1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
|
\input texinfo @c -*- Texinfo -*-
@c Copyright (C) 2000, 2002, 2003 Free Software Foundation, Inc.
@c
@c This file is part of the Libgcrypt.
@c
@c Permission is granted to copy, distribute and/or modify this document
@c under the terms of the GNU Free Documentation License, Version 1.1 or
@c any later version published by the Free Software Foundation; with no
@c Invariant Sections, with no the Front-Cover texts, and with no
@c Back-Cover Texts.
@c A copy of the license is included in the file 'fdl.texi'.
@c
@setfilename gcrypt.info
@settitle The `Libgcrypt' Reference Manual
@dircategory GNU Libraries
@direntry
* libgcrypt: (gcrypt) Cryptographic function library.
@end direntry
@include version.texi
@c Unify some of the indices.
@syncodeindex tp fn
@syncodeindex pg fn
@ifinfo
This file documents the `Libgcrypt' library.
This is Edition @value{EDITION}, last updated @value{UPDATED}, of
@cite{The `Libgcrypt' Reference Manual}, for Version
@value{VERSION}.
Copyright @copyright{} 2000, 2002, 2003 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no the Front-Cover texts, and with no
Back-Cover Texts. A copy of the license is included in the section
entitled ``GNU Free Documentation License''.
@end ifinfo
@c @iftex
@c @shorttitlepage The `Libgcrypt' Reference Manual
@c @end iftex
@titlepage
@center @titlefont{The `Libgcrypt'}
@sp 1
@center @titlefont{Reference Manual}
@sp 6
@center Edition @value{EDITION}
@sp 1
@center last updated @value{UPDATED}
@sp 1
@center for version @value{VERSION}
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 2000, 2002, 2003 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no the Front-Cover texts, and with no
Back-Cover Texts. A copy of the license is included in the section
entitled ``GNU Free Documentation License''.
@end titlepage
@page
@ifnottex
@node Top
@top Main Menu
This is Edition @value{EDITION}, last updated @value{UPDATED}, of
@cite{The `Libgcrypt' Reference Manual}, for Version
@value{VERSION} of the @acronym{Libgcrypt} library.
@end ifnottex
@menu
* Introduction:: What is @acronym{Libgcrypt}.
* Preparation:: What you should do before using the library.
* Generalities:: General library functions and data types.
* Handler Functions:: Working with handler functions.
* Symmetric cryptography:: How to use symmetric crytography.
* Hashing:: How to use hashing.
* Public Key cryptography (I):: How to use public key cryptography.
* Public Key cryptography (II):: How to use public key cryptography, alternatively.
* Random Numbers:: How to work with random numbers.
* S-expressions:: How to manage S-expressions.
* MPI library:: How to work with multi-precision-integers.
* Utilities:: Utility functions.
Appendices
* Library Copying:: The GNU Lesser General Public License
says how you can copy and share `@acronym{Libgcrypt}'.
* Copying:: The GNU General Public License says how you
can copy and share some parts of `@acronym{Libgcrypt}'.
* Free Documentation License:: This manual is under the GNU Free
Documentation License.
Indices
* Concept Index:: Index of concepts and programs.
* Function and Data Index:: Index of functions, variables and data types.
@detailmenu
--- The Detailed Node Listing ---
Introduction
* Getting Started:: How to use this manual.
* Features:: A glance at @acronym{Libgcrypt}'s features.
* Overview:: Overview about the library.
Preparation
* Header:: What header file you need to include.
* Building sources:: How to build sources using the library.
* Building sources using Automake:: How to build sources with the help auf Automake.
* Initializing the library:: How to initialize the library.
* Multi Threading:: How @acronym{Libgcrypt} can be used in a MT environment.
Generalities
* Controlling the library:: Controlling @acronym{Libgcrypt}'s behaviour.
* Modules:: Description of extension modules.
* Error Handling:: Error codes and such.
Handler Functions
* Progress handler:: Using a progress handler function.
* Allocation handler:: Using special memory allocation functions.
* Error handler:: Using error handler functions.
* Logging handler:: Using a special logging function.
Symmetric cryptography
* Available ciphers:: List of ciphers supported by the library.
* Cipher modules:: How to work with cipher modules.
* Available cipher modes:: List of cipher modes supported by the library.
* Working with cipher handles:: How to perform operations related to cipher handles.
* General cipher functions:: General cipher functions independent of cipher handles.
Hashing
* Available hash algorithms:: List of hash algorithms supported by the library.
* Hash algorithm modules:: How to work with hash algorithm modules.
* Working with hash algorithms:: List of functions related to hashing.
Public Key cryptography (I)
* Used S-expressions:: Introduction into the used S-expression.
* Available algorithms:: Algorithms supported by the library.
* Public key modules:: How to work with public key modules.
* Cryptographic Functions:: Functions for performing the cryptographic actions.
* General public-key related Functions:: General functions, not implementing any cryptography.
Public Key cryptography (II)
* Available asymmetric algorithms:: List of algorithms supported by the library.
* Working with sets of data:: How to work with sets of data.
* Working with handles:: How to use handles.
* Working with keys:: How to work with keys.
* Using cryptographic functions:: How to perform cryptographic operations.
* Handle-independent functions:: General functions independent of handles.
Random Numbers
* Quality of random numbers:: @acronym{Libgcrypt} uses different quality levels.
* Retrieving random numbers:: How to retrieve random numbers.
S-expressions
* Data types for S-expressions:: Data types related with S-expressions.
* Working with S-expressions:: How to work with S-expressions.
MPI library
* Data types:: MPI related data types.
* Basic functions:: First steps with MPI numbers.
* MPI formats:: External representation of MPIs.
* Calculations:: Performing MPI calculations.
* Comparisons:: How to compare MPI values.
* Bit manipulations:: How to access single bits of MPI values.
* Misc:: Misc, fixme.
Utilities
* Memory allocation:: Functions related with memory allocation.
@end detailmenu
@end menu
@c **********************************************************
@c ******************* Introduction ***********************
@c **********************************************************
@node Introduction
@chapter Introduction
`@acronym{Libgcrypt}' is a library providing cryptographic building blocks.
@menu
* Getting Started:: How to use this manual.
* Features:: A glance at @acronym{Libgcrypt}'s features.
* Overview:: Overview about the library.
@end menu
@node Getting Started
@section Getting Started
This manual documents the `@acronym{Libgcrypt}' library application programming
interface (API). All functions and data types provided by the library
are explained.
The reader is assumed to possess basic knowledge about applied
cryptography.
This manual can be used in several ways. If read from the beginning
to the end, it gives a good introduction into the library and how it
can be used in an application. Forward references are included where
necessary. Later on, the manual can be used as a reference manual to
get just the information needed about any particular interface of the
library. Experienced programmers might want to start looking at the
examples at the end of the manual, and then only read up those parts
of the interface which are unclear.
@node Features
@section Features
@noindent
`Libgcrypt' might have a couple of advantages over other libraries doing
a similar job.
@table @asis
@item It's Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License (@pxref{Library Copying}). Note, that
some parts (which are not needed on a GNU or GNU/Linux system) are
subject to the terms of the GNU General Public License
(@pxref{Copying}); please see the README file of the distribution for of
list of these parts.
@item It encapsulates the low level cryptography
`@acronym{Libgcrypt}' provides a high level interface to cryptographic building
blocks using an extendable and flexible API.
@end table
@node Overview
@section Overview
@noindent
The `@acronym{Libgcrypt}' library is fully thread-safe, where it makes
sense to be thread-safe. An exception for thread-safety are some
cryptographic functions that modify a certain context stored in
handles. If the user really intents to use such functions from
different threads on the same handle, he has to take care of the
serialisation of such functions himself. If not described otherwise,
every function is thread-safe.
The library automagically detects whether an applications uses no
threading, pthreads or GNU Pth.
@acronym{Libgcrypt} depends on the library `libgpg-error', which
contains common error handling related code for GnuPG components.
@c **********************************************************
@c ******************* Preparation ************************
@c **********************************************************
@node Preparation
@chapter Preparation
To use `@acronym{Libgcrypt}', you have to perform some changes to your sources and
the build system. The necessary changes are small and explained in the
following sections. At the end of this chapter, it is described how the
library is initialized, and how the requirements of the library are
verified.
@menu
* Header:: What header file you need to include.
* Building sources:: How to build sources using the library.
* Building sources using Automake:: How to build sources with the help auf Automake.
* Initializing the library:: How to initialize the library.
* Multi Threading:: How @acronym{Libgcrypt} can be used in a MT environment.
@end menu
@node Header
@section Header
All interfaces (data types and functions) of the library are defined
in the header file `gcrypt.h'. You must include this in all source
files using the library, either directly or through some other header
file, like this:
@example
#include <gcrypt.h>
@end example
The name space of `@acronym{Libgcrypt}' is @code{gcry_*} for function
and type names and @code{GCRY*} for other symbols. In addition the
same name prefixes with one prepended underscore are reserved for
internal use and should never be used by an application. Furthermore
`libgpg-error' defines functions prefixed with `gpg_' and preprocessor
symbols prefixed with `GPG_'. Note that @acronym{Libgcrypt} uses
libgpg-error, which uses @code{gpg_err_*} as name space for function
and type names and @code{GPG_ERR_*} for other symbols, including all
the error codes.
@node Building sources
@section Building sources
If you want to compile a source file including the `gcrypt.h' header
file, you must make sure that the compiler can find it in the
directory hierarchy. This is accomplished by adding the path to the
directory in which the header file is located to the compilers include
file search path (via the @option{-I} option).
However, the path to the include file is determined at the time the
source is configured. To solve this problem, `@acronym{Libgcrypt}' ships with a small
helper program @command{libgcrypt-config} that knows the path to the
include file and other configuration options. The options that need
to be added to the compiler invocation at compile time are output by
the @option{--cflags} option to @command{libgcrypt-config}. The following
example shows how it can be used at the command line:
@example
gcc -c foo.c `libgcrypt-config --cflags`
@end example
Adding the output of @samp{libgcrypt-config --cflags} to the compilers
command line will ensure that the compiler can find the `@acronym{Libgcrypt}' header
file.
A similar problem occurs when linking the program with the library.
Again, the compiler has to find the library files. For this to work,
the path to the library files has to be added to the library search path
(via the @option{-L} option). For this, the option @option{--libs} to
@command{libgcrypt-config} can be used. For convenience, this option
also outputs all other options that are required to link the program
with the `@acronym{Libgcrypt}' libraries (in particular, the @samp{-lgcrypt}
option). The example shows how to link @file{foo.o} with the `@acronym{Libgcrypt}'
library to a program @command{foo}.
@example
gcc -o foo foo.o `libgcrypt-config --libs`
@end example
Of course you can also combine both examples to a single command by
specifying both options to @command{libgcrypt-config}:
@example
gcc -o foo foo.c `libgcrypt-config --cflags --libs`
@end example
@node Building sources using Automake
@section Building sources using Automake
It is much easier if you use GNU Automake instead of writing your own
Makefiles. If you do that you do not have to worry about finding and
invoking the @command{libgcrypt-config} script at all.
@acronym{Libgcrypt} provides an extension to Automake that does all
the work for you.
@c A simple macro for optional variables.
@macro ovar{varname}
@r{[}@var{\varname\}@r{]}
@end macro
@defmac AM_PATH_LIBGCRYPT (@ovar{minimum-version}, @ovar{action-if-found}, @ovar{action-if-not-found})
Check whether @acronym{Libgcrypt} (at least version
@var{minimum-version}, if given) exists on the host system. If it is
found, execute @var{action-if-found}, otherwise do
@var{action-if-not-found}, if given.
Additionally, the function defines @code{LIBGCRYPT_CFLAGS} to the
flags needed for compilation of the program to find the
@file{gcrypt.h} header file, and @code{LIBGCRYPT_LIBS} to the linker
flags needed to link the program to the @acronym{Libgcrypt} library.
@end defmac
You can use the defined Autoconf variables like this in your
@file{Makefile.am}:
@example
AM_CPPFLAGS = $(LIBGCRYPT_CFLAGS)
LDADD = $(LIBGCRYPT_LIBS)
@end example
@node Initializing the library
@section Initializing the library
It is often desirable to check that the version of `@acronym{Libgcrypt}' used is
indeed one which fits all requirements. Even with binary compatibility
new features may have been introduced but due to problem with the
dynamic linker an old version is actually used. So you may want to
check that the version is okay right after program startup.
@deftypefun const char *gcry_check_version (const char *@var{req_version})
The function @code{gcry_check_version} has three purposes. It can be
used to retrieve the version number of the library. In addition it
can verify that the version number is higher than a certain required
version number.
In either case, the function initializes some sub-systems, and for
this reason alone it must be invoked early in your program, before you
make use of the other functions of @acronym{Libgcrypt}.
@end deftypefun
@node Multi Threading
@section Multi Threading
As mentioned earlier, the `@acronym{Libgcrypt}' library is fully thread-safe;
the library automagically detects whether an applications uses no
threading, pthreads or GNU Pth.
If you link your program dynamically to @acronym{Libgcrypt} and your
supported thread library, @acronym{Libgcrypt} will automatically
detect the presence of this library and activate its use. You must
link to the thread library before linking to @acronym{Libgcrypt}. If
you link to both pthread and GNU Pth, @acronym{Libgcrypt} will use the
pthread support. This feature requires weak symbol support.
If you link your program statically to @acronym{Libgcrypt}, or your
system does not support weak symbols, there is currently no easy way
to make sure that @acronym{Libgcrypt} detects the presence of the
thread library. This will be solved in a future version.
The function @code{gcry_check_version} must be called before any other
function in the library, because it initializes the thread support
subsystem in @acronym{Libgcrypt}. To achieve this in all generality,
it is necessary to synchronize the call to this function with all
other calls to functions in the library, using the synchronization
mechanisms available in your thread library. Otherwise, specific
compiler or CPU memory cache optimizations could lead to the situation
where a thread is started and uses @acronym{Libgcrypt} before the
effects of the initialization are visible for this thread. It doesn't
even suffice to call @code{gcry_check_version} before creating this
other thread@footnote{In SMP systems the new thread could be started
on another CPU before the effects of the initialization are seen by
that CPU's memory cache. Not doing proper synchronization here leads
to the same problems the double-checked locking idiom has. You might
find that if you don't do proper synchronization, it still works in
most configurations. Don't let this fool you. Someday it might lead
to subtle bugs when someone tries it on a DEC Alpha or an SMP
machine.}.
For example, if you are using POSIX threads, each thread that wants to
call functions in @acronym{Libgcrypt} could call the following
function before any function in the library:
@example
#include <pthread.h>
void
initialize_gcrypt (void)
@{
static int gcrypt_init;
static pthread_mutext_t gcrypt_init_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock (&gcrypt_init_lock);
if (! gcrypt_init)
@{
gcry_check_version ();
gcrypt_init = 1;
@}
pthread_mutex_unlock (&gcrypt_init_lock);
@}
@end example
@c **********************************************************
@c ******************* General ****************************
@c **********************************************************
@node Generalities
@chapter Generalities
@menu
* Controlling the library:: Controlling @acronym{Libgcrypt}'s behaviour.
* Modules:: Description of extension modules.
* Error Handling:: Error codes and such.
@end menu
@node Controlling the library
@section Controlling the library
@deftypefun gcry_error_t gcry_control (enum gcry_ctl_cmds @var{cmd}, ...)
This function can be used to influence the general behaviour of
@acronym{Libgcrypt} in several ways. Depending on @var{cmd}, more arguments can
or have to be provided.
@end deftypefun
@node Modules
@section Modules
@acronym{Libgcrypt} supports the use of `extension modules', which
implement algorithms in addition to those already built into the
library directly.
@deftp {Data type} gcry_module_t
This data type represents a `module'.
@end deftp
Functions registering modules provided by the user take a `module
specification structure' as input and return a value of
@code{gcry_module_t} and an ID that is unique in the modules'
category. This ID can be used to reference the newly registered
module. After registering a module successfuly, the new functionality
should be able to be used through the normal functions provided by
@acronym{Libgcrypt} until it is unregistered again.
@c **********************************************************
@c ******************* Errors ****************************
@c **********************************************************
@node Error Handling
@section Error Handling
Many functions in @acronym{Libgcrypt} can return an error if they
fail. For this reason, the application should always catch the error
condition and take appropriate measures, for example by releasing the
resources and passing the error up to the caller, or by displaying a
descriptive message to the user and cancelling the operation.
Some error values do not indicate a system error or an error in the
operation, but the result of an operation that failed properly. For
example, if you try to decrypt a tempered message, the decryption will
fail. Another error value actually means that the end of a data
buffer or list has been reached. The following descriptions explain
for many error codes what they mean usually. Some error values have
specific meanings if returned by a certain functions. Such cases are
described in the documentation of those functions.
@acronym{Libgcrypt} uses the @code{libgpg-error} library. This allows
to share the error codes with other components of the GnuPG system,
and thus pass error values transparently from the crypto engine, or
some helper application of the crypto engine, to the user. This way
no information is lost. As a consequence, @acronym{Libgcrypt} does
not use its own identifiers for error codes, but uses those provided
by @code{libgpg-error}. They usually start with @code{GPG_ERR_}.
However, @acronym{Libgcrypt} does provide aliases for the functions
defined in libgpg-error, which might be preferred for name space
consistency.
Most functions in @acronym{Libgcrypt} return an error code in the case
of failure. For this reason, the application should always catch the
error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by
displaying a descriptive message to the user and canceling the
operation.
Some error values do not indicate a system error or an error in the
operation, but the result of an operation that failed properly.
GnuPG components, including libgcrypt, use an extra library named
libgpg-error to provide a common error handling scheme. For more
information on libgpg-error, see the according manual.
@menu
* Error Values:: The error value and what it means.
* Error Sources:: A list of important error sources.
* Error Codes:: A list of important error codes.
* Error Strings:: How to get a descriptive string from a value.
@end menu
@node Error Values
@subsection Error Values
@cindex error values
@cindex error codes
@cindex error sources
@deftp {Data type} {gcry_err_code_t}
The @code{gcry_err_code_t} type is an alias for the
@code{libgpg-error} type @code{gpg_err_code_t}. The error code
indicates the type of an error, or the reason why an operation failed.
A list of important error codes can be found in the next section.
@end deftp
@deftp {Data type} {gcry_err_source_t}
The @code{gcry_err_source_t} type is an alias for the
@code{libgpg-error} type @code{gpg_err_source_t}. The error source
has not a precisely defined meaning. Sometimes it is the place where
the error happened, sometimes it is the place where an error was
encoded into an error value. Usually the error source will give an
indication to where to look for the problem. This is not always true,
but it is attempted to achieve this goal.
A list of important error sources can be found in the next section.
@end deftp
@deftp {Data type} {gcry_error_t}
The @code{gcry_error_t} type is an alias for the @code{libgpg-error}
type @code{gpg_error_t}. An error value like this has always two
components, an error code and an error source. Both together form the
error value.
Thus, the error value can not be directly compared against an error
code, but the accessor functions described below must be used.
However, it is guaranteed that only 0 is used to indicate success
(@code{GPG_ERR_NO_ERROR}), and that in this case all other parts of
the error value are set to 0, too.
Note that in @acronym{Libgcrypt}, the error source is used purely for
diagnostical purposes. Only the error code should be checked to test
for a certain outcome of a function. The manual only documents the
error code part of an error value. The error source is left
unspecified and might be anything.
@end deftp
@deftypefun {static __inline__ gcry_err_code_t} gcry_err_code (@w{gcry_error_t @var{err}})
The static inline function @code{gcry_err_code} returns the
@code{gcry_err_code_t} component of the error value @var{err}. This
function must be used to extract the error code from an error value in
order to compare it with the @code{GPG_ERR_*} error code macros.
@end deftypefun
@deftypefun {static __inline__ gcry_err_source_t} gcry_err_source (@w{gcry_error_t @var{err}})
The static inline function @code{gcry_err_source} returns the
@code{gcry_err_source_t} component of the error value @var{err}. This
function must be used to extract the error source from an error value in
order to compare it with the @code{GPG_ERR_SOURCE_*} error source macros.
@end deftypefun
@deftypefun {static __inline__ gcry_error_t} gcry_err_make (@w{gcry_err_source_t @var{source}}, @w{gcry_err_code_t @var{code}})
The static inline function @code{gcry_err_make} returns the error
value consisting of the error source @var{source} and the error code
@var{code}.
This function can be used in callback functions to construct an error
value to return it to the library.
@end deftypefun
@deftypefun {static __inline__ gcry_error_t} gcry_error (@w{gcry_err_code_t @var{code}})
The static inline function @code{gcry_error} returns the error value
consisting of the default error source and the error code @var{code}.
For @acronym{GCRY} applications, the default error source is
@code{GPG_ERR_SOURCE_USER_1}. You can define
@code{GCRY_ERR_SOURCE_DEFAULT} before including @file{gcrypt.h} to
change this default.
This function can be used in callback functions to construct an error
value to return it to the library.
@end deftypefun
The @code{libgpg-error} library provides error codes for all system
error numbers it knows about. If @var{err} is an unknown error
number, the error code @code{GPG_ERR_UNKNOWN_ERRNO} is used. The
following functions can be used to construct error values from system
errnor numbers.
@deftypefun {gcry_error_t} gcry_err_make_from_errno (@w{gcry_err_source_t @var{source}}, @w{int @var{err}})
The function @code{gcry_err_make_from_errno} is like
@code{gcry_err_make}, but it takes a system error like @code{errno}
instead of a @code{gcry_err_code_t} error code.
@end deftypefun
@deftypefun {gcry_error_t} gcry_error_from_errno (@w{int @var{err}})
The function @code{gcry_error_from_errno} is like @code{gcry_error},
but it takes a system error like @code{errno} instead of a
@code{gcry_err_code_t} error code.
@end deftypefun
Sometimes you might want to map system error numbers to error codes
directly, or map an error code representing a system error back to the
system error number. The following functions can be used to do that.
@deftypefun {gcry_err_code_t} gcry_err_code_from_errno (@w{int @var{err}})
The function @code{gcry_err_code_from_errno} returns the error code
for the system error @var{err}. If @var{err} is not a known system
error, the function returns @code{GPG_ERR_UNKNOWN_ERRNO}.
@end deftypefun
@deftypefun {int} gcry_err_code_to_errno (@w{gcry_err_code_t @var{err}})
The function @code{gcry_err_code_to_errno} returns the system error
for the error code @var{err}. If @var{err} is not an error code
representing a system error, or if this system error is not defined on
this system, the function returns @code{0}.
@end deftypefun
@node Error Sources
@subsection Error Sources
@cindex error codes, list of
The library @code{libgpg-error} defines an error source for every
component of the GnuPG system. The error source part of an error
value is not well defined. As such it is mainly useful to improve the
diagnostic error message for the user.
If the error code part of an error value is @code{0}, the whole error
value will be @code{0}. In this case the error source part is of
course @code{GPG_ERR_SOURCE_UNKNOWN}.
The list of error sources that might occur in applications using
@acronym{Libgctypt} is:
@table @code
@item GPG_ERR_SOURCE_UNKNOWN
The error source is not known. The value of this error source is
@code{0}.
@item GPG_ERR_SOURCE_GPGME
The error source is @acronym{GPGME} itself.
@item GPG_ERR_SOURCE_GPG
The error source is GnuPG, which is the crypto engine used for the
OpenPGP protocol.
@item GPG_ERR_SOURCE_GPGSM
The error source is GPGSM, which is the crypto engine used for the
OpenPGP protocol.
@item GPG_ERR_SOURCE_GCRYPT
The error source is @code{libgcrypt}, which is used by crypto engines
to perform cryptographic operations.
@item GPG_ERR_SOURCE_GPGAGENT
The error source is @command{gpg-agent}, which is used by crypto
engines to perform operations with the secret key.
@item GPG_ERR_SOURCE_PINENTRY
The error source is @command{pinentry}, which is used by
@command{gpg-agent} to query the passphrase to unlock a secret key.
@item GPG_ERR_SOURCE_SCD
The error source is the SmartCard Daemon, which is used by
@command{gpg-agent} to delegate operations with the secret key to a
SmartCard.
@item GPG_ERR_SOURCE_KEYBOX
The error source is @code{libkbx}, a library used by the crypto
engines to manage local keyrings.
@item GPG_ERR_SOURCE_USER_1
@item GPG_ERR_SOURCE_USER_2
@item GPG_ERR_SOURCE_USER_3
@item GPG_ERR_SOURCE_USER_4
These error sources are not used by any GnuPG component and can be
used by other software. For example, applications using
@acronym{Libgcrypt} can use them to mark error values coming from callback
handlers. Thus @code{GPG_ERR_SOURCE_USER_1} is the default for errors
created with @code{gcry_error} and @code{gcry_error_from_errno},
unless you define @code{GCRY_ERR_SOURCE_DEFAULT} before including
@file{gcrypt.h}.
@end table
@node Error Codes
@subsection Error Codes
@cindex error codes, list of
The library @code{libgpg-error} defines many error values. The
following list includes the most important error codes.
@table @code
@item GPG_ERR_EOF
This value indicates the end of a list, buffer or file.
@item GPG_ERR_NO_ERROR
This value indicates success. The value of this error code is
@code{0}. Also, it is guaranteed that an error value made from the
error code @code{0} will be @code{0} itself (as a whole). This means
that the error source information is lost for this error code,
however, as this error code indicates that no error occured, this is
generally not a problem.
@item GPG_ERR_GENERAL
This value means that something went wrong, but either there is not
enough information about the problem to return a more useful error
value, or there is no separate error value for this type of problem.
@item GPG_ERR_ENOMEM
This value means that an out-of-memory condition occurred.
@item GPG_ERR_E...
System errors are mapped to GPG_ERR_EFOO where FOO is the symbol for
the system error.
@item GPG_ERR_INV_VALUE
This value means that some user provided data was out of range.
@item GPG_ERR_UNUSABLE_PUBKEY
This value means that some recipients for a message were invalid.
@item GPG_ERR_UNUSABLE_SECKEY
This value means that some signers were invalid.
@item GPG_ERR_NO_DATA
This value means that data was expected where no data was found.
@item GPG_ERR_CONFLICT
This value means that a conflict of some sort occurred.
@item GPG_ERR_NOT_IMPLEMENTED
This value indicates that the specific function (or operation) is not
implemented. This error should never happen. It can only occur if
you use certain values or configuration options which do not work,
but for which we think that they should work at some later time.
@item GPG_ERR_DECRYPT_FAILED
This value indicates that a decryption operation was unsuccessful.
@item GPG_ERR_WRONG_KEY_USAGE
This value indicates that a key is not used appropriately.
@item GPG_ERR_NO_SECKEY
This value indicates that no secret key for the user ID is available.
@item GPG_ERR_UNSUPPORTED_ALGORITHM
This value means a verification failed because the cryptographic
algorithm is not supported by the crypto backend.
@item GPG_ERR_BAD_SIGNATURE
This value means a verification failed because the signature is bad.
@item GPG_ERR_NO_PUBKEY
This value means a verification failed because the public key is not
available.
@item GPG_ERR_USER_1
@item GPG_ERR_USER_2
@item ...
@item GPG_ERR_USER_16
These error codes are not used by any GnuPG component and can be
freely used by other software. Applications using @acronym{Libgcrypt}
might use them to mark specific errors returned by callback handlers
if no suitable error codes (including the system errors) for these
errors exist already.
@end table
@node Error Strings
@subsection Error Strings
@cindex error values, printing of
@cindex error codes, printing of
@cindex error sources, printing of
@cindex error strings
@deftypefun {const char *} gcry_strerror (@w{gcry_error_t @var{err}})
The function @code{gcry_strerror} returns a pointer to a statically
allocated string containing a description of the error code contained
in the error value @var{err}. This string can be used to output a
diagnostic message to the user.
@end deftypefun
@deftypefun {const char *} gcry_strsource (@w{gcry_error_t @var{err}})
The function @code{gcry_strerror} returns a pointer to a statically
allocated string containing a description of the error source
contained in the error value @var{err}. This string can be used to
output a diagnostic message to the user.
@end deftypefun
The following example illustrates the use of the functions described
above:
@example
@{
gcry_cipher_hd_t handle;
gcry_error_t err = 0;
err = gcry_cipher_open (&handle, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CBC, 0);
if (err)
@{
fprintf (stderr, "Failure: %s/%s\n",
gcry_strsource (err),
gcry_strerror (err));
@}
@}
@end example
@c **********************************************************
@c ******************* General ****************************
@c **********************************************************
@node Handler Functions
@chapter Handler Functions
@acronym{Libgcrypt} makes it possible to install so called `handler functions',
which get called by @acronym{Libgcrypt} in case of certain events.
@menu
* Progress handler:: Using a progress handler function.
* Allocation handler:: Using special memory allocation functions.
* Error handler:: Using error handler functions.
* Logging handler:: Using a special logging function.
@end menu
@node Progress handler
@section Progress handler
It is often useful to retrieve some feedback while long running
operations are performed.
@deftp {Data type} gcry_handler_progress_t
Progress handler functions have to be of the type
@code{gcry_handler_progress_t}, which is defined as:
@code{void (*gcry_handler_progress_t) (void *, const char *, int, int, int)}
@end deftp
The following function may be used to register a handler function for
this purpose.
@deftypefun void gcry_set_progress_handler (gcry_handler_progress_t @var{cb}, void *@var{cb_data})
This function installs @var{cb} as the `Progress handler' function.
@var{cb} must be defined as follows:
@example
void
my_progress_handler (void *@var{cb_data}, const char *@var{what},
int @var{printchar}, int @var{current}, int @var{total})
@{
/* Do something. */
@}
@end example
A description of the arguments of the progress handler function follows.
@table @var
@item cb_data
The argument provided in the call to @code{gcry_set_progress_handler}.
@item what
A string identifying the type of the progress output. The following
values for @var{what} are defined:
@table @code
@item need_entropy
Not enough entropy is available. @var{total} holds the number of
required bytes.
@item primegen
Values for @var{printchar}:
@table @code
@item \n
Prime generated.
@item !
Need to refresh the pool of prime numbers.
@item <, >
Number of bits adjusted.
@item ^
Searching for a generator.
@item .
Fermat test on 10 candidates failed.
@item :
Restart with a new random value.
@item +
Rabin Miller test passed.
@end table
@end table
@end table
@end deftypefun
@node Allocation handler
@section Allocation handler
It is possible to make @acronym{Libgcrypt} use special memory
allocation functions instead of the built-in ones.
Memory allocation functions are of the following types:
@deftp {Data type} gcry_handler_alloc_t
This type is defined as: @code{void *(*gcry_handler_alloc_t) (size_t n)}.
@end deftp
@deftp {Data type} gcry_handler_secure_check_t
This type is defined as: @code{void *(*gcry_handler_secure_check_t) (void *)}.
@end deftp
@deftp {Data type} gcry_handler_realloc_t
This type is defined as: @code{void *(*gcry_handler_realloc_t) (void *p, size_t n)}.
@end deftp
@deftp {Data type} gcry_handler_free_t
This type is defined as: @code{void *(*gcry_handler_free_t) (void *)}.
@end deftp
Special memory allocation functions can be installed with the
following function:
@deftypefun void gcry_set_allocation_handler (gcry_handler_alloc_t @var{func_alloc}, gcry_handler_alloc_t @var{func_alloc_secure}, gcry_handler_secure_check_t @var{func_secure_check}, gcry_handler_realloc_t @var{func_realloc}, gcry_handler_free_t @var{func_free})
Install the provided functions and use them instead of the built-in
functions for doing memory allocation.
@end deftypefun
@node Error handler
@section Error handler
The following functions may be used to register handler functions that
are called by @acronym{Libgcrypt} in case certain error conditions
occur.
@deftp {Data type} gcry_handler_no_mem_t
This type is defined as: @code{void (*gcry_handler_no_mem_t) (void *, size_t, unsigned int)}
@end deftp
@deftypefun void gcry_set_outofcore_handler (gcry_handler_no_mem_t @var{func_no_mem}, void *@var{cb_data})
This function registers @var{func_no_mem} as `out-of-core handler',
which means that it will be called in the case of not having enough
memory available.
@end deftypefun
@deftp {Data type} gcry_handler_error_t
This type is defined as: @code{void (*gcry_handler_error_t) (void *, int, const char *)}
@end deftp
@deftypefun void gcry_set_fatalerror_handler (gcry_handler_error_t @var{func_error}, void *@var{cb_data})
This function registers @var{func_error} as `error handler',
which means that it will be called in error conditions.
@end deftypefun
@node Logging handler
@section Logging handler
@deftp {Data type} gcry_handler_log_t
This type is defined as: @code{void (*gcry_handler_log_t) (void *, int, const char *, va_list)}
@end deftp
@deftypefun void gcry_set_log_handler (gcry_handler_log_t @var{func_log}, void *@var{cb_data})
This function registers @var{func_log} as `logging handler', which
means that it will be called in case @acronym{Libgcrypt} wants to log
a message.
@end deftypefun
@c **********************************************************
@c ******************* Ciphers ****************************
@c **********************************************************
@c @include cipher-ref.texi
@node Symmetric cryptography
@chapter Symmetric cryptography
The cipher functions are used for symmetrical cryptography,
i.e. cryptography using a shared key. The programming model follows
an open/process/close paradigm and is in that similar to other
building blocks provided by @acronym{Libgcrypt}.
@menu
* Available ciphers:: List of ciphers supported by the library.
* Cipher modules:: How to work with cipher modules.
* Available cipher modes:: List of cipher modes supported by the library.
* Working with cipher handles:: How to perform operations related to cipher handles.
* General cipher functions:: General cipher functions independent of cipher handles.
@end menu
@node Available ciphers
@section Available ciphers
@table @code
@item GCRY_CIPHER_NONE
This is not a real algorithm but used by some functions as error return.
The value always evaluates to false.
@item GCRY_CIPHER_IDEA
This is the IDEA algorithm. The constant is provided but there is
currently no implementation for it because the algorithm is patented.
@item GCRY_CIPHER_3DES
Triple-DES with 3 Keys as EDE. The key size of this algorithm is 168 but
you have to pass 192 bits because the most significant bits of each byte
are ignored.
@item GCRY_CIPHER_CAST5
CAST128-5 block cipher algorithm. The key size is 128 bits.
@item GCRY_CIPHER_BLOWFISH
The blowfish algorithm. The current implementation allows only for a key
size of 128 bits.
@item GCRY_CIPHER_SAFER_SK128
Reserved and not currently implemented.
@item GCRY_CIPHER_DES_SK
Reserved and not currently implemented.
@item GCRY_CIPHER_AES
@itemx GCRY_CIPHER_AES128
@itemx GCRY_CIPHER_RIJNDAEL
@itemx GCRY_CIPHER_RIJNDAEL128
AES (Rijndael) with a 128 bit key.
@item GCRY_CIPHER_AES192
@itemx GCRY_CIPHER_RIJNDAEL128
AES (Rijndael) with a 192 bit key.
@item GCRY_CIPHER_AES256
@itemx GCRY_CIPHER_RIJNDAEL256
AES (Rijndael) with a 256 bit key.
@item GCRY_CIPHER_TWOFISH
The Twofish algorithm with a 256 bit key.
@item GCRY_CIPHER_TWOFISH128
The Twofish algorithm with a 128 bit key.
@item GCRY_CIPHER_ARCFOUR
An algorithm which is 100% compatible with RSA Inc.'s RC4 algorithm.
Note that this is a stream cipher and must be used very carefully to
avoid a couple of weaknesses.
@item GCRY_CIPHER_DES
Standard DES with a 56 bit key. You need to pass 64 bit but the high
bits of each byte are ignored. Note, that this is a weak algorithm
which can be broken in reasonable time using a brute force approach.
@end table
@node Cipher modules
@section Cipher modules
@acronym{Libgcrypt} makes it possible to load additional `cipher
modules'; these cipher can be used just like the cipher algorithms
that are built into the library directly. For an introduction into
extension modules, see @xref{Modules}.
@deftp {Data type} gcry_cipher_spec_t
This is the `module specification structure' needed for registering
cipher modules, which has to be filled in by the user before it can be
used to register a module. It contains the following members:
@table @code
@item const char *name
The primary name of the algorithm.
@item const char **aliases
A list of strings that are `aliases' for the algorithm. The list must
be terminated with a NULL element.
@item gcry_cipher_oid_spec_t *oids
A list of OIDs that are to be associated with the algorithm. The
list's last element must have it's `oid' member set to NULL. See
below for an explanation of this type.
@item size_t blocksize
The block size of the algorithm, in bytes.
@item size_t keylen
The length of the key, in bits.
@item size_t contextsize
The size of the algorithm-specific `context', that should be allocated
for each handle.
@item gcry_cipher_setkey_t setkey
The function responsible for initializing a handle with a provided
key. See below for a description of this type.
@item gcry_cipher_encrypt_t encrypt
The function responsible for encrypting a single block. See below for
a description of this type.
@item gcry_cipher_decrypt_t decrypt
The function responsible for decrypting a single block. See below for
a description of this type.
@item gcry_cipher_stencrypt_t stencrypt
Like `encrypt', for stream ciphers. See below for a description of
this type.
@item gcry_cipher_stdecrypt_t stdecrypt
Like `decrypt', for stream ciphers. See below for a description of
this type.
@end table
@end deftp
@deftp {Data type} gcry_cipher_oid_spec_t
This type is used for associating a user-provided algorithm
implementation with certain OIDs. It contains the following members:
@table @code
@item const char *oid
Textual representation of the OID.
@item int mode
Cipher mode for which this OID is valid.
@end table
@end deftp
@deftp {Data type} gcry_cipher_setkey_t
Type for the `setkey' function, defined as: gcry_err_code_t
(*gcry_cipher_setkey_t) (void *c, const unsigned char *key, unsigned
keylen)
@end deftp
@deftp {Data type} gcry_cipher_encrypt_t
Type for the `encrypt' function, defined as: gcry_err_code_t
(*gcry_cipher_encrypt_t) (void *c, const unsigned char *outbuf, const
unsigned char *inbuf)
@end deftp
@deftp {Data type} gcry_cipher_decrypt_t
Type for the `decrypt' function, defined as: gcry_err_code_t
(*gcry_cipher_decrypt_t) (void *c, const unsigned char *outbuf, const
unsigned char *inbuf)
@end deftp
@deftp {Data type} gcry_cipher_stencrypt_t
Type for the `stencrypt' function, defined as: gcry_err_code_t
(*gcry_cipher_stencrypt_t) (void *c, const unsigned char *outbuf, const
unsigned char *, unsigned int n)
@end deftp
@deftp {Data type} gcry_cipher_stdecrypt_t
Type for the `stdecrypt' function, defined as: gcry_err_code_t
(*gcry_cipher_stdecrypt_t) (void *c, const unsigned char *outbuf, const
unsigned char *, unsigned int n)
@end deftp
@deftypefun gcry_error_t gcry_cipher_register (gcry_cipher_spec_t *@var{cipher}, unsigned int *algorithm_id, gcry_module_t *@var{module})
Register a new cipher module whose specification can be found in
@var{cipher}. On success, a new algorithm ID is stored in
@var{algorithm_id} and a pointer representhing this module is stored
in @var{module}.
@end deftypefun
@deftypefun void gcry_cipher_unregister (gcry_module_t @var{module})
Unregister the cipher identified by @var{module}, which must have been
registered with gcry_cipher_register.
@end deftypefun
@deftypefun gcry_error_t gcry_cipher_list (int *@var{list}, int *@var{list_length})
Get a list consisting of the IDs of the loaded cipher modules. If
@var{list} is zero, write the number of loaded cipher modules to
@var{list_length} and return. If @var{list} is non-zero, the first
*@var{list_length} algorithm IDs are stored in @var{list}, which must
be of according size. In case there are less cipher modules than
*@var{list_length}, *@var{list_length} is updated to the correct
number.
@end deftypefun
@node Available cipher modes
@section Available cipher modes
@table @code
@item GCRY_CIPHER_MODE_NONE
No mode specified, may be set later using other functions. The value
of this constant is always 0.
@item GCRY_CIPHER_MODE_ECB
Electronic Codebook mode.
@item GCRY_CIPHER_MODE_CFB
Cipher Feedback mode.
@item GCRY_CIPHER_MODE_CBC
Cipher Block Chaining mode.
@item GCRY_CIPHER_MODE_STREAM
Stream mode, only to be used with stream cipher algorithms.
@item GCRY_CIPHER_MODE_OFB
Outer Feedback mode.
@item GCRY_CIPHER_MODE_CTR
Counter mode.
@end table
@node Working with cipher handles
@section Working with cipher handles
To use a cipher algorithm, you must first allocate an according
handle. This is to be done using the open function:
@deftypefun gcry_error_t gcry_cipher_open (gcry_cipher_hd_t *@var{hd},
int @var{algo}, int @var{mode}, unsigned int @var{flags})
This function creates the context handle required for most of the
other cipher functions and returns a handle to it in `hd'. In case of
an error, an according error code is returned.
The ID of algorithm to use must be specified via @var{algo}. See
@xref{Available ciphers}, for a list of supported ciphers and the
according constants.
Besides using the constants directly, the function
@code{gcry_cipher_map_name} may be used to convert the textual name of
an algorithm into the according numeric ID.
The cipher mode to use must be specified via @var{mode}. See
@xref{Available cipher modes}, for a list of supported cipher modes
and the according constants. Note, that some modes do not work
together with all algorithms.
The third argument @var{flags} can either be passed as @code{0} or as
the bit-wise OR of the following constants.
@table @code
@item GCRY_CIPHER_SECURE
Make sure that all operations are allocated in secure memory. This is
useful, when the key material is highly confidential.
@item GCRY_CIPHER_ENABLE_SYNC
This flag enables the CFB sync mode, which is a special feature of
@acronym{Libgcrypt}'s CFB mode implementation to allow for OpenPGP's CFB variant.
See @code{gcry_cipher_sync}.
@item GCRY_CIPHER_CBC_CTS
Enable cipher text stealing (CTS) for the CBC mode. Cannot be used
simultaneous as GCRY_CIPHER_CBC_MAC
@item GCRY_CIPHER_CBC_MAC
Compute CBC-MAC keyed checksums. This is the same as CBC mode, but
only output the last block. Cannot be used simultaneous as
GCRY_CIPHER_CBC_CTS.
@end table
@end deftypefun
Use the following function to release an existing handle:
@deftypefun void gcry_cipher_close (gcry_cipher_hd_t @var{h})
This function releases the context created by @code{gcry_cipher_open}.
@end deftypefun
In order to use a handle for performing cryptographic operations, a
`key' has to be set first:
@deftypefun gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t @var{h}, void *@var{k}, size_t @var{l})
Set the key @var{k} used for encryption or decryption in the context
denoted by the handle @var{h}. The length @var{l} of the key @var{k}
must match the required length of the algorithm set for this context or
be in the allowed range for algorithms with variable key size. The
function checks this and returns an error if there is a problem. A
caller should always check for an error.
Note, this is currently implemented as a macro but may be changed to a
function in the future.
@end deftypefun
Most crypto modes requires an initialization vector (IV), which
usually is a non-secret random string acting as a kind of salt value.
The CTR mode requires a counter, which is also similar to a salt
value. To set the IV or CTR, use these functions:
@deftypefun gcry_error_t gcry_cipher_setiv (gcry_cipher_hd_t @var{h}, void *@var{k}, size_t @var{l})
Set the initialization vector used for encryption or decryption. The
vector is passed as the buffer @var{K} of length @var{l} and copied to
internal data structures. The function checks that the IV matches the
requirement of the selected algorithm and mode. Note, that this is
implemented as a macro.
@end deftypefun
@deftypefun gcry_error_t gcry_cipher_setctr (gcry_cipher_hd_t @var{h}, void *@var{c}, size_t @var{l})
Set the counter vector used for encryption or decryption. The counter
is passed as the buffer @var{c} of length @var{l} and copied to
internal data structures. The function checks that the counter
matches the requirement of the selected algorithm (i.e., it must be
the same size as the block size). Note, that this is implemented as a
macro.
@end deftypefun
@deftypefun gcry_error_t gcry_cipher_reset (gcry_cipher_hd_t @var{h})
Set the given handle's context back to the state it had after the last
call to gcry_cipher_setkey and clear the initialization vector.
Note, that gcry_cipher_reset is implemented as a macro.
@end deftypefun
The actual encryption and decryption is done by using one of the
following functions. They may be used as often as required to process
all the data.
@deftypefun gcry_error_t gcry_cipher_encrypt (gcry_cipher_hd_t @var{h}, unsigned char *{out}, size_t @var{outsize}, const unsigned char *@var{in}, size_t @var{inlen})
@code{gcry_cipher_encrypt} is used to encrypt the data. This function
can either work in place or with two buffers. It uses the cipher
context already setup and described by the handle @var{h}. There are 2
ways to use the function: If @var{in} is passed as @code{NULL} and
@var{inlen} is @code{0}, in-place encryption of the data in @var{out} or
length @var{outsize} takes place. With @var{in} being not @code{NULL},
@var{inlen} bytes are encrypted to the buffer @var{out} which must have
at least a size of @var{inlen}. @var{outlen} must be set to the
allocated size of @var{out}, so that the function can check that there
is sufficient space. Note, that overlapping buffers are not allowed.
Depending on the selected algorithms and encryption mode, the length of
the buffers must be a multiple of the block size.
The function returns @code{0} on success or an error code.
@end deftypefun
@deftypefun gcry_error_t gcry_cipher_decrypt (gcry_cipher_hd_t @var{h}, unsigned char *{out}, size_t @var{outsize}, const unsigned char *@var{in}, size_t @var{inlen})
@code{gcry_cipher_decrypt} is used to decrypt the data. This function
can either work in place or with two buffers. It uses the cipher
context already setup and described by the handle @var{h}. There are 2
ways to use the function: If @var{in} is passed as @code{NULL} and
@var{inlen} is @code{0}, in-place decryption of the data in @var{out} or
length @var{outsize} takes place. With @var{in} being not @code{NULL},
@var{inlen} bytes are decrypted to the buffer @var{out} which must have
at least a size of @var{inlen}. @var{outlen} must be set to the
allocated size of @var{out}, so that the function can check that there
is sufficient space. Note, that overlapping buffers are not allowed.
Depending on the selected algorithms and encryption mode, the length of
the buffers must be a multiple of the block size.
The function returns @code{0} on success or an error code.
@end deftypefun
OpenPGP (as defined in RFC-2440) requires a special sync operation in
some places, the following function is used for this:
@deftypefun gcry_error_t gcry_cipher_sync (gcry_cipher_hd_t @var{h})
Perform the OpenPGP sync operation on context @var{h}. Note, that this
is a no-op unless the context was created with the flag
@code{GCRY_CIPHER_ENABLE_SYNC}
@end deftypefun
Some of the described functions are implemented as macros utilizing a
catch-all control function. This control function is rarely used
directly but there is nothing which would inhibit it:
@deftypefun gcry_error_t gcry_cipher_ctl (gcry_cipher_hd_t @var{h}, int @var{cmd}, void *@var{buffer}, size_t @var{buflen})
@code{gcry_cipher_ctl} controls various aspects of the cipher module and
specific cipher contexts. Usually some more specialized functions or
macros are used for this purpose. The semantics of the function and its
parameters depends on the the command @var{cmd} and the passed context
handle @var{h}. Please see the comments in the source code
(@code{src/global.c}) for details.
@end deftypefun
@deftypefun gcry_error_t gcry_cipher_info (gcry_cipher_hd_t @var{h}, int @var{what}, void *@var{buffer}, size_t *@var{nbytes})
@code{gcry_cipher_info} is used to retrieve various
information about a cipher context or the cipher module in general.
Currently no information is available.
@end deftypefun
@node General cipher functions
@section General cipher functions
To work with the algorithms, several functions are available to map
algorithm names to the internal identifiers, as well as ways to
retrieve information about an algorithm or the current cipher context.
@deftypefun gcry_error_t gcry_cipher_algo_info (int @var{algo}, int @var{what}, void *@var{buffer}, size_t *@var{nbytes})
This function is used to retrieve information on a specific algorithm.
You pass the cipher algorithm ID as @var{algo} and the type of
information requested as @var{what}. The result is either returned as
the return code of the function or copied to the provided @var{buffer}
whose allocated length must be available in an integer variable with the
address passed in @var{nbytes}. This variable will also receive the
actual used length of the buffer.
Here is a list of supported codes for @var{what}:
@c begin constants for gcry_cipher_algo_info
@table @code
@item GCRYCTL_GET_KEYLEN:
Return the length of the key. If the algorithm supports multiple key
length, the maximum supported value is returned. The length is returned
as number of octets (bytes) and not as number of bits. @var{buffer} and
@var{nbytes} must be zero.
@item GCRYCTL_GET_BLKLEN:
Return the block length of the algorithm counted in octets.
@var{buffer} and @var{nbytes} must be zero.
@item GCRYCTL_TEST_ALGO:
Returns @code{0} when the specified algorithm is available for use.
@var{buffer} and @var{nbytes} must be zero.
@end table
@c end constants for gcry_cipher_algo_info
@end deftypefun
@c end gcry_cipher_algo_info
@deftypefun const char *gcry_cipher_algo_name (int @var{algo})
@code{gcry_cipher_algo_name} returns a string with the name of the
cipher algorithm @var{algo}. If the algorithm is not known or another
error occurred, an empty string is returned. This function will never
return @code{NULL}.
@end deftypefun
@deftypefun int gcry_cipher_map_name (const char *@var{name})
@code{gcry_cipher_map_name} returns the algorithm identifier for the
cipher algorithm described by the string @var{name}. If this algorithm
is not available @code{0} is returned.
@end deftypefun
@deftypefun int gcry_cipher_mode_from_oid (const char *@var{string})
Return the cipher mode associated with an @acronym{ASN.1} object
identifier. The object identifier is expected to be in the
@acronym{IETF}-style dotted decimal notation. The function returns
@code{0} for an unknown object identifier or when no mode is associated
with it.
@end deftypefun
@c **********************************************************
@c ******************* Hash Functions *********************
@c **********************************************************
@node Hashing
@chapter Hashing
@acronym{Libgcrypt} provides an easy and consistent to use interface
for hashing. Hashing is buffered and several hash algorithms can be
updated at once. It is possible to calculate a MAC using the same
routines. The programming model follows an open/process/close
paradigm and is in that similar to other building blocks provided by
@acronym{Libgcrypt}.
For convenience reasons, a few cyclic redudancy check value operations
are also supported.
@menu
* Available hash algorithms:: List of hash algorithms supported by the library.
* Hash algorithm modules:: How to work with hash algorithm modules.
* Working with hash algorithms:: List of functions related to hashing.
@end menu
@node Available hash algorithms
@section Available hash algorithms
@c begin table of hash algorithms
@table @code
@item GCRY_MD_NONE
This is not a real algorithm but used by some functions as an error
return value. This constant is guaranteed to have the value @code{0}.
@item GCRY_MD_SHA1
This is the SHA-1 algorithm which yields a message digest of 20 bytes.
@item GCRY_MD_RMD160
This is the 160 bit version of the RIPE message digest (RIPE-MD-160).
Like SHA-1 it also yields a digest of 20 bytes.
@item GCRY_MD_MD5
This is the well known MD5 algorithm, which yields a message digest of
16 bytes.
@item GCRY_MD_MD4
This is the MD4 algorithm, which yields a message digest of 16 bytes.
@item GCRY_MD_MD2
This is an reserved identifier for MD-2; there is no implementation yet.
@item GCRY_MD_TIGER
This is the TIGER/192 algorithm which yields a message digest of 24 bytes.
@item GCRY_MD_HAVAL
This is an reserved for the HAVAL algorithm with 5 passes and 160
bit. It yields a message digest of 20 bytes. Note that there is no
implementation yet available.
@item GCRY_MD_SHA256
This is the SHA-256 algorithm which yields a message digest of 32 bytes.
See FIPS 180-2 for the specification.
@item GCRY_MD_SHA384
This is reserved for SHA-2 with 384 bits. It yields a message digest of
48 bytes. Note that there is no implementation yet available.
@item GCRY_MD_SHA512
This is reserved for SHA-2 with 512 bits. It yields a message digest of
64 bytes. Note that there is no implementation yet available.
@item GCRY_MD_CRC32
This is the ISO 3309 and ITU-T V.42 cyclic redundancy check. It
yields an output of 4 bytes.
@item GCRY_MD_CRC32_RFC1510
This is the above cyclic redundancy check function, as modified by RFC
1510. It yields an output of 4 bytes.
@item GCRY_MD_CRC24_RFC2440
This is the OpenPGP cyclic redundancy check function. It yields an
output of 3 bytes.
@end table
@c end table of hash algorithms
@node Hash algorithm modules
@section Hash algorithm modules
@acronym{Libgcrypt} makes it possible to load additional `message
digest modules'; these cipher can be used just like the message digest
algorithms that are built into the library directly. For an
introduction into extension modules, see @xref{Modules}.
@deftp {Data type} gcry_md_spec_t
This is the `module specification structure' needed for registering
message digest modules, which has to be filled in by the user before
it can be used to register a module. It contains the following
members:
@table @code
@item const char *name
The primary name of this algorithm.
@item unsigned char *asnoid
Array of bytes that form the ASN OID.
@item int asnlen
Length of bytes in `asnoid'.
@item gcry_md_oid_spec_t *oids
A list of OIDs that are to be associated with the algorithm. The
list's last element must have it's `oid' member set to NULL. See
below for an explanation of this type. See below for an explanation
of this type.
@item int mdlen
Length of the message digest algorithm. See below for an explanation
of this type.
@item gcry_md_init_t init
The function responsible for initializing a handle. See below for an
explanation of this type.
@item gcry_md_write_t write
The function responsible for writing data into a message digest
context. See below for an explanation of this type.
@item gcry_md_final_t final
The function responsible for `finalizing' a message digest context.
See below for an explanation of this type.
@item gcry_md_read_t read
The function reponsible for reading out a message digest result. See
below for an explanation of this type.
@item size_t contextsize
The size of the algorithm-specific `context', that should be
allocated for each handle.
@end table
@end deftp
@deftp {Data type} gcry_md_oid_spec_t
This type is used for associating a user-provided algorithm
implementation with certain OIDs. It contains the following members:
@table @code
@item const char *oidstring
Textual representation of the OID.
@end table
@end deftp
@deftp {Data type} gcry_md_init_t
Type for the `init' function, defined as: void (*gcry_md_init_t) (void
*c)
@end deftp
@deftp {Data type} gcry_md_write_t
Type for the `write' function, defined as: void (*gcry_md_write_t)
(void *c, unsigned char *buf, size_t nbytes)
@end deftp
@deftp {Data type} gcry_md_final_t
Type for the `final' function, defined as: void (*gcry_md_final_t)
(void *c)
@end deftp
@deftp {Data type} gcry_md_read_t
Type for the `read' function, defined as: unsigned char
*(*gcry_md_read_t) (void *c)
@end deftp
@deftypefun gcry_error_t gcry_md_register (gcry_md_spec_t *@var{digest}, unsigned int *algorithm_id, gcry_module_t *@var{module})
Register a new digest module whose specification can be found in
@var{digest}. On success, a new algorithm ID is stored in
@var{algorithm_id} and a pointer representhing this module is stored
in @var{module}.
@end deftypefun
@deftypefun void gcry_md_unregister (gcry_module_t @var{module})
Unregister the digest identified by @var{module}, which must have been
registered with gcry_md_register.
@end deftypefun
@deftypefun gcry_error_t gcry_md_list (int *@var{list}, int *@var{list_length})
Get a list consisting of the IDs of the loaded message digest modules.
If @var{list} is zero, write the number of loaded message digest
modules to @var{list_length} and return. If @var{list} is non-zero,
the first *@var{list_length} algorithm IDs are stored in @var{list},
which must be of according size. In case there are less message
digests modules than *@var{list_length}, *@var{list_length} is updated
to the correct number.
@end deftypefun
@node Working with hash algorithms
@section Working with hash algorithms
To use most of these function it is necessary to create a context;
this is done using:
@deftypefun gcry_error_t gcry_md_open (gcry_md_hd_t *@var{hd}, int @var{algo}, unsigned int @var{flags})
Create a message digest object for algorithm @var{algo}. @var{flags}
may be given as an bitwise OR of constants described below. @var{algo}
may be given as @code{0} if the algorithms to use are later set using
@code{gcry_md_enable}. @var{hd} is guaranteed to either receive a valid
handle or NULL.
For a list of supported algorithms, see @xref{Available hash
algorithms}.
The flags allowed for @var{mode} are:
@c begin table of hash flags
@table @code
@item GCRY_MD_FLAG_SECURE
Allocate all buffers and the resulting digest in "secure memory". Use
this is the hashed data is highly confidential.
@item GCRY_MD_FLAG_HMAC
Turn the algorithm into a HMAC message authentication algorithm. This
does only work if just one algorithm is enabled for the handle and
SHA-384 and SHA512 is not used. Note that the function
@code{gcry_md_setkey} must be used set the MAC key. If you want CBC
message authentication codes based on a cipher, see @xref{Working with
cipher handles}.
@end table
@c begin table of hash flags
You may use the function @code{gcry_md_is_enabled} to later check
whether an algorithm has been enabled.
@end deftypefun
@c end function gcry_md_open
If you want to calculate several hash algorithms at the same time, you
have to use the following function right after the @code{gcry_md_open}:
@deftypefun gcry_error_t gcry_md_enable (gcry_md_hd_t @var{h}, int @var{algo})
Add the message digest algorithm @var{algo} to the digest object
described by handle @var{h}. Duplicated enabling of algorithms is
detected and ignored.
@end deftypefun
If the flag @code{GCRY_MD_FLAG_HMAC} was used, the key for the MAC must
be set using the function:
@deftypefun gcry_error_t gcry_md_setkey (gcry_md_hd_t @var{h}, const void *@var{key},
size_t @var{keylen})
For use with the HMAC feature, set the MAC key to the value of @var{key}
of length @var{keylen}.
@end deftypefun
After you are done with the hash calculation, you should release the
resources by using:
@deftypefun void gcry_md_close (gcry_md_hd_t @var{h})
Release all resources of hash context @var{h}. @var{h} should not be
used after a call to this function. A @code{NULL} passed as @var{h} is
ignored.
@end deftypefun
Often you have to do several hash operations using the same algorithm.
To avoid the overhead of creating and releasing context, a reset function
is provided:
@deftypefun void gcry_md_reset (gcry_md_hd_t @var{h})
Reset the current context to its initial state. This is effectively
identical to a close followed by an open and enabling all currently
active algorithms.
@end deftypefun
Often it is necessary to start hashing some data and than continue to
hash different data. To avoid hashing the same data several times (which
might not even be possible if the data is received from a pipe), a
snapshot of the current hash context can be taken and turned into a new
context:
@deftypefun gcry_error_t gcry_md_copy (gcry_md_hd_t *@var{handle_dst}, gcry_md_hd_t @var{handle_src})
Create a new digest object as an exact copy of the object described by
handle @var{handle_src} and store it in @var{handle_dst}. The context
is not reset and you can continue to hash data using this context and
independently using the original context.
@end deftypefun
Now that we have prepared everything to calculate hashes, its time to
see how it is actually done. There are 2 ways for this, one to
update the hash with a block of memory and one macro to update the hash
by just one character. Both may be used intermixed.
@deftypefun void gcry_md_write (gcry_md_hd_t @var{h}, const void *@var{buffer}, size_t @var{length})
Pass @var{length} bytes of the data in @var{buffer} to the digest object
with handle @var{h} to update the digest values. This
function should be used for large blocks of data.
@end deftypefun
@deftypefun void gcry_md_putc (gcry_md_hd_t @var{h}, int @var{c})
Pass the byte in @var{c} to the digest object with handle @var{h} to
update the digest value. This is an efficient function, implemented as
a macro to buffer the data before an actual update.
@end deftypefun
The semantics of the hash functions don't allow to read out intermediate
message digests because the calculation must be finalized fist. This
finalization may for example include the number of bytes hashed in the
message digest.
@deftypefun void gcry_md_final (gcry_md_hd_t @var{h})
Finalize the message digest calculation. This is not really needed
because @code{gcry_md_read} does this implicitly. After this has been
done no further updates (by means of @code{gcry_md_write} or
@code{gcry_md_putc} are allowed. Only the first call to this function
has an effect. It is implemented as a macro.
@end deftypefun
The way to read out the calculated message digest is by using the
function:
@deftypefun unsigned char *gcry_md_read (gcry_md_hd_t @var{h}, int @var{algo})
@code{gcry_md_read} returns the message digest after finalizing the
calculation. This function may be used as often as required but it will
always return the same value for one handle. The returned message digest
is allocated within the message context and therefore valid until the
handle is released or reseted (using @code{gcry_md_close} or
@code{gcry_md_reset}. @var{algo} may be given as 0 to return the only
enabled message digest or it may specify one of the enabled algorithms.
The function does return @code{NULL} if the requested algorithm has not
been enabled.
@end deftypefun
Because it is often necessary to get the message digest of one block of
memory, a fast convenience function is available for this task:
@deftypefun void gcry_md_hash_buffer (int @var{algo}, void *@var{digest}, const cvoid *@var{buffer}, size_t @var{length});
@code{gcry_md_hash_buffer} is a shortcut function to calculate a message
digest of a buffer. This function does not require a context and
immediately returns the message digest of the @var{length} bytes at
@var{buffer}. @var{digest} must be allocated by the caller, large
enough to hold the message digest yielded by the the specified algorithm
@var{algo}. This required size may be obtained by using the function
@code{gcry_md_get_algo_dlen}.
Note, that this function will abort the process if an unavailable
algorithm is used.
@end deftypefun
@c ***********************************
@c ***** MD info functions ***********
@c ***********************************
Hash algorithms are identified by internal algorithm numbers (see
@code{gcry_md_open} for a list. However, in most applications they are
used by names, so 2 functions are available to map between string
representations and hash algorithm identifiers.
@deftypefun const char *gcry_md_algo_name (int @var{algo})
Map the digest algorithm id @var{algo} to a string representation of the
algorithm name. For unknown algorithms this functions returns an
empty string. This function should not be used to test for the
availability of an algorithm.
@end deftypefun
@deftypefun int gcry_md_map_name (const char *@var{name})
Map the algorithm with @var{name} to a digest algorithm identifier.
Returns 0 if the algorithm name is not known. Names representing
@acronym{ASN.1} object identifiers are recognized if the @acronym{IETF}
dotted format is used and the OID is prefixed with either "@code{oid.}"
or "@code{OID.}". For a list of supported OIDs, see the source code at
@file{cipher/md.c}. This function should not be used to test for the
availability of an algorithm.
@end deftypefun
@deftypefun gcry_error_t gcry_md_get_asnoid (int @var{algo}, void *@var{buffer}, size_t *@var{length})
Return an DER encoded ASN.1 OID for the algorithm @var{algo} in the
user allocated @var{buffer}. @var{length} must point to variable with
the available size of @var{buffer} and receives after return the
actual size of the returned OID. The returned error code may be
@code{GPG_ERR_TOO_SHORT} if the provided buffer is to short to receive
the OID; it is possible to call the function with @code{NULL} for
@var{buffer} to have it only return the required size. The function
returns 0 on success.
@end deftypefun
To test whether an algorithm is actually available for use, the
following macro should be used:
@deftypefun gcry_error_t gcry_md_test_algo (int @var{algo})
The macro returns 0 if the algorithm @var{algo} is available for use.
@end deftypefun
If the length of a message digest is not known, it can be retrieved
using the following function:
@deftypefun unsigned int gcry_md_get_algo_dlen (int @var{algo})
Retrieve the length in bytes of the digest yielded by algorithm
@var{algo}. This is often used prior to @code{gcry_md_read} to allocate
sufficient memory for the digest.
@end deftypefun
In some situations it might be hard to remember the algorithm used for
the ongoing hashing. The following function might be used to get that
information:
@deftypefun int gcry_md_get_algo (gcry_md_hd_t @var{h})
Retrieve the algorithm used with the handle @var{h}. Note, that this
does not work reliable if more than one algorithm is enabled in @var{h}.
@end deftypefun
The following macro might also be useful:
@deftypefun int gcry_md_is_secure (gcry_md_hd_t @var{h})
This function returns true when the digest object @var{h} is allocated
in "secure memory"; i.e. @var{h} was created with the
@code{GCRY_MD_FLAG_SECURE}.
@end deftypefun
@deftypefun int gcry_md_is_enabled (gcry_md_hd_t @var{h}, int @var{algo})
This function returns true when the algorithm @var{algo} has been
enabled for the digest object @var{h}.
@end deftypefun
Tracking bugs related to hashing is often a cumbersome task which
requires to add a lot of printf statements into the code. @acronym{Libgcrypt}
provides an easy way to avoid this. The actual data hashed can be
written to files on request. The following 2 macros should be used to
implement such a debugging facility:
@deftypefun void gcry_md_start_debug (gcry_md_hd_t @var{h}, const char *@var{suffix})
Enable debugging for the digest object with handle @var{h}. This
creates create files named @file{dbgmd-<n>.<string>} while doing the
actual hashing. @var{suffix} is the string part in the filename. The
number is a counter incremented for each new hashing. The data in the
file is the raw data as passed to @code{gcry_md_write} or
@code{gcry_md_putc}.
@end deftypefun
@deftypefun void gcry_md_stop_debug (gcry_md_hd_t @var{h}, int @var{reserved})
Stop debugging on handle @var{h}. @var{reserved} should be specified as
0. This function is usually not required because @code{gcry_md_close}
does implicitly stop debugging.
@end deftypefun
@c **********************************************************
@c ******************* Public Key *************************
@c **********************************************************
@node Public Key cryptography (I)
@chapter Public Key cryptography (I)
Public key cryptography, also known as asymmetric cryptography, is an
easy way for key management and to provide digital signatures.
@acronym{Libgcrypt} provides two completely different interfaces to
public key cryptography, this chapter explains the one based on
S-expressions.
@menu
* Used S-expressions:: Introduction into the used S-expression.
* Available algorithms:: Algorithms supported by the library.
* Public key modules:: How to work with public key modules.
* Cryptographic Functions:: Functions for performing the cryptographic actions.
* General public-key related Functions:: General functions, not implementing any cryptography.
@end menu
@node Available algorithms
@section Available algorithms
@acronym{Libgcrypt} supports the RSA (Rivest-Shamir-Adleman) algorithms as well
as DSA (Digital Signature Algorithm) and ElGamal. The versatile
interface allows to add more algorithms in the future.
@node Used S-expressions
@section Used S-expressions
@acronym{Libgcrypt}'s API for asymmetric cryptography is based on data
structures called S-expressions (see XXXX) and does not work with
contexts as most of the other building blocks of @acronym{Libgcrypt}
do.
The following information are stored in S-expressions:
@table @asis
@item Keys
@item plain text data
@item encrypted data
@item signatures
...
@end table
@noindent
To describe how @acronym{Libgcrypt} expect keys, we use some examples. Note that
words in
@ifnottex
uppercase
@end ifnottex
@iftex
italics
@end iftex
indicate parameters whereas lowercase words are literals.
@example
(private-key
(dsa
(p @var{p-mpi})
(q @var{q-mpi})
(g @var{g-mpi})
(y @var{y-mpi})
(x @var{x-mpi})))
@end example
@noindent
This specifies a DSA private key with the following parameters:
@table @var
@item p-mpi
DSA prime @math{p}.
@item q-mpi
DSA group order @math{q} (which is a prime divisor of @math{p-1}).
@item g-mpi
DSA group generator @math{g}.
@item y-mpi
DSA public key value @math{y = g^x \bmod p}.
@item x-mpi
DSA secret exponent x.
@end table
All the MPI values are expected to be in @code{GCRYMPI_FMT_USG} format.
The public key is similar with "private-key" replaced by "public-key"
and no @var{x-mpi}.
An easy way to create such an S-expressions is by using
@code{gcry_sexp_build} which allows to pass a string with printf-like
escapes to insert MPI values.
@noindent
Here is an example for an RSA key:
@example
(private-key
(rsa
(n @var{n-mpi})
(e @var{e-mpi})
(d @var{d-mpi})
(p @var{p-mpi})
(q @var{q-mpi})
(u @var{u-mpi})
@end example
@noindent
with
@table @var
@item n-mpi
RSA public modulus @math{n}.
@item e-mpi
RSA public exponent @math{e}.
@item d-mpi
RSA secret exponent @math{d = e^{-1} \bmod (p-1)(q-1)}.
@item p-mpi
RSA secret prime @math{p}.
@item q-mpi
RSA secret prime @math{q} with @math{q > p}.
@item u-mpi
multiplicative inverse @math{u = p^{-1} \bmod q}.
@end table
@node Public key modules
@section Public key modules
@acronym{Libgcrypt} makes it possible to load additional `public key
modules'; these public key algorithms can be used just like the
algorithms that are built into the library directly. For an
introduction into extension modules, see @xref{Modules}.
@deftp {Data type} gcry_pk_spec_t
This is the `module specification structure' needed for registering
public key modules, which has to be filled in by the user before it
can be used to register a module. It contains the following members:
@table @code
@item const char *name
The primary name of this algorithm.
@item char **aliases
A list of strings that are `aliases' for the algorithm. The list
musdt be terminanted with a NULL element.
@item const char *elements_pkey
String containing the one-letter names of the MPI values contained in
a public key.
@item const char *element_skey
String containing the one-letter names of the MPI values contained in
a secret key.
@item const char *elements_enc
String containing the one-letter names of the MPI values that are the
result of an encryption operation using this algorithm.
@item const char *elements_sig
String containing the one-letter names of the MPI values that are the
result of a sign operation using this algorithm.
@item const char *elements_grip
String containing the one-letter names of the MPI values that are to
be included in the `key grip'.
@item int use
The bitwise-OR of the following flags, depending on the abilities of
the algortihm:
@table @code
@item GCRY_PK_USAGE_SIGN
The algorithm supports signing and verifying of data.
@item GCRY_PK_USAGE_ENCR
The algorithm supports the encryption and decryption of data.
@end table
@item gcry_pk_generate_t generate
The function responsible for generating a new key pair. See below for
a description of this type.
@item gcry_pk_check_secret_key_t check_secret_key
The function responsible for checking the sanity of a provided secret
key. See below for a description of this type.
@item gcry_pk_encrypt_t encrypt
The function responsible for encrypting data. See below for a
description of this type.
@item gcry_pk_decrypt_t decrypt
The function responsible for decrypting data. See below for a
description of this type.
@item gcry_pk_sign_t sign
The function reponsible for signing data. See below for a description
of this type.
@item gcry_pk_verify_t verify
The function responsible for verifying that the provided signature
matches the provided data. See below for a description of this type.
@item gcry_pk_get_nbits_t get_nbits
The function reponsible for returning the number of bits of a provided
key. See below for a description of this type.
@end table
@end deftp
@deftp {Data type} gcry_pk_generate_t
Type for the `generate' function, defined as: gcry_err_code_t
(*gcry_pk_generate_t) (int algo, unsigned int nbits, unsigned long
use_e, gcry_mpi_t *skey, gcry_mpi_t **retfactors)
@end deftp
@deftp {Data type} gcry_pk_check_secret_key_t
Type for the `check_secret_key' function, defined as: gcry_err_code_t
(*gcry_pk_check_secret_key_t) (int algo, gcry_mpi_t *skey)
@end deftp
@deftp {Data type} gcry_pk_encrypt_t
Type for the `encrypt' function, defined as: gcry_err_code_t
(*gcry_pk_encrypt_t) (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
gcry_mpi_t *pkey, int flags)
@end deftp
@deftp {Data type} gcry_pk_decrypt_t
Type for the `decrypt' function, defined as: gcry_err_code_t
(*gcry_pk_decrypt_t) (int algo, gcry_mpi_t *result, gcry_mpi_t *data,
gcry_mpi_t *skey, int flags)
@end deftp
@deftp {Data type} gcry_pk_sign_t
Type for the `sign' function, defined as: gcry_err_code_t
(*gcry_pk_sign_t) (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
gcry_mpi_t *skey)
@end deftp
@deftp {Data type} gcry_pk_verify_t
Type for the `verify' function, defined as: gcry_err_code_t
(*gcry_pk_verify_t) (int algo, gcry_mpi_t hash, gcry_mpi_t *data,
gcry_mpi_t *pkey, int (*cmp) (void *, gcry_mpi_t), void *opaquev)
@end deftp
@deftp {Data type} gcry_pk_get_nbits_t
Type for the `get_nbits' function, defined as: unsigned
(*gcry_pk_get_nbits_t) (int algo, gcry_mpi_t *pkey)
@end deftp
@deftypefun gcry_error_t gcry_pk_register (gcry_pk_spec_t *@var{pubkey}, unsigned int *algorithm_id, gcry_module_t *@var{module})
Register a new public key module whose specification can be found in
@var{pubkey}. On success, a new algorithm ID is stored in
@var{algorithm_id} and a pointer representhing this module is stored
in @var{module}.
@end deftypefun
@deftypefun void gcry_pk_unregister (gcry_module_t @var{module})
Unregister the public key module identified by @var{module}, which
must have been registered with gcry_pk_register.
@end deftypefun
@deftypefun gcry_error_t gcry_pk_list (int *@var{list}, int *@var{list_length})
Get a list consisting of the IDs of the loaded pubkey modules. If
@var{list} is zero, write the number of loaded pubkey modules to
@var{list_length} and return. If @var{list} is non-zero, the first
*@var{list_length} algorithm IDs are stored in @var{list}, which must
be of according size. In case there are less pubkey modules than
*@var{list_length}, *@var{list_length} is updated to the correct
number.
@end deftypefun
@node Cryptographic Functions
@section Cryptographic Functions
@noindent
Note, that we will in future allow to use keys without p,q and u
specified and may also support other parameters for performance
reasons.
@noindent
Some functions operating on S-expressions support `flags', that
influence the operation. These flags have to be listed in a
sub-S-expression named `flags'; the following flags are known:
@table @var
@item pkcs1
Use PKCS#1 block type 2 padding.
@item no-blinding
Do not use a technique called `blinding', which is used by default in
order to prevent leaking of secret information. Blinding is only
implemented by RSA, but it might be implemented by other algorithms in
the future as well, when necessary.
@end table
@noindent
Now that we know the key basics, we can carry on and explain how to
encrypt and decrypt data. In almost all cases the data is a random
session key which is in turn used for the actual encryption of the real
data. There are 2 functions to do this:
@deftypefun gcry_error_t gcry_pk_encrypt (@w{gcry_sexp_t *@var{r_ciph},} @w{gcry_sexp_t @var{data},} @w{gcry_sexp_t @var{pkey}})
Obviously a public key must be provided for encryption. It is
expected as an appropriate S-expression (see above) in @var{pkey}.
The data to be encrypted can either be in the simple old format, which
is a very simple S-expression consisting only of one MPI, or it may be
a more complex S-expression which also allows to specify flags for
operation, like e.g. padding rules.
@noindent
If you don't want to let @acronym{Libgcrypt} handle the padding, you must pass an
appropriate MPI using this expression for @var{data}:
@example
(data
(flags raw)
(value @var{mpi}))
@end example
@noindent
This has the same semantics as the old style MPI only way. @var{MPI} is
the actual data, already padded appropriate for your protocol. Most
systems however use PKCS#1 padding and so you can use this S-expression
for @var{data}:
@example
(data
(flags pkcs1)
(value @var{block}))
@end example
@noindent
Here, the "flags" list has the "pkcs1" flag which let the function know
that it should provide PKCS#1 block type 2 padding. The actual data to
be encrypted is passed as a string of octets in @var{block}. The
function checks that this data actually can be used with the given key,
does the padding and encrypts it.
If the function could successfully perform the encryption, the return
value will be 0 and a a new S-expression with the encrypted result is
allocated and assign to the variable at the address of @var{r_ciph}.
The caller is responsible to release this value using
@code{gcry_sexp_release}. In case of an error, an error code is
returned and @var{r_ciph} will be set to @code{NULL}.
@noindent
The returned S-expression has this format when used with RSA:
@example
(enc-val
(rsa
(a @var{a-mpi})))
@end example
@noindent
Where @var{a-mpi} is an MPI with the result of the RSA operation. When
using the ElGamal algorithm, the return value will have this format:
@example
(enc-val
(elg
(a @var{a-mpi})
(b @var{b-mpi})))
@end example
@noindent
Where @var{a-mpi} and @var{b-mpi} are MPIs with the result of the
ElGamal encryption operation.
@end deftypefun
@c end gcry_pk_encrypt
@deftypefun gcry_error_t gcry_pk_decrypt (@w{gcry_sexp_t *@var{r_plain},} @w{gcry_sexp_t @var{data},} @w{gcry_sexp_t @var{skey}})
Obviously a private key must be provided for decryption. It is expected
as an appropriate S-expression (see above) in @var{skey}. The data to
be decrypted must match the format of the result as returned by
@code{gcry_pk_encrypt}, but should be enlarged with a @code{flags}
element:
@example
(enc-val
(flags)
(elg
(a @var{a-mpi})
(b @var{b-mpi})))
@end example
@noindent
Note, that this function currently does not know of any padding
methods and the caller must do any un-padding on his own.
@noindent
The function returns 0 on success or an error code. The variable at the
address of @var{r_plain} will be set to NULL on error or receive the
decrypted value on success. The format of @var{r_plain} is a
simple S-expression part (i.e. not a valid one) with just one MPI if
there was no @code{flags} element in @var{data}; if at least an empty
@code{flags} is passed in @var{data}, the format is:
@example
(value @var{plaintext})
@end example
@end deftypefun
@c end gcry_pk_decrypt
Another operation commonly performed using public key cryptography is
signing data. In some sense this is even more important than
encryption because digital signatures are an important instrument for
key management. @acronym{Libgcrypt} supports digital signatures using
2 functions, similar to the encryption functions:
@deftypefun gcry_error_t gcry_pk_sign (@w{gcry_sexp_t *@var{r_sig},} @w{gcry_sexp_t @var{data},} @w{gcry_sexp_t @var{skey}})
This function creates a digital signature for @var{data} using the
private key @var{skey} and place it into the variable at the address of
@var{r_sig}. @var{data} may either be the simple old style S-expression
with just one MPI or a modern and more versatile S-expression which
allows to let @acronym{Libgcrypt} handle padding:
@example
(data
(flags pkcs1)
(hash @var{hash-algo} @var{block}))
@end example
@noindent
This example requests to sign the data in @var{block} after applying
PKCS#1 block type 1 style padding. @var{hash-algo} is a string with the
hash algorithm to be encoded into the signature, this may be any hash
algorithm name as supported by @acronym{Libgcrypt}. Most likely, this will be
"sha1", "rmd160" or "md5". It is obvious that the length of @var{block}
must match the size of that message digests; the function checks that
this and other constraints are valid.
@noindent
If PKCS#1 padding is not required (because the caller does already
provide a padded value), either the old format or better the following
format should be used:
@example
(data
(flags raw)
(value @var{mpi}))
@end example
@noindent
Here, the data to be signed is directly given as an @var{MPI}.
@noindent
The signature is returned as a newly allocated S-expression in
@var{r_sig} using this format for RSA:
@example
(sig-val
(rsa
(s @var{s-mpi})))
@end example
Where @var{s-mpi} is the result of the RSA sign operation. For DSA the
S-expression returned is:
@example
(sig-val
(dsa
(r @var{r-mpi})
(s @var{s-mpi})))
@end example
Where @var{r-mpi} and @var{s-mpi} are the result of the DSA sign
operation. For ElGamal signing (which is slow, yields large numbers
and probably is not as secure as the other algorithms), the same format is
used with "elg" replacing "dsa".
@end deftypefun
@c end gcry_pk_sign
@noindent
The operation most commonly used is definitely the verification of a
signature. @acronym{Libgcrypt} provides this function:
@deftypefun gcry_error_t gcry_pk_verify (@w{gcry_sexp_t @var{sig}}, @w{gcry_sexp_t @var{data}}, @w{gcry_sexp_t @var{pkey}})
This is used to check whether the signature @var{sig} matches the
@var{data}. The public key @var{pkey} must be provided to perform this
verification. This function is similar in its parameters to
@code{gcry_pk_sign} with the exceptions that the public key is used
instead of the private key and that no signature is created but a
signature, in a format as created by @code{gcry_pk_sign}, is passed to
the function in @var{sig}.
@noindent
The result is 0 for success (i.e. the data matches the signature), or an
error code where the most relevant code is @code{GCRYERR_BAD_SIGNATURE}
to indicate that the signature does not match the provided data.
@end deftypefun
@c end gcry_pk_verify
@node General public-key related Functions
@section General public-key related Functions
@noindent
A couple of utility functions are available to retrieve the length of
the key, map algorithm identifiers and perform sanity checks:
@deftypefun {const char *} gcry_pk_algo_name (int @var{algo})
Map the public key algorithm id @var{algo} to a string representation of
the algorithm name. For unknown algorithms this functions returns an
empty string.
@end deftypefun
@deftypefun int gcry_pk_map_name (const char *@var{name})
Map the algorithm @var{name} to a public key algorithm Id. Returns 0 if
the algorithm name is not known.
@end deftypefun
@deftypefun int gcry_pk_test_algo (int @var{algo})
Return 0 if the public key algorithm @var{algo} is available for use.
Note, that this is implemented as a macro.
@end deftypefun
@deftypefun {unsigned int} gcry_pk_get_nbits (gcry_sexp_t @var{key})
Return what is commonly referred as the key length for the given
public or private in @var{key}.
@end deftypefun
@deftypefun {unsigned char *} gcry_pk_get_keygrip (@w{gcry_sexp_t @var{key}}, @w{unsigned char *@var{array}})
Return the so called "keygrip" which is the SHA-1 hash of the public key
parameters expressed in a way depended on the algorithm. @var{array}
must either provide space for 20 bytes or @code{NULL;}. In the latter
case a newly allocated array of that size is returned. On success a
pointer to the newly allocated space or to @var{array} is returned.
@code{NULL} is returned to indicate an error which is most likely an unknown
algorithm or one where a "keygrip" has not yet been defined.
The function accepts public or secret keys in @var{key}.
@end deftypefun
@deftypefun gcry_error_t gcry_pk_testkey (gcry_sexp_t @var{key})
Return zero if the private key @var{key} is `sane', an error code otherwise.
Note, that it is not possible to chek the `saneness' of a public key.
@end deftypefun
@deftypefun int gcry_pk_algo_info (@w{int @var{algo}}, @w{int @var{what}}, @w{void *@var{buffer}}, @w{size_t *@var{nbytes}})
Depending on the value of @var{what} return various information about
the public key algorithm with the id @var{algo}. Note, that the
function returns @code{-1} on error and the actual error code must be
retrieved using the function @code{gcry_errno}. The currently defined
values for @var{what} are:
@table @code
@item GCRYCTL_TEST_ALGO:
Return 0 when the specified algorithm is available for use.
@var{buffer} must be @code{NULL}, @var{nbytes} may be passed as
@code{NULL} or point to a variable with the required usage of the
algorithm. This may be 0 for "don't care" or the bit-wise OR of these
flags:
@table @code
@item GCRY_PK_USAGE_SIGN
Algorithm is usable for signing.
@item GCRY_PK_USAGE_ENCR
Algorithm is usable for encryption.
@end table
@item GCRYCTL_GET_ALGO_USAGE:
Return the usage flags for the given algorithm. An invalid algorithm
return 0. Disabled algorithms are ignored here because we
want to know whether the algorithm is at all capable of a certain usage.
@item GCRYCTL_GET_ALGO_NPKEY
Return the number of elements the public key for algorithm @var{algo}
consist of. Return 0 for an unknown algorithm.
@item GCRYCTL_GET_ALGO_NSKEY
Return the number of elements the private key for algorithm @var{algo}
consist of. Note that this value is always larger than that of the
public key. Return 0 for an unknown algorithm.
@item GCRYCTL_GET_ALGO_NSIGN
Return the number of elements a signature created with the algorithm
@var{algo} consists of. Return 0 for an unknown algorithm or for an
algorithm not capable of creating signatures.
@item GCRYCTL_GET_ALGO_NENC
Return the number of elements a encrypted message created with the algorithm
@var{algo} consists of. Return 0 for an unknown algorithm or for an
algorithm not capable of encryption.
@end table
@noindent
Please note that parameters not required should be passed as @code{NULL}.
@end deftypefun
@c end gcry_pk_algo_info
@deftypefun gcry_error_t gcry_pk_ctl (@w{int @var{cmd}}, @w{void *@var{buffer}}, @w{size_t @var{buflen}})
This is a general purpose function to perform certain control
operations. @var{cmd} controls what is to be done. The return value is
0 for success or an error code. Currently supported values for
@var{cmd} are:
@table @code
@item GCRYCTL_DISABLE_ALGO
Disable the algorithm given as an algorithm id in @var{buffer}.
@var{buffer} must point to an @code{int} variable with the algorithm id
and @var{buflen} must have the value @code{sizeof (int)}.
@end table
@end deftypefun
@c end gcry_pk_ctl
@noindent
@acronym{Libgcrypt} also provides a function for generating public key
pairs:
@deftypefun gcry_error_t gcry_pk_genkey (@w{gcry_sexp_t *@var{r_key}}, @w{gcry_sexp_t @var{parms}})
This function create a new public key pair using information given in
the S-expression @var{parms} and stores the private and the public key
in one new S-expression at the address given by @var{r_key}. In case of
an error, @var{r_key} is set to @code{NULL}. The return code is 0 for
success or an error code otherwise.
@noindent
Here is an example for @var{parms} for creating a 1024 bit RSA key:
@example
(genkey
(rsa
(nbits 4:1024)))
@end example
@noindent
To create an ElGamal key, substitute "elg" for "rsa" and to create a DSA
key use "dsa". Valid ranges for the key length depend on the
algorithms; all commonly used key lengths are supported. Currently
supported parameters are:
@table @code
@item nbits
This is always required to specify the length of the key. The argument
is a string with a number in C-notation.
@item rsa-use-e
This is only used with RSA to give a hint for the public exponent. The
value will be used as a base to test for a usable exponent. Some values
are special:
@table @samp
@item 0
Use a secure and fast value. This is currently the number 41.
@item 1
Use a secure value as required by some specification. This is currently
the number 65537.
@item 2
Reserved
@end table
@noindent
If this parameter is not used, @acronym{Libgcrypt} uses for historic reasons
65537.
@end table
@c end table of parameters
@noindent
The key pair is returned in a format depending on the algorithm. Both
private and public keys are returned in one container and may be
accompanied by some miscellaneous information.
@noindent
As an example, here is what the ElGamal key generation returns:
@example
(key-data
(public-key
(elg
(p @var{p-mpi})
(g @var{g-mpi})
(y @var{y-mpi})))
(private-key
(elg
(p @var{p-mpi})
(g @var{g-mpi})
(y @var{y-mpi})
(x @var{x-mpi})))
(misc-key-info
(pm1-factors @var{n1 n2 ... nn})))
@end example
@noindent
As you can see, some of the information is duplicated, but this provides
an easy way to extract either the public or the private key. Note that
the order of the elements is not defined, e.g. the private key may be
stored before the public key. @var{n1 n2 ... nn} is a list of prime
numbers used to composite @var{p-mpi}; this is in general not a very
useful information.
@end deftypefun
@c end gcry_pk_genkey
@node Public Key cryptography (II)
@chapter Public Key cryptography (II)
This chapter documents the alternative interface to asymmetric
cryptography (ac) that is not based on S-expressions, but on native C
data structures. As opposed to the pk interface described in the
former chapter, this one follows an open/use/close paradigm like other
building blocks of the library.
@menu
* Available asymmetric algorithms:: List of algorithms supported by the library.
* Working with sets of data:: How to work with sets of data.
* Working with handles:: How to use handles.
* Working with keys:: How to work with keys.
* Using cryptographic functions:: How to perform cryptographic operations.
* Handle-independent functions:: General functions independent of handles.
@end menu
@node Available asymmetric algorithms
@section Available asymmetric algorithms
@acronym{Libgcrypt} supports the RSA (Rivest-Shamir-Adleman)
algorithms as well as DSA (Digital Signature Algorithm) and ElGamal.
The versatile interface allows to add more algorithms in the future.
@deftp {Data type} gcry_ac_id_t
The following constants are defined for this type:
@table @code
@item GCRY_AC_RSA
Riven-Shamir-Adleman
@item GCRY_AC_DSA
Digital Signature Algorithm
@item GCRY_AC_ELG
ElGamal
@item GCRY_AC_ELG_E
ElGamal, encryption only.
@end table
@end deftp
@node Working with sets of data
@section Working with sets of data
In the context of this interface the term `data set' refers to a list
of `named MPI values' that is used by functions performing
cryptographic operations.
Such data sets are used for representing keys, since keys simply
consist of a variable amount of numbers. Furthermore some functions
return data sets to the caller that are to be provided to other
functions.
This section documents the data types and functions that are relevant
for working with such data sets.
@deftp {Data type} gcry_ac_data_t
A data set, that is simply a list of named MPI values.
@end deftp
@deftypefun gcry_error_t gcry_ac_data_new (gcry_ac_data_t *@var{data})
Creates a new, empty data set and stores it in @var{data}.
@end deftypefun
@deftypefun void gcry_ac_data_destroy (gcry_ac_data_t @var{data})
Destroys the data set @var{data}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_set (gcry_ac_data_t @var{data},
char *@var{name}, gcry_mpi_t @var{mpi})
Adds the value @var{mpi} to the data set @var{data} with the label
@var{name}. If there is already a value with that label, it is replaced,
otherwise a new value is added.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_copy (gcry_ac_data_t *@var{data_cp}, gcry_ac_data_t @var{data})
Create a copy of the data set @var{data} and store it in @var{data_cp}.
@end deftypefun
@deftypefun unsigned int gcry_ac_data_length (gcry_ac_data_t @var{data})
Returns the number of named MPI values inside of the data set
@var{data}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_get_name (gcry_ac_data_t @var{data},
char *@var{name}, gcry_mpi_t *@var{mpi})
Stores the value labelled with @var{name} found in data set @var{data}
in @var{mpi}. The returned MPI value will be released in case
gcry_ac_data_set is used to associate the label @var{name} with a
different MPI value.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_get_index (gcry_ac_data_t @var{data}, unsigned int @var{index}, const char **@var{name}, gcry_mpi_t *@var{mpi})
Stores in @var{name} and @var{mpi} the named MPI value contained in
the data set @var{data} with the index @var{index}. @var{name} or
@var{mpi} may be @code{NULL}. The returned MPI value will be released
in case gcry_ac_data_set is used to associate the label @var{name}
with a different MPI value.
@end deftypefun
@deftypefun void gcry_ac_data_clear (gcry_ac_data_t @var{data})
Destroys any values contained in the data set @var{data}.
@end deftypefun
@node Working with handles
@section Working with handles
In order to use an algorithm, an according handle must be created.
This is done using the following function:
@deftypefun gcry_error_t gcry_ac_open (gcry_ac_handle_t *@var{handle},
int @var{algorithm}, int @var{flags})
Creates a new handle for the algorithm @var{algorithm} and stores it
in @var{handle}. @var{flags} is not used yet.
@var{algorithm} must be a valid algorithm ID, see @xref{Available
algorithms}, for a list of supported algorithms and the according
constants. Besides using the listed constants directly, the functions
@code{gcry_ac_name_to_id} may be used to convert the textual name of
an algorithm into the according numeric ID.
@end deftypefun
@deftypefun void gcry_ac_close (gcry_ac_handle_t @var{handle})
Destroys the handle @var{handle}.
@end deftypefun
@node Working with keys
@section Working with keys
@deftp {Data type} gcry_ac_key_id_t
Defined constants:
@table @code
@item GCRY_AC_KEY_TYPE_SECRET
Specifies a secret key.
@item GCRY_AC_KEY_TYPE_PUBLIC
Specifies a public key.
@end table
@end deftp
@deftp {Data type} gcry_ac_key_t
This type represents a single `key', either a secret one or a public
one.
@end deftp
@deftp {Data type} gcry_ac_key_pair_t
This type represents a `key pair' containing a secret and a public key.
@end deftp
Key data structures can be created in two different ways; a new key
pair can be generated, resulting in ready-to-use key. Alternatively a
key can be initialized from a given data set.
@deftypefun gcry_error_t gcry_ac_key_init (gcry_ac_key_t *@var{key}, gcry_ac_handle_t @var{handle}, gcry_ac_key_type_t @var{type}, gcry_ac_data_t @var{data})
Creates a new key of type @var{type}, consisting of the MPI values
contained in the data set @var{data} and stores it in @var{key}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_key_pair_generate (gcry_ac_handle_t @var{handle}, gcry_ac_key_pair_t *@var{key_pair}, unsigned int @var{nbits}, void *@var{key_spec})
Generates a new key pair via the handle @var{handle} of @var{NBITS}
bits and stores it in @var{key_pair}.
In case non-standard settings are wanted, a pointer to a structure of
type @code{gcry_ac_key_spec_<algorithm>_t}, matching the selected
algorithm, can be given as KEY_SPEC. Such a structure does only exist
for RSA. A descriptions of the members of the supported structures
follows.
@table @code
@item gcry_ac_key_spec_rsa_t
@table @code
@item gcry_mpi_t e
Generate the key pair using a special @code{e}. The value of @code{e}
has the following meanings:
@table @code
@item = 0
Let @acronym{Libgcrypt} device what exponent should be used.
@item = 1
Request the use of a ``secure'' exponent; this is required by sosme
specification to be 65537.
@item > 2
Try starting at this value until a working exponent is found.
@end table
@end table
@end table
Example code:
@example
@{
gcry_ac_key_pair_t key_pair;
gcry_ac_key_spec_rsa rsa_spec;
rsa_spec.e = gcry_mpi_new (0);
gcry_mpi_set_ui (rsa_spec.e, 1)
err = gcry_ac_open (&handle, GCRY_AC_RSA, 0);
assert (! err);
err = gcry_ac_key_pair_generate (handle, &key_pair, 1024, (void *) &rsa_spec);
assert (! err);
@}
@end example
@end deftypefun
@deftypefun gcry_ac_key_t gcry_ac_key_pair_extract (gcry_ac_key_pair_t @var{key_pair}, gcry_ac_key_type_t @var{which})
Returns the key of type @var{which} out of the key pair
@var{key_pair}.
@end deftypefun
@deftypefun void gcry_ac_key_destroy (gcry_ac_key_t @var{key})
Destroys the key @var{key}.
@end deftypefun
@deftypefun void gcry_ac_key_pair_destroy (gcry_ac_key_pair_t @var{key_pair})
Destroys the key pair @var{key_pair}.
@end deftypefun
@deftypefun gcry_ac_data_t gcry_ac_key_data_get (gcry_ac_key_t @var{key})
Returns the data set contained in the key @var{key}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_key_test (gcry_ac_key_t @var{key})
Verifies that the private key @var{key} is sane.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_key_get_nbits (gcry_ac_key_t @var{key}, unsigned int *@var{nbits})
Stores the number of bits of the key @var{key} in @var{nbits}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_key_get_grip (gcry_ac_key_t @var{key}, unsigned char *@var{key_grip})
Writes the 20 byte long key grip of the key @var{key} to
@var{key_grip}.
@end deftypefun
@node Using cryptographic functions
@section Using cryptographic functions
@deftypefun gcry_error_t gcry_ac_data_encrypt (gcry_ac_handle_t @var{handle}, unsigned int @var{flags}, gcry_ac_key_t @var{key}, gcry_mpi_t @var{data_plain}, gcry_ac_data_t **@var{data_encrypted})
Encrypts the plain text MPI value @var{data_plain} with the key public
@var{key} under the control of the flags @var{flags} and stores the
resulting data set into @var{data_encrypted}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_decrypt (gcry_ac_handle_t @var{handle}, unsigned int @var{flags}, gcry_ac_key_t @var{key}, gcry_mpi_t *@var{data_plain}, gcry_ac_data_t @var{data_encrypted})
Decrypts the encrypted data contained in the data set
@var{data_encrypted} with the secret key KEY under the control of the
flags @var{flags} and stores the resulting plain text MPI value in
@var{DATA_PLAIN}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_sign (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key}, gcry_mpi_t @var{data}, gcry_ac_data_t *@var{data_signature})
Signs the data contained in @var{data} with the secret key @var{key}
and stores the resulting signature in the data set
@var{data_signature}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_data_verify (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key}, gcry_mpi_t @var{data}, gcry_ac_data_t @var{data_signature})
Verifies that the signature contained in the data set
@var{data_signature} is indeed the result of signing the data
contained in @var{data} with the secret key belonging to the public
key @var{key}.
@end deftypefun
@node Handle-independent functions
@section Handle-independent functions
@deftypefun gcry_error_t gcry_ac_id_to_name (gcry_ac_id_t @var{algorithm}, const char **@var{name})
Stores the textual representation of the algorithm whose id is given
in @var{algorithm} in @var{name}.
@end deftypefun
@deftypefun gcry_error_t gcry_ac_name_to_id (const char *@var{name}, gcry_ac_id_t *@var{algorithm})
Stores the numeric ID of the algorithm whose textual representation is
contained in @var{name} in @var{algorithm}.
@end deftypefun
@c **********************************************************
@c ******************* Random *****************************
@c **********************************************************
@node Random Numbers
@chapter Random Numbers
@menu
* Quality of random numbers:: @acronym{Libgcrypt} uses different quality levels.
* Retrieving random numbers:: How to retrieve random numbers.
@end menu
@node Quality of random numbers
@section Quality of random numbers
@acronym{Libgcypt} offers random numbers of different quality levels:
@deftp {Data type} enum gcry_random_level
The constants for the random quality levels are of this type.
@end deftp
@table @code
@item GCRY_WEAK_RANDOM
Use this level for random numbers that do not need to be
`cryptographically strong'.
@item GCRY_STRONG_RANDOM
Use this level for e.g. session keys and similar purposes.
@item GCRY_VERY_STRONG_RANDOM
Use this level for e.g. key material.
@end table
@node Retrieving random numbers
@section Retrieving random numbers
@deftypefun void gcry_randomize (unsigned char *@var{buffer}, size_t @var{length}, enum gcry_random_level @var{level})
Fill @var{buffer} with @var{length} random bytes using a random quality
as defined by @var{level}.
@end deftypefun
@deftypefun void * gcry_random_bytes (size_t @var{nbytes}, enum gcry_random_level @var{level})
Allocate a memory block consisting of @var{nbytes} fresh random bytes
using a random quality as defined by @var{level}.
@end deftypefun
@deftypefun void * gcry_random_bytes_secure (size_t @var{nbytes}, enum gcry_random_level @var{level})
Allocate a memory block consisting of @var{nbytes} fresh random bytes
using a random quality as defined by @var{level}. This function
differs from @code{gcry_random_bytes} in that the returned buffer is
allocated in a ``secure'' area of the memory.
@end deftypefun
@c **********************************************************
@c ******************* S-Expressions ***********************
@c **********************************************************
@node S-expressions
@chapter S-expressions
S-expressions are used by the public key functions to pass complex data
structures around. These LISP like objects are used by some
cryptographic protocols (cf. RFC-2692) and @acronym{Libgcrypt} provides functions
to parse and construct them. For detailed information, see
@cite{Ron Rivest, code and description of S-expressions,
@uref{http://theory.lcs.mit.edu/~rivest/sexp.html}}.
@menu
* Data types for S-expressions:: Data types related with S-expressions.
* Working with S-expressions:: How to work with S-expressions.
@end menu
@node Data types for S-expressions
@section Data types for S-expressions
@deftp {Data type} gcry_sexp_t
The @code{gcry_sexp_t} type describes an object with the @acronym{Libgcrypt} internal
representation of an S-expression.
@end deftp
@node Working with S-expressions
@section Working with S-expressions
@noindent
There are several functions to create an @acronym{Libgcrypt} S-expression object
from its external representation or from a string template. There is
also a function to convert the internal representation back into one of
the external formats:
@deftypefun gcry_error_t gcry_sexp_new (@w{gcry_sexp_t *@var{r_sexp}}, @w{const void *@var{buffer}}, @w{size_t @var{length}}, @w{int @var{autodetect}})
This is the generic function to create an new S-expression object from
its external representation in @var{buffer} of @var{length} bytes. On
success the result is stored at the address given by @var{r_sexp}.
With @var{autodetect} set to 0, the data in @var{buffer} is expected to
be in canonized format, with @var{autodetect} set to 1 the parses any of
the defined external formats. If @var{buffer} does not hold a valid
S-expression an error code is returned and @var{r_sexp} set to
@code{NULL}.
Note, that the caller is responsible for releasing the newly allocated
S-expression using @code{gcry_sexp_release}.
@end deftypefun
@deftypefun gcry_error_t gcry_sexp_create (@w{gcry_sexp_t *@var{r_sexp}}, @w{void *@var{buffer}}, @w{size_t @var{length}}, @w{int @var{autodetect}}, @w{void (*@var{freefnc})(void*)})
This function is identical to @code{gcry_sexp_new} but has an extra
argument @var{freefnc}, which, when not set to @code{NULL}, is expected
to be a function to release the @var{buffer}; most likely the standard
@code{free} function is used for this argument. This has the effect of
transferring the ownership of @var{buffer} to the created object in
@var{r_sexp}. The advantage of using this function is that @acronym{Libgcrypt}
might decide to directly use the provided buffer and thus avoid extra
copying.
@end deftypefun
@deftypefun gcry_error_t gcry_sexp_sscan (@w{gcry_sexp_t *@var{r_sexp}}, @w{size_t *@var{erroff}}, @w{const char *@var{buffer}}, @w{size_t @var{length}})
This is another variant of the above functions. It behaves nearly
identical but provides an @var{erroff} argument which will receive the
offset into the buffer where the parsing stopped on error.
@end deftypefun
@deftypefun gcry_error_t gcry_sexp_build (@w{gcry_sexp_t *@var{r_sexp}}, @w{size_t *@var{erroff}}, @w{const char *@var{format}, ...})
This function creates an internal S-expression from the string template
@var{format} and stores it at the address of @var{r_sexp}. If there is a
parsing error, the function returns an appropriate error code and stores
the offset into @var{format} where the parsing stopped in @var{erroff}.
The function supports a couple of printf-like formatting characters and
expects arguments for some of these escape sequences right after
@var{format}. The following format characters are defined:
@table @samp
@item %m
The next argument is expected to be of type @code{gcry_mpi_t} and a copy of
its value is inserted into the resulting S-expression.
@item %s
The next argument is expected to be of type @code{char *} and that
string is inserted into the resulting S-expression.
@item %d
The next argument is expected to be of type @code{int} and its
value ist inserted into the resulting S-expression.
@end table
@noindent
No other format characters are defined and would return an error. Note,
that the format character @samp{%%} does not exists, because a percent
sign is not a valid character in an S-expression.
@end deftypefun
@deftypefun void gcry_sexp_release (@w{gcry_sexp_t @var{sexp}})
Release the S-expression object @var{sexp}.
@end deftypefun
@noindent
The next 2 functions are used to convert the internal representation
back into a regular external S-expression format and to show the
structure for debugging.
@deftypefun size_t gcry_sexp_sprint (@w{gcry_sexp_t @var{sexp}}, @w{int @var{mode}}, @w{char *@var{buffer}}, @w{size_t @var{maxlength}})
Copies the S-expression object @var{sexp} into @var{buffer} using the
format specified in @var{mode}. @var{maxlength} must be set to the
allocated length of @var{buffer}. The function returns the actual
length of valid bytes put into @var{buffer} or 0 if the provided buffer
is too short. Passing @code{NULL} for @var{buffer} returns the required
length for @var{buffer}. For convenience reasons an extra byte with
value 0 is appended to the buffer.
@noindent
The following formats are supported:
@table @code
@item GCRYSEXP_FMT_DEFAULT
Returns a convenient external S-expression representation.
@item GCRYSEXP_FMT_CANON
Return the S-expression in canonical format.
@item GCRYSEXP_FMT_BASE64
Not currently supported.
@item GCRYSEXP_FMT_ADVANCED
Returns the S-expression in advanced format.
@end table
@end deftypefun
@deftypefun void gcry_sexp_dump (@w{gcry_sexp_t @var{sexp}})
Dumps @var{sexp} in a format suitable for debugging to @acronym{Libgcrypt}'s
logging stream.
@end deftypefun
@noindent
Often canonical encoding is used in the external representation. The
following function can be used to check for valid encoding and to learn
the length of the S-expression"
@deftypefun size_t gcry_sexp_canon_len (@w{const unsigned char *@var{buffer}}, @w{size_t @var{length}}, @w{size_t *@var{erroff}}, @w{int *@var{errcode}})
Scan the canonical encoded @var{buffer} with implicit length values and
return the actual length this S-expression uses. For a valid S-expression
it should never return 0. If @var{length} is not 0, the maximum
length to scan is given; this can be used for syntax checks of
data passed from outside. @var{errcode} and @var{erroff} may both be
passed as @code{NULL}.
@end deftypefun
@noindent
There are a couple of functions to parse S-expressions and retrieve
elements:
@deftypefun gcry_sexp_t gcry_sexp_find_token (@w{const gcry_sexp_t @var{list}}, @w{const char *@var{token}}, @w{size_t @var{toklen}})
Scan the S-expression for a sublist with a type (the car of the list)
matching the string @var{token}. If @var{toklen} is not 0, the token is
assumed to be raw memory of this length. The function returns a newly
allocated S-expression consisting of the found sublist or @code{NULL}
when not found.
@end deftypefun
@deftypefun int gcry_sexp_length (@w{const gcry_sexp_t @var{list}})
Return the length of the @var{list}. For a valid S-expression this
should be at least 1.
@end deftypefun
@deftypefun gcry_sexp_t gcry_sexp_nth (@w{const gcry_sexp_t @var{list}}, @w{int @var{number}})
Create and return a new S-expression from the element with index @var{number} in
@var{list}. Note that the first element has the index 0. If there is
no such element, @code{NULL} is returned.
@end deftypefun
@deftypefun gcry_sexp_t gcry_sexp_car (@w{const gcry_sexp_t @var{list}})
Create and return a new S-expression from the first element in
@var{list}; this called the "type" and should always exist and be a
string. @code{NULL} is returned in case of a problem.
@end deftypefun
@deftypefun gcry_sexp_t gcry_sexp_cdr (@w{const gcry_sexp_t @var{list}})
Create and return a new list form all elements except for the first one.
Note, that this function may return an invalid S-expression because it
is not guaranteed, that the type exists and is a string. However, for
parsing a complex S-expression it might be useful for intermediate
lists. Returns @code{NULL} on error.
@end deftypefun
@deftypefun {const char *} gcry_sexp_nth_data (@w{const gcry_sexp_t @var{list}}, @w{int @var{number}}, @w{size_t *@var{datalen}})
This function is used to get data from a @var{list}. A pointer to the
actual data with index @var{number} is returned and the length of this
data will be stored to @var{datalen}. If there is no data at the given
index or the index represents another list, @code{NULL} is returned.
@strong{Note:} The returned pointer is valid as long as @var{list} is
not modified or released.
@noindent
Here is an example on how to extract and print the surname (Meier) from
the S-expression @samp{(Name Otto Meier (address Burgplatz 3))}:
@example
size_t len;
const char *name;
name = gcry_sexp_nth_data (list, 2, &len);
printf ("my name is %.*s\n", (int)len, name);
@end example
@end deftypefun
@deftypefun gcry_mpi_t gcry_sexp_nth_mpi (@w{gcry_sexp_t @var{list}}, @w{int @var{number}}, @w{int @var{mpifmt}})
This function is used to get and convert data from a @var{list}. This
data is assumed to be an MPI stored in the format described by
@var{mpifmt} and returned as a standard @acronym{Libgcrypt} MPI. The caller must
release this returned value using @code{gcry_mpi_release}. If there is
no data at the given index, the index represents a list or the value
can't be converted to an MPI, @code{NULL} is returned.
@end deftypefun
@c **********************************************************
@c ******************* MPIs ******** ***********************
@c **********************************************************
@node MPI library
@chapter MPI library
@menu
* Data types:: MPI related data types.
* Basic functions:: First steps with MPI numbers.
* MPI formats:: External representation of MPIs.
* Calculations:: Performing MPI calculations.
* Comparisons:: How to compare MPI values.
* Bit manipulations:: How to access single bits of MPI values.
* Misc:: Misc, fixme.
@end menu
Public key cryptography is based on mathematics with large numbers. To
implement the public key functions, a library for handling these large
numbers is required. Because of the general usefulness of such a
library, its interface is exposed by @acronym{Libgcrypt}. The implementation is
based on an old release of GNU Multi-Precision Library (GMP) but in the
meantime heavily modified and stripped down to what is required for
cryptography. For a lot of CPUs, high performance assembler
implementations of some very low level functions are used to gain much
better performance than with the standard C implementation.
@noindent
In the context of @acronym{Libgcrypt} and in most other applications, these large
numbers are called MPIs (multi-precision-integers).
@node Data types
@section Data types
@deftp {Data type} gcry_mpi_t
The @code{gcry_mpi_t} type represents an object to hold an MPI.
@end deftp
@node Basic functions
@section Basic functions
@noindent
To work with MPIs, storage must be allocated and released for the
numbers. This can be done with one of these functions:
@deftypefun gcry_mpi_t gcry_mpi_new (@w{unsigned int @var{nbits}})
Allocate a new MPI object, initialize it to 0 and initially allocate
enough memory for a number of at least @var{nbits}. This pre-allocation is
only a small performance issue and not actually necessary because
@acronym{Libgcrypt} automatically re-allocates the required memory.
@end deftypefun
@deftypefun gcry_mpi_t gcry_mpi_snew (@w{unsigned int @var{nbits}})
This is identical to @code{gcry_mpi_new} but allocates the MPI in the so
called "secure memory" which in turn will take care that all derived
values will also be stored in this "secure memory". Use this for highly
confidential data like private key parameters.
@end deftypefun
@deftypefun gcry_mpi_t gcry_mpi_copy (@w{const gcry_mpi_t @var{a}})
Create a new MPI as the exact copy of @var{a}.
@end deftypefun
@deftypefun void gcry_mpi_release (@w{gcry_mpi_t @var{a}})
Release the MPI @var{a} and free all associated resources. Passing
@code{NULL} is allowed and ignored. When a MPI stored in the "secure
memory" is released, that memory gets wiped out immediately.
@end deftypefun
@noindent
The simplest operations are used to assign a new value to an MPI:
@deftypefun gcry_mpi_t gcry_mpi_set (@w{gcry_mpi_t @var{w}}, @w{const gcry_mpi_t @var{u}})
Assign the value of @var{u} to @var{w} and return @var{w}. If
@code{NULL} is passed for @var{w}, a new MPI is allocated, set to the
value of @var{u} and returned.
@end deftypefun
@deftypefun gcry_mpi_t gcry_mpi_set_ui (@w{gcry_mpi_t @var{w}}, @w{unsigned long @var{u}})
Assign the value of @var{u} to @var{w} and return @var{w}. If
@code{NULL} is passed for @var{w}, a new MPI is allocated, set to the
value of @var{u} and returned. This function takes an @code{unsigned
int} as type for @var{u} and thus it is only possible to set @var{w} to
small values (usually up to the word size of the CPU).
@end deftypefun
@deftypefun void gcry_mpi_swap (@w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{b}})
Swap the values of @var{a} and @var{b}.
@end deftypefun
@node MPI formats
@section MPI formats
@noindent
The following functions are used to convert between an external
representation of an MPI and the internal one of @acronym{Libgcrypt}.
@deftypefun int gcry_mpi_scan (@w{gcry_mpi_t *@var{r_mpi}}, @w{enum gcry_mpi_format @var{format}}, @w{const unsigned char *@var{buffer}}, @w{size_t @var{buflen}}, @w{size_t *@var{nscanned}})
Convert the external representation of an integer stored in @var{buffer}
with a length of @var{buflen} into a newly created MPI returned which
will be stored at the address of @var{r_mpi}. For certain formats the
length argument is not required and may be passed as @code{0}. After a
successful operation the variable @var{nscanned} receives the number of
bytes actually scanned unless @var{nscanned} was given as
@code{NULL}. @var{format} describes the format of the MPI as stored in
@var{buffer}:
@table @code
@item GCRYMPI_FMT_STD
2-complement stored without a length header.
@item GCRYMPI_FMT_PGP
As used by OpenPGP (only defined as unsigned). This is basically
@code{GCRYMPI_FMT_STD} with a 2 byte big endian length header.
@item GCRYMPI_FMT_SSH
As used in the Secure Shell protocol. This is @code{GCRYMPI_FMT_STD}
with a 4 byte big endian header.
@item GCRYMPI_FMT_HEX
Stored as a C style string with each byte of the MPI encoded as 2 hex
digits.
@item GCRYMPI_FMT_USG
Simple unsigned integer.
@end table
@noindent
Note, that all of the above formats store the integer in big-endian
format (MSB first).
@end deftypefun
@deftypefun int gcry_mpi_print (@w{enum gcry_mpi_format @var{format}}, @w{unsigned char *@var{buffer}}, @w{size_t @var{buflen}}, @w{size_t *@var{nwritten}}, @w{const gcry_mpi_t @var{a}})
Convert the MPI @var{a} into an external representation described by
@var{format} (see above) and store it in the provided @var{buffer} which
which has a usable length of at least the @var{buflen} bytes. If
@var{nwritten} is not NULL, it wilol receive the number of bytes
actually stored in @var{buffer} after a successful operation.
@end deftypefun
@deftypefun int gcry_mpi_aprint (@w{enum gcry_mpi_format @var{format}}, @w{unsigned char **@var{buffer}}, @w{size_t *@var{nbytes}}, @w{const gcry_mpi_t @var{a}})
Convert the MPI @var{a} into an external representation described by
@var{format} (see above) and store it in a newly allocated buffer which
address will be stored in the variable @var{buffer} points to. The
number of bytes stored in this buffer will be stored in the variable
@var{nbytes} points to, unless @var{nbytes} is @code{NULL}.
@end deftypefun
@deftypefun void gcry_mpi_dump (@w{const gcry_mpi_t @var{a}})
Dump the value of @var{a} in a format suitable for debugging to
Libgcrypt's logging stream. Note that one leading space but no trailing
space or linefeed will be printed. It is okay to pass @code{NULL} for
@var{a}.
@end deftypefun
@node Calculations
@section Calculations
@noindent
Basic arithmetic operations:
@deftypefun void gcry_mpi_add (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}})
@math{@var{w} = @var{u} + @var{v}}.
@end deftypefun
@deftypefun void gcry_mpi_add_ui (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{v}})
@math{@var{w} = @var{u} + @var{v}}. Note, that @var{v} is an unsigned integer.
@end deftypefun
@deftypefun void gcry_mpi_addm (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}, @w{gcry_mpi_t @var{m}})
@math{var{w} = @var{u} + @var{v} \bmod @var{m}}.
@end deftypefun
@deftypefun void gcry_mpi_sub (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}})
@math{@var{w} = @var{u} - @var{v}}.
@end deftypefun
@deftypefun void gcry_mpi_sub_ui (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{v}})
@math{@var{w} = @var{u} - @var{v}}. @var{v} is an unsigned integer.
@end deftypefun
@deftypefun void gcry_mpi_subm (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}, @w{gcry_mpi_t @var{m}})
@math{@var{w} = @var{u} - @var{v} \bmod @var{m}}.
@end deftypefun
@deftypefun void gcry_mpi_mul (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}})
@math{@var{w} = @var{u} * @var{v}}.
@end deftypefun
@deftypefun void gcry_mpi_mul_ui (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{v}})
@math{@var{w} = @var{u} * @var{v}}. @var{v} is an unsigned integer.
@end deftypefun
@deftypefun void gcry_mpi_mulm (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{gcry_mpi_t @var{v}}, @w{gcry_mpi_t @var{m}})
@math{@var{w} = @var{u} * @var{v} \bmod @var{m}}.
@end deftypefun
@deftypefun void gcry_mpi_mul_2exp (@w{gcry_mpi_t @var{w}}, @w{gcry_mpi_t @var{u}}, @w{unsigned long @var{e}})
@c FIXME: I am in need for a real TeX{info} guru:
@c I don't know why TeX can grok @var{e} here.
@math{@var{w} = @var{u} * 2^e}.
@end deftypefun
@deftypefun void gcry_mpi_div (@w{gcry_mpi_t @var{q}}, @w{gcry_mpi_t @var{r}}, @w{gcry_mpi_t @var{dividend}}, @w{gcry_mpi_t @var{divisor}}, @w{int @var{round}})
@math{@var{q} = @var{dividend} / @var{divisor}}, @math{@var{r} =
@var{dividend} \bmod @var{divisor}}. @var{q} and @var{r} may be passed
as @code{NULL}. @var{round} should be negative or 0.
@end deftypefun
@deftypefun void gcry_mpi_mod (@w{gcry_mpi_t @var{r}}, @w{gcry_mpi_t @var{dividend}}, @w{gcry_mpi_t @var{divisor}})
@math{@var{r} = @var{dividend} \bmod @var{divisor}}.
@end deftypefun
@deftypefun void gcry_mpi_powm (@w{gcry_mpi_t @var{w}}, @w{const gcry_mpi_t @var{b}}, @w{const gcry_mpi_t @var{e}}, @w{const gcry_mpi_t @var{m}})
@c I don't know why TeX can grok @var{e} here.
@math{@var{w} = @var{b}^e \bmod @var{m}}.
@end deftypefun
@deftypefun int gcry_mpi_gcd (@w{gcry_mpi_t @var{g}}, @w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{b}})
Set @var{g} to the greatest common divisor of @var{a} and @var{b}.
Return true if the @var{g} is 1.
@end deftypefun
@deftypefun int gcry_mpi_invm (@w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{m}})
Set @var{x} to the multiplicative inverse of @math{@var{a} \bmod @var{m}}.
Return true if the inverse exists.
@end deftypefun
@node Comparisons
@section Comparisons
@noindent
The next 2 functions are used to compare MPIs:
@deftypefun int gcry_mpi_cmp (@w{const gcry_mpi_t @var{u}}, @w{const gcry_mpi_t @var{v}})
Compare the big integer number @var{u} and @var{v} returning 0 for
equality, a positive value for @var{u} > @var{v} and a negative for
@var{u} < @var{v}.
@end deftypefun
@deftypefun int gcry_mpi_cmp_ui (@w{const gcry_mpi_t @var{u}}, @w{unsigned long @var{v}})
Compare the big integer number @var{u} with the unsigned integer @var{v}
returning 0 for equality, a positive value for @var{u} > @var{v} and a
negative for @var{u} < @var{v}.
@end deftypefun
@node Bit manipulations
@section Bit manipulations
@noindent
There are a couple of functions to get information on arbitrary bits
in an MPI and to set or clear them:
@deftypefun {unsigned int} gcry_mpi_get_nbits (@w{gcry_mpi_t @var{a}})
Return the number of bits required to represent @var{a}.
@end deftypefun
@deftypefun int gcry_mpi_test_bit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
Return true if bit number @var{n} (counting from 0) is set in @var{a}.
@end deftypefun
@deftypefun void gcry_mpi_set_bit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
Set bit number @var{n} in @var{a}.
@end deftypefun
@deftypefun void gcry_mpi_clear_bit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
Clear bit number @var{n} in @var{a}.
@end deftypefun
@deftypefun void gcry_mpi_set_highbit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
Set bit number @var{n} in @var{a} and clear all bits greater than @var{n}.
@end deftypefun
@deftypefun void gcry_mpi_clear_highbit (@w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
Clear bit number @var{n} in @var{a} and all bits greater than @var{n}.
@end deftypefun
@deftypefun void gcry_mpi_rshift (@w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
Shift the value of @var{a} by @var{n} bits to the right and store the
result in @var{x}.
@end deftypefun
@node Misc
@section Misc
@noindent
The remaining MPI functions take care of very special properties of the
implementation:
@deftypefun gcry_mpi_t gcry_mpi_set_opaque (@w{gcry_mpi_t @var{a}}, @w{void *@var{p}}, @w{unsigned int @var{nbits}})
Store @var{nbits} of the value @var{p} points to in @var{a} and mark
@var{a} as an opaque value (i.e. an value that can't be used for any
math calculation and is only used to store an arbitrary bit pattern in
@var{a}.
WARNING: Never use an opaque MPI for actual math operations. The only
valid functions are gcry_mpi_get_opaque and gcry_mpi_release. Use
gcry_mpi_scan to convert a string of arbitrary bytes into an MPI.
@end deftypefun
@deftypefun {void *} gcry_mpi_get_opaque (@w{gcry_mpi_t @var{a}}, @w{unsigned int *@var{nbits}})
Return a pointer to an opaque value stored in @var{a} and return its
size in @var{nbits}. Note, that the returned pointer is still owned by
@var{a} and that the function should never be used for an non-opaque
MPI.
@end deftypefun
@deftypefun void gcry_mpi_set_flag (@w{gcry_mpi_t @var{a}}, @w{enum gcry_mpi_flag @var{flag}})
Set the @var{flag} for the MPI @var{a}. Currently only the flag
@code{GCRYMPI_FLAG_SECURE} is allowed to convert @var{a} into an MPI
stored in "secure memory".
@end deftypefun
@deftypefun void gcry_mpi_clear_flag (@w{gcry_mpi_t @var{a}}, @w{enum gcry_mpi_flag @var{flag}})
Clear @var{flag} for the big integer @var{a}. Note, that this function is
currently useless as no flags are allowed.
@end deftypefun
@deftypefun int gcry_mpi_get_flag (@w{gcry_mpi_t @var{a}}, @w{enum gcry_mpi_flag @var{flag}})
Return true when the @var{flag} is set for @var{a}.
@end deftypefun
@node Utilities
@chapter Utilities
@menu
* Memory allocation:: Functions related with memory allocation.
@end menu
@node Memory allocation
@section Memory allocation
@deftypefun void *gcry_malloc (size_t @var{n})
This function tries to allocate @var{n} bytes of memory. On success
it returns a pointer to the memory area, in an out-of-core condition,
it returns NULL.
@end deftypefun
@deftypefun void *gcry_malloc_secure (size_t @var{n})
Like @code{gcry_malloc}, but uses secure memory.
@end deftypefun
@deftypefun void *gcry_calloc (size_t @var{n})
This function tries to allocate @var{n} bytes of cleared memory
(i.e. memory that is initialized with zero bytes). On success it
returns a pointer to the memory area, in an out-of-core condition, it
returns NULL.
@end deftypefun
@deftypefun void *gcry_calloc_secure (size_t @var{n})
Like @code{gcry_calloc}, but uses secure memory.
@end deftypefun
@deftypefun void *gcry_realloc (void *@var{p}, size_t @var{n})
This function tries to resize the memory area pointed to by @var{p} to
@var{n} bytes. On success it returns a pointer to the new memory
area, in an out-of-core condition, it returns NULL. Depending on
wether the memory pointed to by @var{p} is secure memory or not,
gcry_realloc tries to use secure memory as well.
@end deftypefun
@deftypefun void gcry_free (void *@var{p})
Release the memory area pointed to by @var{p}.
@end deftypefun
@c **********************************************************
@c ******************* Appendices *************************
@c **********************************************************
@include lgpl.texi
@include gpl.texi
@include fdl.texi
@node Concept Index
@unnumbered Concept Index
@printindex cp
@node Function and Data Index
@unnumbered Function and Data Index
@printindex fn
@summarycontents
@contents
@bye
/* Version check should be the very first gcry call because it
makes sure that constructor functrions are run. */
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");
/* Many applications don't require secure memory, so they should
disable it right away. There won't be a problem unless one makes
use of a feature which requires secure memoery - in that case the
process would abort becuase the secmem is not initialized. */
gcry_control (GCRYCTL_DISABLE_SECMEM, 0);
/* .. add whatever initialization you want, but better don't make calls
to libgcrypt from more than one thread ... */
/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);
If you require secure memory, this code should be used:
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");
/* We don't want to see any warnings, e.g. because we have not yet
parsed options which might be used to suppress such warnings */
gcry_control (GCRYCTL_SUSPEND_SECMEM_WARN);
/* ... */
/* Allocate a pool of 16k secure memory. This also drops priviliges
on some systems. */
gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);
/* It is now okay to let Libgcrypt complain when there was/is a problem
with the secure memory. */
gcry_control (GCRYCTL_RESUME_SECMEM_WARN);
/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);
This sounds a bit complicated but has the advantage that the caller
must decide whether he wants secure memory or not - there is no
default.
It is important that this initialization is not done by a library but
in the application. The library might want to check for finished
initialization using:
if (!gcry_control (GCRYCTL_INITIALIZATION_FINISHED_P))
return MYLIB_ERROR_LIBGCRYPT_NOT_INITIALIZED;
@c LocalWords: int HD
|