.initial_counter_value, ctr, 12);
params.initial_counter_value[3] = params.counter_value;
memcpy (¶ms.key, ctx->keyschenc, 32);
/* Update counter (CTR32). */
buf_put_be32(ctr + 12, buf_get_be32(ctr + 12) + nblocks);
/* Perform KMA-GCM. */
kma_execute (function, ¶ms, out, in, nblocks * BLOCKSIZE, NULL, 0);
/* Update tag. */
memcpy (c->u_mode.gcm.u_tag.tag, ¶ms.tag, 16);
wipememory (¶ms, sizeof(params));
return 0;
}
static void aes_s390x_xts_crypt(void *context, unsigned char *tweak,
void *outbuf_arg, const void *inbuf_arg,
size_t nblocks, int encrypt)
{
RIJNDAEL_context *ctx = context;
byte *out = outbuf_arg;
const byte *in = inbuf_arg;
unsigned int function;
u128_t params[3];
u128_t *params_tweak;
if (ctx->rounds < 12)
{
memcpy (¶ms[0], ctx->keyschenc, 16);
params_tweak = ¶ms[1];
memcpy (params_tweak, tweak, BLOCKSIZE);
}
else if (ctx->rounds == 12)
{
BUG(); /* KM-XTS-AES-192 not defined. */
}
else
{
memcpy (¶ms[0], ctx->keyschenc, 32);
params_tweak = ¶ms[2];
memcpy (params_tweak, tweak, BLOCKSIZE);
}
function = ctx->km_func_xts | (encrypt ? KM_ENCRYPT : KM_DECRYPT);
km_execute (function, ¶ms, out, in, nblocks * BLOCKSIZE);
/* Update tweak with XTSP. */
memcpy (tweak, params_tweak, BLOCKSIZE);
wipememory (¶ms, sizeof(params));
}
static NO_INLINE void
aes_s390x_ocb_prepare_Ls (gcry_cipher_hd_t c, u64 blkn, const void *Ls[64],
const void ***pl)
{
unsigned int n = 64 - (blkn % 64);
int i;
/* Prepare L pointers. */
*pl = &Ls[(63 + n) % 64];
for (i = 0; i < 64; i += 8, n = (n + 8) % 64)
{
static const int lastL[8] = { 3, 4, 3, 5, 3, 4, 3, 0 };
Ls[(0 + n) % 64] = c->u_mode.ocb.L[0];
Ls[(1 + n) % 64] = c->u_mode.ocb.L[1];
Ls[(2 + n) % 64] = c->u_mode.ocb.L[0];
Ls[(3 + n) % 64] = c->u_mode.ocb.L[2];
Ls[(4 + n) % 64] = c->u_mode.ocb.L[0];
Ls[(5 + n) % 64] = c->u_mode.ocb.L[1];
Ls[(6 + n) % 64] = c->u_mode.ocb.L[0];
Ls[(7 + n) % 64] = c->u_mode.ocb.L[lastL[i / 8]];
}
}
static ALWAYS_INLINE const unsigned char *
aes_s390x_ocb_get_l (gcry_cipher_hd_t c, u64 n)
{
unsigned long ntz = _gcry_ctz (n);
if (ntz >= OCB_L_TABLE_SIZE)
{
return NULL; /* Not accessed. */
}
return c->u_mode.ocb.L[ntz];
}
static NO_INLINE void
aes_s390x_ocb_checksum (unsigned char *checksum, const void *plainbuf_arg,
size_t nblks)
{
const char *plainbuf = plainbuf_arg;
u64 tmp0[2];
u64 tmp1[2] = { 0, 0 };
u64 tmp2[2] = { 0, 0 };
u64 tmp3[2] = { 0, 0 };
cipher_block_cpy (tmp0, checksum, BLOCKSIZE);
if (nblks >= 4)
{
while (nblks >= 4)
{
/* Checksum_i = Checksum_{i-1} xor P_i */
cipher_block_xor_1 (tmp0, plainbuf + 0 * BLOCKSIZE, BLOCKSIZE);
cipher_block_xor_1 (tmp1, plainbuf + 1 * BLOCKSIZE, BLOCKSIZE);
cipher_block_xor_1 (tmp2, plainbuf + 2 * BLOCKSIZE, BLOCKSIZE);
cipher_block_xor_1 (tmp3, plainbuf + 3 * BLOCKSIZE, BLOCKSIZE);
plainbuf += 4 * BLOCKSIZE;
nblks -= 4;
}
cipher_block_xor_1 (tmp0, tmp1, BLOCKSIZE);
cipher_block_xor_1 (tmp2, tmp3, BLOCKSIZE);
cipher_block_xor_1 (tmp0, tmp2, BLOCKSIZE);
wipememory (tmp1, sizeof(tmp1));
wipememory (tmp2, sizeof(tmp2));
wipememory (tmp3, sizeof(tmp3));
}
while (nblks > 0)
{
/* Checksum_i = Checksum_{i-1} xor P_i */
cipher_block_xor_1 (tmp0, plainbuf, BLOCKSIZE);
plainbuf += BLOCKSIZE;
nblks--;
}
cipher_block_cpy (checksum, tmp0, BLOCKSIZE);
wipememory (tmp0, sizeof(tmp0));
}
static NO_INLINE size_t
aes_s390x_ocb_enc (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks_arg)
{
RIJNDAEL_context *ctx = (void *)&c->context.c;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
size_t nblocks = nblocks_arg;
u128_t blocks[64];
u128_t offset;
size_t max_blocks_used = 0;
u64 blkn = c->u_mode.ocb.data_nblocks;
unsigned int function = ctx->km_func | KM_ENCRYPT;
const void *Ls[64];
const void **pl;
aes_s390x_ocb_prepare_Ls (c, blkn, Ls, &pl);
/* Checksumming could be done inline in OCB_INPUT macros, but register
* pressure becomes too heavy and performance would end up being worse.
* For decryption, checksumming is part of OCB_OUTPUT macros as
* output handling is less demanding and can handle the additional
* computation. */
aes_s390x_ocb_checksum (c->u_ctr.ctr, inbuf_arg, nblocks_arg);
cipher_block_cpy (&offset, &c->u_iv.iv, BLOCKSIZE);
#define OCB_INPUT(n) \
cipher_block_xor_2dst (&blocks[n], &offset, Ls[n], BLOCKSIZE); \
cipher_block_xor (outbuf + (n) * BLOCKSIZE, inbuf + (n) * BLOCKSIZE, \
&offset, BLOCKSIZE)
#define OCB_INPUT_4(n) \
OCB_INPUT((n) + 0); OCB_INPUT((n) + 1); OCB_INPUT((n) + 2); \
OCB_INPUT((n) + 3)
#define OCB_INPUT_16(n) \
OCB_INPUT_4((n) + 0); OCB_INPUT_4((n) + 4); OCB_INPUT_4((n) + 8); \
OCB_INPUT_4((n) + 12);
#define OCB_OUTPUT(n) \
cipher_block_xor_1 (outbuf + (n) * BLOCKSIZE, &blocks[n], BLOCKSIZE)
#define OCB_OUTPUT_4(n) \
OCB_OUTPUT((n) + 0); OCB_OUTPUT((n) + 1); OCB_OUTPUT((n) + 2); \
OCB_OUTPUT((n) + 3)
#define OCB_OUTPUT_16(n) \
OCB_OUTPUT_4((n) + 0); OCB_OUTPUT_4((n) + 4); OCB_OUTPUT_4((n) + 8); \
OCB_OUTPUT_4((n) + 12);
while (nblocks >= 64)
{
blkn += 64;
*pl = aes_s390x_ocb_get_l(c, blkn - blkn % 64);
OCB_INPUT_16(0);
OCB_INPUT_16(16);
OCB_INPUT_16(32);
OCB_INPUT_16(48);
km_execute (function, ctx->keyschenc, outbuf, outbuf, 64 * BLOCKSIZE);
asm volatile ("xc 0(256, %[out]), 0(%[blocks])\n\t"
"xc 256(256, %[out]), 256(%[blocks])\n\t"
"xc 512(256, %[out]), 512(%[blocks])\n\t"
"xc 768(256, %[out]), 768(%[blocks])\n\t"
:
: [out] "a" (outbuf), [blocks] "a" (blocks)
: "memory");
max_blocks_used = 64;
inbuf += 64 * BLOCKSIZE;
outbuf += 64 * BLOCKSIZE;
nblocks -= 64;
}
if (nblocks)
{
unsigned int pos = 0;
max_blocks_used = max_blocks_used < nblocks ? nblocks : max_blocks_used;
blkn += nblocks;
*pl = aes_s390x_ocb_get_l(c, blkn - blkn % 64);
while (nblocks >= 16)
{
OCB_INPUT_16(pos + 0);
pos += 16;
nblocks -= 16;
}
while (nblocks >= 4)
{
OCB_INPUT_4(pos + 0);
pos += 4;
nblocks -= 4;
}
if (nblocks >= 2)
{
OCB_INPUT(pos + 0);
OCB_INPUT(pos + 1);
pos += 2;
nblocks -= 2;
}
if (nblocks >= 1)
{
OCB_INPUT(pos + 0);
pos += 1;
nblocks -= 1;
}
nblocks = pos;
pos = 0;
km_execute (function, ctx->keyschenc, outbuf, outbuf,
nblocks * BLOCKSIZE);
while (nblocks >= 16)
{
OCB_OUTPUT_16(pos + 0);
pos += 16;
nblocks -= 16;
}
while (nblocks >= 4)
{
OCB_OUTPUT_4(pos + 0);
pos += 4;
nblocks -= 4;
}
if (nblocks >= 2)
{
OCB_OUTPUT(pos + 0);
OCB_OUTPUT(pos + 1);
pos += 2;
nblocks -= 2;
}
if (nblocks >= 1)
{
OCB_OUTPUT(pos + 0);
pos += 1;
nblocks -= 1;
}
}
#undef OCB_INPUT
#undef OCB_INPUT_4
#undef OCB_INPUT_16
#undef OCB_OUTPUT
#undef OCB_OUTPUT_4
#undef OCB_OUTPUT_16
c->u_mode.ocb.data_nblocks = blkn;
cipher_block_cpy (&c->u_iv.iv, &offset, BLOCKSIZE);
if (max_blocks_used)
wipememory (&blocks, max_blocks_used * BLOCKSIZE);
return 0;
}
static NO_INLINE size_t
aes_s390x_ocb_dec (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks_arg)
{
RIJNDAEL_context *ctx = (void *)&c->context.c;
unsigned char *outbuf = outbuf_arg;
const unsigned char *inbuf = inbuf_arg;
size_t nblocks = nblocks_arg;
u128_t blocks[64];
u128_t offset;
size_t max_blocks_used = 0;
u64 blkn = c->u_mode.ocb.data_nblocks;
unsigned int function = ctx->km_func | KM_DECRYPT;
const void *Ls[64];
const void **pl;
aes_s390x_ocb_prepare_Ls (c, blkn, Ls, &pl);
cipher_block_cpy (&offset, &c->u_iv.iv, BLOCKSIZE);
#define OCB_INPUT(n) \
cipher_block_xor_2dst (&blocks[n], &offset, Ls[n], BLOCKSIZE); \
cipher_block_xor (outbuf + (n) * BLOCKSIZE, inbuf + (n) * BLOCKSIZE, \
&offset, BLOCKSIZE)
#define OCB_INPUT_4(n) \
OCB_INPUT((n) + 0); OCB_INPUT((n) + 1); OCB_INPUT((n) + 2); \
OCB_INPUT((n) + 3)
#define OCB_INPUT_16(n) \
OCB_INPUT_4((n) + 0); OCB_INPUT_4((n) + 4); OCB_INPUT_4((n) + 8); \
OCB_INPUT_4((n) + 12);
#define OCB_OUTPUT(n) \
cipher_block_xor_1 (outbuf + (n) * BLOCKSIZE, &blocks[n], BLOCKSIZE);
#define OCB_OUTPUT_4(n) \
OCB_OUTPUT((n) + 0); OCB_OUTPUT((n) + 1); OCB_OUTPUT((n) + 2); \
OCB_OUTPUT((n) + 3)
#define OCB_OUTPUT_16(n) \
OCB_OUTPUT_4((n) + 0); OCB_OUTPUT_4((n) + 4); OCB_OUTPUT_4((n) + 8); \
OCB_OUTPUT_4((n) + 12);
while (nblocks >= 64)
{
blkn += 64;
*pl = aes_s390x_ocb_get_l(c, blkn - blkn % 64);
OCB_INPUT_16(0);
OCB_INPUT_16(16);
OCB_INPUT_16(32);
OCB_INPUT_16(48);
km_execute (function, ctx->keyschenc, outbuf, outbuf, 64 * BLOCKSIZE);
asm volatile ("xc 0(256, %[out]), 0(%[blocks])\n\t"
"xc 256(256, %[out]), 256(%[blocks])\n\t"
"xc 512(256, %[out]), 512(%[blocks])\n\t"
"xc 768(256, %[out]), 768(%[blocks])\n\t"
:
: [out] "a" (outbuf), [blocks] "a" (blocks)
: "memory");
max_blocks_used = 64;
inbuf += 64 * BLOCKSIZE;
outbuf += 64 * BLOCKSIZE;
nblocks -= 64;
}
if (nblocks)
{
unsigned int pos = 0;
max_blocks_used = max_blocks_used < nblocks ? nblocks : max_blocks_used;
blkn += nblocks;
*pl = aes_s390x_ocb_get_l(c, blkn - blkn % 64);
while (nblocks >= 16)
{
OCB_INPUT_16(pos + 0);
pos += 16;
nblocks -= 16;
}
while (nblocks >= 4)
{
OCB_INPUT_4(pos + 0);
pos += 4;
nblocks -= 4;
}
if (nblocks >= 2)
{
OCB_INPUT(pos + 0);
OCB_INPUT(pos + 1);
pos += 2;
nblocks -= 2;
}
if (nblocks >= 1)
{
OCB_INPUT(pos + 0);
pos += 1;
nblocks -= 1;
}
nblocks = pos;
pos = 0;
km_execute (function, ctx->keyschenc, outbuf, outbuf,
nblocks * BLOCKSIZE);
while (nblocks >= 16)
{
OCB_OUTPUT_16(pos + 0);
pos += 16;
nblocks -= 16;
}
while (nblocks >= 4)
{
OCB_OUTPUT_4(pos + 0);
pos += 4;
nblocks -= 4;
}
if (nblocks >= 2)
{
OCB_OUTPUT(pos + 0);
OCB_OUTPUT(pos + 1);
pos += 2;
nblocks -= 2;
}
if (nblocks >= 1)
{
OCB_OUTPUT(pos + 0);
pos += 1;
nblocks -= 1;
}
}
#undef OCB_INPUT
#undef OCB_INPUT_4
#undef OCB_INPUT_16
#undef OCB_OUTPUT
#undef OCB_OUTPUT_4
#undef OCB_OUTPUT_16
c->u_mode.ocb.data_nblocks = blkn;
cipher_block_cpy (&c->u_iv.iv, &offset, BLOCKSIZE);
if (max_blocks_used)
wipememory (&blocks, max_blocks_used * BLOCKSIZE);
aes_s390x_ocb_checksum (c->u_ctr.ctr, outbuf_arg, nblocks_arg);
return 0;
}
static size_t
aes_s390x_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
const void *inbuf_arg, size_t nblocks_arg, int encrypt)
{
if (encrypt)
return aes_s390x_ocb_enc (c, outbuf_arg, inbuf_arg, nblocks_arg);
else
return aes_s390x_ocb_dec (c, outbuf_arg, inbuf_arg, nblocks_arg);
}
static size_t
aes_s390x_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
size_t nblocks_arg)
{
RIJNDAEL_context *ctx = (void *)&c->context.c;
const unsigned char *abuf = abuf_arg;
u128_t blocks[64];
u128_t offset;
size_t max_blocks_used = 0;
u64 blkn = c->u_mode.ocb.aad_nblocks;
unsigned int function = ctx->km_func | KM_ENCRYPT;
const void *Ls[64];
const void **pl;
aes_s390x_ocb_prepare_Ls (c, blkn, Ls, &pl);
cipher_block_cpy (&offset, c->u_mode.ocb.aad_offset, BLOCKSIZE);
#define OCB_INPUT(n) \
cipher_block_xor_2dst (&blocks[n], &offset, Ls[n], BLOCKSIZE); \
cipher_block_xor_1 (&blocks[n], abuf + (n) * BLOCKSIZE, BLOCKSIZE)
#define OCB_INPUT_4(n) \
OCB_INPUT((n) + 0); OCB_INPUT((n) + 1); OCB_INPUT((n) + 2); \
OCB_INPUT((n) + 3)
#define OCB_INPUT_16(n) \
OCB_INPUT_4((n) + 0); OCB_INPUT_4((n) + 4); OCB_INPUT_4((n) + 8); \
OCB_INPUT_4((n) + 12);
while (nblocks_arg >= 64)
{
blkn += 64;
*pl = aes_s390x_ocb_get_l(c, blkn - blkn % 64);
OCB_INPUT_16(0);
OCB_INPUT_16(16);
OCB_INPUT_16(32);
OCB_INPUT_16(48);
km_execute (function, ctx->keyschenc, blocks, blocks, 64 * BLOCKSIZE);
aes_s390x_ocb_checksum (c->u_mode.ocb.aad_sum, blocks, 64);
max_blocks_used = 64;
abuf += 64 * BLOCKSIZE;
nblocks_arg -= 64;
}
if (nblocks_arg > 0)
{
size_t nblocks = nblocks_arg;
unsigned int pos = 0;
max_blocks_used = max_blocks_used < nblocks ? nblocks : max_blocks_used;
blkn += nblocks;
*pl = aes_s390x_ocb_get_l(c, blkn - blkn % 64);
while (nblocks >= 16)
{
OCB_INPUT_16(pos + 0);
pos += 16;
nblocks -= 16;
}
while (nblocks >= 4)
{
OCB_INPUT_4(pos + 0);
pos += 4;
nblocks -= 4;
}
if (nblocks >= 2)
{
OCB_INPUT(pos + 0);
OCB_INPUT(pos + 1);
pos += 2;
nblocks -= 2;
}
if (nblocks >= 1)
{
OCB_INPUT(pos + 0);
pos += 1;
nblocks -= 1;
}
nblocks = pos;
nblocks_arg -= pos;
pos = 0;
km_execute (function, ctx->keyschenc, blocks, blocks,
nblocks * BLOCKSIZE);
aes_s390x_ocb_checksum (c->u_mode.ocb.aad_sum, blocks, nblocks);
}
#undef OCB_INPUT
#undef OCB_INPUT_4
#undef OCB_INPUT_16
c->u_mode.ocb.aad_nblocks = blkn;
cipher_block_cpy (c->u_mode.ocb.aad_offset, &offset, BLOCKSIZE);
if (max_blocks_used)
wipememory (&blocks, max_blocks_used * BLOCKSIZE);
return 0;
}
int _gcry_aes_s390x_setup_acceleration(RIJNDAEL_context *ctx,
unsigned int keylen,
unsigned int hwfeatures,
cipher_bulk_ops_t *bulk_ops)
{
unsigned int func;
unsigned int func_xts;
u128_t func_mask;
u128_t func_xts_mask;
if (!(hwfeatures & HWF_S390X_MSA))
return 0;
switch (keylen)
{
default:
case 16:
func = KM_FUNCTION_AES_128;
func_xts = KM_FUNCTION_XTS_AES_128;
func_mask = km_function_to_mask(KM_FUNCTION_AES_128);
func_xts_mask = km_function_to_mask(KM_FUNCTION_XTS_AES_128);
break;
case 24:
func = KM_FUNCTION_AES_192;
func_xts = 0;
func_mask = km_function_to_mask(KM_FUNCTION_AES_192);
func_xts_mask = 0; /* XTS-AES192 not available. */
break;
case 32:
func = KM_FUNCTION_AES_256;
func_xts = KM_FUNCTION_XTS_AES_256;
func_mask = km_function_to_mask(KM_FUNCTION_AES_256);
func_xts_mask = km_function_to_mask(KM_FUNCTION_AES_256);
break;
}
/* Query KM for supported algorithms and check if acceleration for
* requested key-length is available. */
if (!(km_query () & func_mask))
return 0;
ctx->km_func = func;
/* Query KM for supported XTS algorithms. */
if (km_query () & func_xts_mask)
ctx->km_func_xts = func_xts;
/* Query KMC for supported algorithms. */
if (kmc_query () & func_mask)
ctx->kmc_func = func;
/* Query KMAC for supported algorithms. */
if (kmac_query () & func_mask)
ctx->kmac_func = func;
if (hwfeatures & HWF_S390X_MSA_4)
{
/* Query KMF for supported algorithms. */
if (kmf_query () & func_mask)
ctx->kmf_func = func;
/* Query KMO for supported algorithms. */
if (kmo_query () & func_mask)
ctx->kmo_func = func;
}
if (hwfeatures & HWF_S390X_MSA_8)
{
/* Query KMA for supported algorithms. */
if (kma_query () & func_mask)
ctx->kma_func = func;
}
/* Setup zSeries bulk encryption/decryption routines. */
if (ctx->km_func)
{
bulk_ops->ocb_crypt = aes_s390x_ocb_crypt;
bulk_ops->ocb_auth = aes_s390x_ocb_auth;
/* CFB128 decryption uses KM instruction, instead of KMF. */
bulk_ops->cfb_dec = aes_s390x_cfb128_dec;
}
if (ctx->km_func_xts)
{
bulk_ops->xts_crypt = aes_s390x_xts_crypt;
}
if (ctx->kmc_func)
{
if(ctx->kmac_func)
{
/* Either KMC or KMAC used depending on 'cbc_mac' parameter. */
bulk_ops->cbc_enc = aes_s390x_cbc_enc;
}
bulk_ops->cbc_dec = aes_s390x_cbc_dec;
}
if (ctx->kmf_func)
{
bulk_ops->cfb_enc = aes_s390x_cfb128_enc;
}
if (ctx->kmo_func)
{
bulk_ops->ofb_enc = aes_s390x_ofb_enc;
}
if (ctx->kma_func)
{
bulk_ops->ctr_enc = aes_s390x_ctr128_enc;
if (kimd_query () & km_function_to_mask (KMID_FUNCTION_GHASH))
{
/* KIMD based GHASH implementation is required with AES-GCM
* acceleration. */
bulk_ops->gcm_crypt = aes_s390x_gcm_crypt;
}
}
return 1;
}
void _gcry_aes_s390x_setkey(RIJNDAEL_context *ctx, const byte *key)
{
unsigned int keylen = 16 + (ctx->rounds - 10) * 4;
memcpy (ctx->keyschenc, key, keylen);
}
void _gcry_aes_s390x_prepare_decryption(RIJNDAEL_context *ctx)
{
/* Do nothing. */
(void)ctx;
}
#endif /* USE_S390X_CRYPTO */
|