summaryrefslogtreecommitdiff
path: root/src/gd_topal.c
diff options
context:
space:
mode:
authorpierrejoye <none@none>2013-04-03 14:23:11 +0200
committerpierrejoye <none@none>2013-04-03 14:23:11 +0200
commite20413bf6b872a8c23f1704a89295c5897347c9d (patch)
treef34b5402f97cd826bb312e18677f3974d53bfd52 /src/gd_topal.c
parent385566e4ba57d803921a13306ead66f354cee0a2 (diff)
downloadlibgd-e20413bf6b872a8c23f1704a89295c5897347c9d.tar.gz
- apply same CS everywhere
Diffstat (limited to 'src/gd_topal.c')
-rw-r--r--src/gd_topal.c2311
1 files changed, 1082 insertions, 1229 deletions
diff --git a/src/gd_topal.c b/src/gd_topal.c
index 68f2ac2..435cc97 100644
--- a/src/gd_topal.c
+++ b/src/gd_topal.c
@@ -294,18 +294,17 @@ typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
/* Private subobject */
-typedef struct
-{
- /* Variables for accumulating image statistics */
- hist3d histogram; /* pointer to the histogram */
+typedef struct {
+ /* Variables for accumulating image statistics */
+ hist3d histogram; /* pointer to the histogram */
- /* Variables for Floyd-Steinberg dithering */
- FSERRPTR fserrors; /* accumulated errors */
+ /* Variables for Floyd-Steinberg dithering */
+ FSERRPTR fserrors; /* accumulated errors */
- boolean on_odd_row; /* flag to remember which row we are on */
- int *error_limiter; /* table for clamping the applied error */
- int *error_limiter_storage; /* gdMalloc'd storage for the above */
+ boolean on_odd_row; /* flag to remember which row we are on */
+ int *error_limiter; /* table for clamping the applied error */
+ int *error_limiter_storage; /* gdMalloc'd storage for the above */
}
my_cquantizer;
@@ -324,39 +323,36 @@ typedef my_cquantizer *my_cquantize_ptr;
METHODDEF (void)
prescan_quantize (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
{
- register JSAMPROW ptr;
- register histptr histp;
- register hist3d histogram = cquantize->histogram;
- int row;
- JDIMENSION col;
- int width = oim->sx;
- int num_rows = oim->sy;
-
- (void)nim;
-
- for (row = 0; row < num_rows; row++)
- {
- ptr = input_buf[row];
- for (col = width; col > 0; col--)
- {
- int r = gdTrueColorGetRed (*ptr) >> C0_SHIFT;
- int g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT;
- int b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT;
- /* 2.0.12: Steven Brown: support a single totally transparent
- color in the original. */
- if ((oim->transparent >= 0) && (*ptr == oim->transparent))
- {
- ptr++;
- continue;
- }
- /* get pixel value and index into the histogram */
- histp = &histogram[r][g][b];
- /* increment, check for overflow and undo increment if so. */
- if (++(*histp) == 0)
- (*histp)--;
- ptr++;
+ register JSAMPROW ptr;
+ register histptr histp;
+ register hist3d histogram = cquantize->histogram;
+ int row;
+ JDIMENSION col;
+ int width = oim->sx;
+ int num_rows = oim->sy;
+
+ (void)nim;
+
+ for (row = 0; row < num_rows; row++) {
+ ptr = input_buf[row];
+ for (col = width; col > 0; col--) {
+ int r = gdTrueColorGetRed (*ptr) >> C0_SHIFT;
+ int g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT;
+ int b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT;
+ /* 2.0.12: Steven Brown: support a single totally transparent
+ color in the original. */
+ if ((oim->transparent >= 0) && (*ptr == oim->transparent)) {
+ ptr++;
+ continue;
+ }
+ /* get pixel value and index into the histogram */
+ histp = &histogram[r][g][b];
+ /* increment, check for overflow and undo increment if so. */
+ if (++(*histp) == 0)
+ (*histp)--;
+ ptr++;
+ }
}
- }
}
@@ -367,16 +363,15 @@ prescan_quantize (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
* subset of the input color space (to histogram precision).
*/
-typedef struct
-{
- /* The bounds of the box (inclusive); expressed as histogram indexes */
- int c0min, c0max;
- int c1min, c1max;
- int c2min, c2max;
- /* The volume (actually 2-norm) of the box */
- INT32 volume;
- /* The number of nonzero histogram cells within this box */
- long colorcount;
+typedef struct {
+ /* The bounds of the box (inclusive); expressed as histogram indexes */
+ int c0min, c0max;
+ int c1min, c1max;
+ int c2min, c2max;
+ /* The volume (actually 2-norm) of the box */
+ INT32 volume;
+ /* The number of nonzero histogram cells within this box */
+ long colorcount;
}
box;
@@ -387,20 +382,18 @@ LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
- register boxptr boxp;
- register int i;
- register long maxc = 0;
- boxptr which = NULL;
-
- for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
- {
- if (boxp->colorcount > maxc && boxp->volume > 0)
- {
- which = boxp;
- maxc = boxp->colorcount;
+ register boxptr boxp;
+ register int i;
+ register long maxc = 0;
+ boxptr which = NULL;
+
+ for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+ if (boxp->colorcount > maxc && boxp->volume > 0) {
+ which = boxp;
+ maxc = boxp->colorcount;
+ }
}
- }
- return which;
+ return which;
}
@@ -408,305 +401,274 @@ LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
- register boxptr boxp;
- register int i;
- register INT32 maxv = 0;
- boxptr which = NULL;
-
- for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
- {
- if (boxp->volume > maxv)
- {
- which = boxp;
- maxv = boxp->volume;
+ register boxptr boxp;
+ register int i;
+ register INT32 maxv = 0;
+ boxptr which = NULL;
+
+ for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+ if (boxp->volume > maxv) {
+ which = boxp;
+ maxv = boxp->volume;
+ }
}
- }
- return which;
+ return which;
}
LOCAL (void)
- update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp)
+update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp)
{
- hist3d histogram = cquantize->histogram;
- histptr histp;
- int c0, c1, c2;
- int c0min, c0max, c1min, c1max, c2min, c2max;
- INT32 dist0, dist1, dist2;
- long ccount;
- (void)oim;
- (void)nim;
-
- c0min = boxp->c0min;
- c0max = boxp->c0max;
- c1min = boxp->c1min;
- c1max = boxp->c1max;
- c2min = boxp->c2min;
- c2max = boxp->c2max;
-
- if (c0max > c0min)
- for (c0 = c0min; c0 <= c0max; c0++)
- for (c1 = c1min; c1 <= c1max; c1++)
- {
- histp = &histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0)
- {
- boxp->c0min = c0min = c0;
- goto have_c0min;
- }
- }
+ hist3d histogram = cquantize->histogram;
+ histptr histp;
+ int c0, c1, c2;
+ int c0min, c0max, c1min, c1max, c2min, c2max;
+ INT32 dist0, dist1, dist2;
+ long ccount;
+ (void)oim;
+ (void)nim;
+
+ c0min = boxp->c0min;
+ c0max = boxp->c0max;
+ c1min = boxp->c1min;
+ c1max = boxp->c1max;
+ c2min = boxp->c2min;
+ c2max = boxp->c2max;
+
+ if (c0max > c0min)
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = &histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0min = c0min = c0;
+ goto have_c0min;
+ }
+ }
have_c0min:
- if (c0max > c0min)
- for (c0 = c0max; c0 >= c0min; c0--)
- for (c1 = c1min; c1 <= c1max; c1++)
- {
- histp = &histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0)
- {
- boxp->c0max = c0max = c0;
- goto have_c0max;
- }
- }
+ if (c0max > c0min)
+ for (c0 = c0max; c0 >= c0min; c0--)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = &histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0max = c0max = c0;
+ goto have_c0max;
+ }
+ }
have_c0max:
- if (c1max > c1min)
- for (c1 = c1min; c1 <= c1max; c1++)
- for (c0 = c0min; c0 <= c0max; c0++)
- {
- histp = &histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0)
- {
- boxp->c1min = c1min = c1;
- goto have_c1min;
- }
- }
+ if (c1max > c1min)
+ for (c1 = c1min; c1 <= c1max; c1++)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = &histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1min = c1min = c1;
+ goto have_c1min;
+ }
+ }
have_c1min:
- if (c1max > c1min)
- for (c1 = c1max; c1 >= c1min; c1--)
- for (c0 = c0min; c0 <= c0max; c0++)
- {
- histp = &histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- if (*histp++ != 0)
- {
- boxp->c1max = c1max = c1;
- goto have_c1max;
- }
- }
+ if (c1max > c1min)
+ for (c1 = c1max; c1 >= c1min; c1--)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = &histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1max = c1max = c1;
+ goto have_c1max;
+ }
+ }
have_c1max:
- if (c2max > c2min)
- for (c2 = c2min; c2 <= c2max; c2++)
- for (c0 = c0min; c0 <= c0max; c0++)
- {
- histp = &histogram[c0][c1min][c2];
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
- if (*histp != 0)
- {
- boxp->c2min = c2min = c2;
- goto have_c2min;
- }
- }
+ if (c2max > c2min)
+ for (c2 = c2min; c2 <= c2max; c2++)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = &histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2min = c2min = c2;
+ goto have_c2min;
+ }
+ }
have_c2min:
- if (c2max > c2min)
- for (c2 = c2max; c2 >= c2min; c2--)
- for (c0 = c0min; c0 <= c0max; c0++)
- {
- histp = &histogram[c0][c1min][c2];
- for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
- if (*histp != 0)
- {
- boxp->c2max = c2max = c2;
- goto have_c2max;
- }
- }
+ if (c2max > c2min)
+ for (c2 = c2max; c2 >= c2min; c2--)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = &histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2max = c2max = c2;
+ goto have_c2max;
+ }
+ }
have_c2max:
- /* Update box volume.
- * We use 2-norm rather than real volume here; this biases the method
- * against making long narrow boxes, and it has the side benefit that
- * a box is splittable iff norm > 0.
- * Since the differences are expressed in histogram-cell units,
- * we have to shift back to JSAMPLE units to get consistent distances;
- * after which, we scale according to the selected distance scale factors.
- */
- dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
- dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
- dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
- boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
-
- /* Now scan remaining volume of box and compute population */
- ccount = 0;
- for (c0 = c0min; c0 <= c0max; c0++)
- for (c1 = c1min; c1 <= c1max; c1++)
- {
- histp = &histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++, histp++)
- if (*histp != 0)
- {
- ccount++;
- }
- }
- boxp->colorcount = ccount;
+ /* Update box volume.
+ * We use 2-norm rather than real volume here; this biases the method
+ * against making long narrow boxes, and it has the side benefit that
+ * a box is splittable iff norm > 0.
+ * Since the differences are expressed in histogram-cell units,
+ * we have to shift back to JSAMPLE units to get consistent distances;
+ * after which, we scale according to the selected distance scale factors.
+ */
+ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
+ dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
+ dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
+ boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
+
+ /* Now scan remaining volume of box and compute population */
+ ccount = 0;
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = &histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++, histp++)
+ if (*histp != 0) {
+ ccount++;
+ }
+ }
+ boxp->colorcount = ccount;
}
LOCAL (int)
median_cut (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
- boxptr boxlist, int numboxes, int desired_colors)
+ boxptr boxlist, int numboxes, int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
- int n, lb;
- int c0, c1, c2, cmax;
- register boxptr b1, b2;
-
- while (numboxes < desired_colors)
- {
- /* Select box to split.
- * Current algorithm: by population for first half, then by volume.
- */
- if (numboxes * 2 <= desired_colors)
- {
- b1 = find_biggest_color_pop (boxlist, numboxes);
- }
- else
- {
- b1 = find_biggest_volume (boxlist, numboxes);
- }
- if (b1 == NULL) /* no splittable boxes left! */
- break;
- b2 = &boxlist[numboxes]; /* where new box will go */
- /* Copy the color bounds to the new box. */
- b2->c0max = b1->c0max;
- b2->c1max = b1->c1max;
- b2->c2max = b1->c2max;
- b2->c0min = b1->c0min;
- b2->c1min = b1->c1min;
- b2->c2min = b1->c2min;
- /* Choose which axis to split the box on.
- * Current algorithm: longest scaled axis.
- * See notes in update_box about scaling distances.
- */
- c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
- c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
- c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
- /* We want to break any ties in favor of green, then red, blue last.
- * This code does the right thing for R,G,B or B,G,R color orders only.
- */
+ int n, lb;
+ int c0, c1, c2, cmax;
+ register boxptr b1, b2;
+
+ while (numboxes < desired_colors) {
+ /* Select box to split.
+ * Current algorithm: by population for first half, then by volume.
+ */
+ if (numboxes * 2 <= desired_colors) {
+ b1 = find_biggest_color_pop (boxlist, numboxes);
+ } else {
+ b1 = find_biggest_volume (boxlist, numboxes);
+ }
+ if (b1 == NULL) /* no splittable boxes left! */
+ break;
+ b2 = &boxlist[numboxes]; /* where new box will go */
+ /* Copy the color bounds to the new box. */
+ b2->c0max = b1->c0max;
+ b2->c1max = b1->c1max;
+ b2->c2max = b1->c2max;
+ b2->c0min = b1->c0min;
+ b2->c1min = b1->c1min;
+ b2->c2min = b1->c2min;
+ /* Choose which axis to split the box on.
+ * Current algorithm: longest scaled axis.
+ * See notes in update_box about scaling distances.
+ */
+ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
+ c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
+ c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
+ /* We want to break any ties in favor of green, then red, blue last.
+ * This code does the right thing for R,G,B or B,G,R color orders only.
+ */
#if RGB_RED == 0
- cmax = c1;
- n = 1;
- if (c0 > cmax)
- {
- cmax = c0;
- n = 0;
- }
- if (c2 > cmax)
- {
- n = 2;
- }
+ cmax = c1;
+ n = 1;
+ if (c0 > cmax) {
+ cmax = c0;
+ n = 0;
+ }
+ if (c2 > cmax) {
+ n = 2;
+ }
#else
- cmax = c1;
- n = 1;
- if (c2 > cmax)
- {
- cmax = c2;
- n = 2;
- }
- if (c0 > cmax)
- {
- n = 0;
- }
+ cmax = c1;
+ n = 1;
+ if (c2 > cmax) {
+ cmax = c2;
+ n = 2;
+ }
+ if (c0 > cmax) {
+ n = 0;
+ }
#endif
- /* Choose split point along selected axis, and update box bounds.
- * Current algorithm: split at halfway point.
- * (Since the box has been shrunk to minimum volume,
- * any split will produce two nonempty subboxes.)
- * Note that lb value is max for lower box, so must be < old max.
- */
- switch (n)
- {
- case 0:
- lb = (b1->c0max + b1->c0min) / 2;
- b1->c0max = lb;
- b2->c0min = lb + 1;
- break;
- case 1:
- lb = (b1->c1max + b1->c1min) / 2;
- b1->c1max = lb;
- b2->c1min = lb + 1;
- break;
- case 2:
- lb = (b1->c2max + b1->c2min) / 2;
- b1->c2max = lb;
- b2->c2min = lb + 1;
- break;
+ /* Choose split point along selected axis, and update box bounds.
+ * Current algorithm: split at halfway point.
+ * (Since the box has been shrunk to minimum volume,
+ * any split will produce two nonempty subboxes.)
+ * Note that lb value is max for lower box, so must be < old max.
+ */
+ switch (n) {
+ case 0:
+ lb = (b1->c0max + b1->c0min) / 2;
+ b1->c0max = lb;
+ b2->c0min = lb + 1;
+ break;
+ case 1:
+ lb = (b1->c1max + b1->c1min) / 2;
+ b1->c1max = lb;
+ b2->c1min = lb + 1;
+ break;
+ case 2:
+ lb = (b1->c2max + b1->c2min) / 2;
+ b1->c2max = lb;
+ b2->c2min = lb + 1;
+ break;
+ }
+ /* Update stats for boxes */
+ update_box (oim, nim, cquantize, b1);
+ update_box (oim, nim, cquantize, b2);
+ numboxes++;
}
- /* Update stats for boxes */
- update_box (oim, nim, cquantize, b1);
- update_box (oim, nim, cquantize, b2);
- numboxes++;
- }
- return numboxes;
+ return numboxes;
}
LOCAL (void)
- compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
- boxptr boxp, int icolor)
+compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
+ boxptr boxp, int icolor)
{
- hist3d histogram = cquantize->histogram;
- histptr histp;
- int c0, c1, c2;
- int c0min, c0max, c1min, c1max, c2min, c2max;
- long count = 0; /* 2.0.28: = 0 */
- long total = 0;
- long c0total = 0;
- long c1total = 0;
- long c2total = 0;
- (void)oim;
-
- c0min = boxp->c0min;
- c0max = boxp->c0max;
- c1min = boxp->c1min;
- c1max = boxp->c1max;
- c2min = boxp->c2min;
- c2max = boxp->c2max;
-
- for (c0 = c0min; c0 <= c0max; c0++)
- for (c1 = c1min; c1 <= c1max; c1++)
- {
- histp = &histogram[c0][c1][c2min];
- for (c2 = c2min; c2 <= c2max; c2++)
- {
- if ((count = *histp++) != 0)
- {
- total += count;
- c0total +=
- ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
- c1total +=
- ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
- c2total +=
- ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
- }
- }
- }
-
- /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */
- if (count)
- {
- nim->red[icolor] = (int) ((c0total + (total >> 1)) / total);
- nim->green[icolor] = (int) ((c1total + (total >> 1)) / total);
- nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total);
- }
- else
- {
- nim->red[icolor] = 255;
- nim->green[icolor] = 255;
- nim->blue[icolor] = 255;
- }
- nim->open[icolor] = 0;
+ hist3d histogram = cquantize->histogram;
+ histptr histp;
+ int c0, c1, c2;
+ int c0min, c0max, c1min, c1max, c2min, c2max;
+ long count = 0; /* 2.0.28: = 0 */
+ long total = 0;
+ long c0total = 0;
+ long c1total = 0;
+ long c2total = 0;
+ (void)oim;
+
+ c0min = boxp->c0min;
+ c0max = boxp->c0max;
+ c1min = boxp->c1min;
+ c1max = boxp->c1max;
+ c2min = boxp->c2min;
+ c2max = boxp->c2max;
+
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = &histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++) {
+ if ((count = *histp++) != 0) {
+ total += count;
+ c0total +=
+ ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
+ c1total +=
+ ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
+ c2total +=
+ ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
+ }
+ }
+ }
+
+ /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */
+ if (count) {
+ nim->red[icolor] = (int) ((c0total + (total >> 1)) / total);
+ nim->green[icolor] = (int) ((c1total + (total >> 1)) / total);
+ nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total);
+ } else {
+ nim->red[icolor] = 255;
+ nim->green[icolor] = 255;
+ nim->blue[icolor] = 255;
+ }
+ nim->open[icolor] = 0;
}
@@ -714,52 +676,51 @@ LOCAL (void)
select_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int desired_colors)
/* Master routine for color selection */
{
- boxptr boxlist;
- int numboxes;
- int i;
-
- /* Allocate workspace for box list */
- /* This can't happen because we clamp desired_colors at gdMaxColors,
- but anyway */
- if (overflow2(desired_colors, sizeof (box))) {
- return;
- }
- boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box));
+ boxptr boxlist;
+ int numboxes;
+ int i;
+
+ /* Allocate workspace for box list */
+ /* This can't happen because we clamp desired_colors at gdMaxColors,
+ but anyway */
+ if (overflow2(desired_colors, sizeof (box))) {
+ return;
+ }
+ boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box));
if (!boxlist) {
return;
}
- /* Initialize one box containing whole space */
- numboxes = 1;
- boxlist[0].c0min = 0;
- boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
- boxlist[0].c1min = 0;
- boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
- boxlist[0].c2min = 0;
- boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
- /* Shrink it to actually-used volume and set its statistics */
- update_box (oim, nim, cquantize, &boxlist[0]);
- /* Perform median-cut to produce final box list */
- numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors);
- /* Compute the representative color for each box, fill colormap */
- for (i = 0; i < numboxes; i++)
- compute_color (oim, nim, cquantize, &boxlist[i], i);
- nim->colorsTotal = numboxes;
-
- /* If we had a pure transparency color, add it as the last palette entry.
- * Skip incrementing the color count so that the dither / matching phase
- * won't use it on pixels that shouldn't have been transparent. We'll
- * increment it after all that finishes. */
- if (oim->transparent >= 0)
- {
- /* Save the transparent color. */
- nim->red[nim->colorsTotal] = gdTrueColorGetRed (oim->transparent);
- nim->green[nim->colorsTotal] = gdTrueColorGetGreen (oim->transparent);
- nim->blue[nim->colorsTotal] = gdTrueColorGetBlue (oim->transparent);
- nim->alpha[nim->colorsTotal] = gdAlphaTransparent;
- nim->open[nim->colorsTotal] = 0;
- }
-
- gdFree (boxlist);
+ /* Initialize one box containing whole space */
+ numboxes = 1;
+ boxlist[0].c0min = 0;
+ boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
+ boxlist[0].c1min = 0;
+ boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
+ boxlist[0].c2min = 0;
+ boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
+ /* Shrink it to actually-used volume and set its statistics */
+ update_box (oim, nim, cquantize, &boxlist[0]);
+ /* Perform median-cut to produce final box list */
+ numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors);
+ /* Compute the representative color for each box, fill colormap */
+ for (i = 0; i < numboxes; i++)
+ compute_color (oim, nim, cquantize, &boxlist[i], i);
+ nim->colorsTotal = numboxes;
+
+ /* If we had a pure transparency color, add it as the last palette entry.
+ * Skip incrementing the color count so that the dither / matching phase
+ * won't use it on pixels that shouldn't have been transparent. We'll
+ * increment it after all that finishes. */
+ if (oim->transparent >= 0) {
+ /* Save the transparent color. */
+ nim->red[nim->colorsTotal] = gdTrueColorGetRed (oim->transparent);
+ nim->green[nim->colorsTotal] = gdTrueColorGetGreen (oim->transparent);
+ nim->blue[nim->colorsTotal] = gdTrueColorGetBlue (oim->transparent);
+ nim->alpha[nim->colorsTotal] = gdAlphaTransparent;
+ nim->open[nim->colorsTotal] = 0;
+ }
+
+ gdFree (boxlist);
}
@@ -841,8 +802,8 @@ select_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int d
LOCAL (int)
find_nearby_colors (
- gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
- int minc0, int minc1, int minc2, JSAMPLE colorlist[])
+ gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
+ int minc0, int minc1, int minc2, JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
@@ -852,156 +813,130 @@ find_nearby_colors (
* the colors that need further consideration.
*/
{
- int numcolors = nim->colorsTotal;
- int maxc0, maxc1, maxc2;
- int centerc0, centerc1, centerc2;
- int i, x, ncolors;
- INT32 minmaxdist, min_dist, max_dist, tdist;
- INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
- (void)oim;
- (void)cquantize;
-
- /* Compute true coordinates of update box's upper corner and center.
- * Actually we compute the coordinates of the center of the upper-corner
- * histogram cell, which are the upper bounds of the volume we care about.
- * Note that since ">>" rounds down, the "center" values may be closer to
- * min than to max; hence comparisons to them must be "<=", not "<".
- */
- maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
- centerc0 = (minc0 + maxc0) >> 1;
- maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
- centerc1 = (minc1 + maxc1) >> 1;
- maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
- centerc2 = (minc2 + maxc2) >> 1;
-
- /* For each color in colormap, find:
- * 1. its minimum squared-distance to any point in the update box
- * (zero if color is within update box);
- * 2. its maximum squared-distance to any point in the update box.
- * Both of these can be found by considering only the corners of the box.
- * We save the minimum distance for each color in mindist[];
- * only the smallest maximum distance is of interest.
- */
- minmaxdist = 0x7FFFFFFFL;
-
- for (i = 0; i < numcolors; i++)
- {
- /* We compute the squared-c0-distance term, then add in the other two. */
- x = nim->red[i];
- if (x < minc0)
- {
- tdist = (x - minc0) * C0_SCALE;
- min_dist = tdist * tdist;
- tdist = (x - maxc0) * C0_SCALE;
- max_dist = tdist * tdist;
- }
- else if (x > maxc0)
- {
- tdist = (x - maxc0) * C0_SCALE;
- min_dist = tdist * tdist;
- tdist = (x - minc0) * C0_SCALE;
- max_dist = tdist * tdist;
- }
- else
- {
- /* within cell range so no contribution to min_dist */
- min_dist = 0;
- if (x <= centerc0)
- {
- tdist = (x - maxc0) * C0_SCALE;
- max_dist = tdist * tdist;
- }
- else
- {
- tdist = (x - minc0) * C0_SCALE;
- max_dist = tdist * tdist;
- }
- }
+ int numcolors = nim->colorsTotal;
+ int maxc0, maxc1, maxc2;
+ int centerc0, centerc1, centerc2;
+ int i, x, ncolors;
+ INT32 minmaxdist, min_dist, max_dist, tdist;
+ INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
+ (void)oim;
+ (void)cquantize;
+
+ /* Compute true coordinates of update box's upper corner and center.
+ * Actually we compute the coordinates of the center of the upper-corner
+ * histogram cell, which are the upper bounds of the volume we care about.
+ * Note that since ">>" rounds down, the "center" values may be closer to
+ * min than to max; hence comparisons to them must be "<=", not "<".
+ */
+ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
+ centerc0 = (minc0 + maxc0) >> 1;
+ maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
+ centerc1 = (minc1 + maxc1) >> 1;
+ maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
+ centerc2 = (minc2 + maxc2) >> 1;
+
+ /* For each color in colormap, find:
+ * 1. its minimum squared-distance to any point in the update box
+ * (zero if color is within update box);
+ * 2. its maximum squared-distance to any point in the update box.
+ * Both of these can be found by considering only the corners of the box.
+ * We save the minimum distance for each color in mindist[];
+ * only the smallest maximum distance is of interest.
+ */
+ minmaxdist = 0x7FFFFFFFL;
+
+ for (i = 0; i < numcolors; i++) {
+ /* We compute the squared-c0-distance term, then add in the other two. */
+ x = nim->red[i];
+ if (x < minc0) {
+ tdist = (x - minc0) * C0_SCALE;
+ min_dist = tdist * tdist;
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist * tdist;
+ } else if (x > maxc0) {
+ tdist = (x - maxc0) * C0_SCALE;
+ min_dist = tdist * tdist;
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist * tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ min_dist = 0;
+ if (x <= centerc0) {
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist * tdist;
+ } else {
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist * tdist;
+ }
+ }
- x = nim->green[i];
- if (x < minc1)
- {
- tdist = (x - minc1) * C1_SCALE;
- min_dist += tdist * tdist;
- tdist = (x - maxc1) * C1_SCALE;
- max_dist += tdist * tdist;
- }
- else if (x > maxc1)
- {
- tdist = (x - maxc1) * C1_SCALE;
- min_dist += tdist * tdist;
- tdist = (x - minc1) * C1_SCALE;
- max_dist += tdist * tdist;
- }
- else
- {
- /* within cell range so no contribution to min_dist */
- if (x <= centerc1)
- {
- tdist = (x - maxc1) * C1_SCALE;
- max_dist += tdist * tdist;
- }
- else
- {
- tdist = (x - minc1) * C1_SCALE;
- max_dist += tdist * tdist;
- }
- }
+ x = nim->green[i];
+ if (x < minc1) {
+ tdist = (x - minc1) * C1_SCALE;
+ min_dist += tdist * tdist;
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist * tdist;
+ } else if (x > maxc1) {
+ tdist = (x - maxc1) * C1_SCALE;
+ min_dist += tdist * tdist;
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist * tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ if (x <= centerc1) {
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist * tdist;
+ } else {
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist * tdist;
+ }
+ }
- x = nim->blue[i];
- if (x < minc2)
- {
- tdist = (x - minc2) * C2_SCALE;
- min_dist += tdist * tdist;
- tdist = (x - maxc2) * C2_SCALE;
- max_dist += tdist * tdist;
- }
- else if (x > maxc2)
- {
- tdist = (x - maxc2) * C2_SCALE;
- min_dist += tdist * tdist;
- tdist = (x - minc2) * C2_SCALE;
- max_dist += tdist * tdist;
- }
- else
- {
- /* within cell range so no contribution to min_dist */
- if (x <= centerc2)
- {
- tdist = (x - maxc2) * C2_SCALE;
- max_dist += tdist * tdist;
- }
- else
- {
- tdist = (x - minc2) * C2_SCALE;
- max_dist += tdist * tdist;
- }
+ x = nim->blue[i];
+ if (x < minc2) {
+ tdist = (x - minc2) * C2_SCALE;
+ min_dist += tdist * tdist;
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist * tdist;
+ } else if (x > maxc2) {
+ tdist = (x - maxc2) * C2_SCALE;
+ min_dist += tdist * tdist;
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist * tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ if (x <= centerc2) {
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist * tdist;
+ } else {
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist * tdist;
+ }
+ }
+
+ mindist[i] = min_dist; /* save away the results */
+ if (max_dist < minmaxdist)
+ minmaxdist = max_dist;
}
- mindist[i] = min_dist; /* save away the results */
- if (max_dist < minmaxdist)
- minmaxdist = max_dist;
- }
-
- /* Now we know that no cell in the update box is more than minmaxdist
- * away from some colormap entry. Therefore, only colors that are
- * within minmaxdist of some part of the box need be considered.
- */
- ncolors = 0;
- for (i = 0; i < numcolors; i++)
- {
- if (mindist[i] <= minmaxdist)
- colorlist[ncolors++] = (JSAMPLE) i;
- }
- return ncolors;
+ /* Now we know that no cell in the update box is more than minmaxdist
+ * away from some colormap entry. Therefore, only colors that are
+ * within minmaxdist of some part of the box need be considered.
+ */
+ ncolors = 0;
+ for (i = 0; i < numcolors; i++) {
+ if (mindist[i] <= minmaxdist)
+ colorlist[ncolors++] = (JSAMPLE) i;
+ }
+ return ncolors;
}
LOCAL (void) find_best_colors (
- gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
- int minc0, int minc1, int minc2,
- int numcolors, JSAMPLE colorlist[],
- JSAMPLE bestcolor[])
+ gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
+ int minc0, int minc1, int minc2,
+ int numcolors, JSAMPLE colorlist[],
+ JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
* given the list of candidate colors prepared by find_nearby_colors.
* Return the indexes of the closest entries in the bestcolor[] array.
@@ -1009,144 +944,136 @@ LOCAL (void) find_best_colors (
* find the distance from a colormap entry to successive cells in the box.
*/
{
- int ic0, ic1, ic2;
- int i, icolor;
- register INT32 *bptr; /* pointer into bestdist[] array */
- JSAMPLE *cptr; /* pointer into bestcolor[] array */
- INT32 dist0, dist1; /* initial distance values */
- register INT32 dist2; /* current distance in inner loop */
- INT32 xx0, xx1; /* distance increments */
- register INT32 xx2;
- INT32 inc0, inc1, inc2; /* initial values for increments */
- /* This array holds the distance to the nearest-so-far color for each cell */
- INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
- (void)oim;
- (void)cquantize;
-
- /* Initialize best-distance for each cell of the update box */
- bptr = bestdist;
- for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
- *bptr++ = 0x7FFFFFFFL;
-
- /* For each color selected by find_nearby_colors,
- * compute its distance to the center of each cell in the box.
- * If that's less than best-so-far, update best distance and color number.
- */
-
- /* Nominal steps between cell centers ("x" in Thomas article) */
+ int ic0, ic1, ic2;
+ int i, icolor;
+ register INT32 *bptr; /* pointer into bestdist[] array */
+ JSAMPLE *cptr; /* pointer into bestcolor[] array */
+ INT32 dist0, dist1; /* initial distance values */
+ register INT32 dist2; /* current distance in inner loop */
+ INT32 xx0, xx1; /* distance increments */
+ register INT32 xx2;
+ INT32 inc0, inc1, inc2; /* initial values for increments */
+ /* This array holds the distance to the nearest-so-far color for each cell */
+ INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+ (void)oim;
+ (void)cquantize;
+
+ /* Initialize best-distance for each cell of the update box */
+ bptr = bestdist;
+ for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
+ *bptr++ = 0x7FFFFFFFL;
+
+ /* For each color selected by find_nearby_colors,
+ * compute its distance to the center of each cell in the box.
+ * If that's less than best-so-far, update best distance and color number.
+ */
+
+ /* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
- for (i = 0; i < numcolors; i++)
- {
- int r, g, b;
- icolor = colorlist[i];
- r = nim->red[icolor];
- g = nim->green[icolor];
- b = nim->blue[icolor];
-
- /* Compute (square of) distance from minc0/c1/c2 to this color */
- inc0 = (minc0 - r) * C0_SCALE;
- dist0 = inc0 * inc0;
- inc1 = (minc1 - g) * C1_SCALE;
- dist0 += inc1 * inc1;
- inc2 = (minc2 - b) * C2_SCALE;
- dist0 += inc2 * inc2;
- /* Form the initial difference increments */
- inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
- inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
- inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
- /* Now loop over all cells in box, updating distance per Thomas method */
- bptr = bestdist;
- cptr = bestcolor;
- xx0 = inc0;
- for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--)
- {
- dist1 = dist0;
- xx1 = inc1;
- for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--)
- {
- dist2 = dist1;
- xx2 = inc2;
- for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--)
- {
- if (dist2 < *bptr)
- {
- *bptr = dist2;
- *cptr = (JSAMPLE) icolor;
- }
- dist2 += xx2;
- xx2 += 2 * STEP_C2 * STEP_C2;
- bptr++;
- cptr++;
+ for (i = 0; i < numcolors; i++) {
+ int r, g, b;
+ icolor = colorlist[i];
+ r = nim->red[icolor];
+ g = nim->green[icolor];
+ b = nim->blue[icolor];
+
+ /* Compute (square of) distance from minc0/c1/c2 to this color */
+ inc0 = (minc0 - r) * C0_SCALE;
+ dist0 = inc0 * inc0;
+ inc1 = (minc1 - g) * C1_SCALE;
+ dist0 += inc1 * inc1;
+ inc2 = (minc2 - b) * C2_SCALE;
+ dist0 += inc2 * inc2;
+ /* Form the initial difference increments */
+ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
+ inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
+ inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
+ /* Now loop over all cells in box, updating distance per Thomas method */
+ bptr = bestdist;
+ cptr = bestcolor;
+ xx0 = inc0;
+ for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) {
+ dist1 = dist0;
+ xx1 = inc1;
+ for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) {
+ dist2 = dist1;
+ xx2 = inc2;
+ for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) {
+ if (dist2 < *bptr) {
+ *bptr = dist2;
+ *cptr = (JSAMPLE) icolor;
+ }
+ dist2 += xx2;
+ xx2 += 2 * STEP_C2 * STEP_C2;
+ bptr++;
+ cptr++;
+ }
+ dist1 += xx1;
+ xx1 += 2 * STEP_C1 * STEP_C1;
+ }
+ dist0 += xx0;
+ xx0 += 2 * STEP_C0 * STEP_C0;
}
- dist1 += xx1;
- xx1 += 2 * STEP_C1 * STEP_C1;
- }
- dist0 += xx0;
- xx0 += 2 * STEP_C0 * STEP_C0;
}
- }
}
LOCAL (void)
fill_inverse_cmap (
- gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
- int c0, int c1, int c2)
+ gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
+ int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
- hist3d histogram = cquantize->histogram;
- int minc0, minc1, minc2; /* lower left corner of update box */
- int ic0, ic1, ic2;
- register JSAMPLE *cptr; /* pointer into bestcolor[] array */
- register histptr cachep; /* pointer into main cache array */
- /* This array lists the candidate colormap indexes. */
- JSAMPLE colorlist[MAXNUMCOLORS];
- int numcolors; /* number of candidate colors */
- /* This array holds the actually closest colormap index for each cell. */
- JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
-
- /* Convert cell coordinates to update box ID */
- c0 >>= BOX_C0_LOG;
- c1 >>= BOX_C1_LOG;
- c2 >>= BOX_C2_LOG;
-
- /* Compute true coordinates of update box's origin corner.
- * Actually we compute the coordinates of the center of the corner
- * histogram cell, which are the lower bounds of the volume we care about.
- */
- minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
- minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
- minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
-
- /* Determine which colormap entries are close enough to be candidates
- * for the nearest entry to some cell in the update box.
- */
- numcolors =
- find_nearby_colors (oim, nim, cquantize, minc0, minc1, minc2, colorlist);
- find_best_colors (oim, nim, cquantize, minc0, minc1, minc2, numcolors,
- colorlist, bestcolor);
-
- /* Save the best color numbers (plus 1) in the main cache array */
- c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
- c1 <<= BOX_C1_LOG;
- c2 <<= BOX_C2_LOG;
- cptr = bestcolor;
- for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++)
- {
- for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++)
- {
- cachep = &histogram[c0 + ic0][c1 + ic1][c2];
- for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++)
- {
- *cachep++ = (histcell) ((*cptr++) + 1);
- }
+ hist3d histogram = cquantize->histogram;
+ int minc0, minc1, minc2; /* lower left corner of update box */
+ int ic0, ic1, ic2;
+ register JSAMPLE *cptr; /* pointer into bestcolor[] array */
+ register histptr cachep; /* pointer into main cache array */
+ /* This array lists the candidate colormap indexes. */
+ JSAMPLE colorlist[MAXNUMCOLORS];
+ int numcolors; /* number of candidate colors */
+ /* This array holds the actually closest colormap index for each cell. */
+ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+ /* Convert cell coordinates to update box ID */
+ c0 >>= BOX_C0_LOG;
+ c1 >>= BOX_C1_LOG;
+ c2 >>= BOX_C2_LOG;
+
+ /* Compute true coordinates of update box's origin corner.
+ * Actually we compute the coordinates of the center of the corner
+ * histogram cell, which are the lower bounds of the volume we care about.
+ */
+ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
+ minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
+ minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
+
+ /* Determine which colormap entries are close enough to be candidates
+ * for the nearest entry to some cell in the update box.
+ */
+ numcolors =
+ find_nearby_colors (oim, nim, cquantize, minc0, minc1, minc2, colorlist);
+ find_best_colors (oim, nim, cquantize, minc0, minc1, minc2, numcolors,
+ colorlist, bestcolor);
+
+ /* Save the best color numbers (plus 1) in the main cache array */
+ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
+ c1 <<= BOX_C1_LOG;
+ c2 <<= BOX_C2_LOG;
+ cptr = bestcolor;
+ for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
+ for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
+ cachep = &histogram[c0 + ic0][c1 + ic1][c2];
+ for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
+ *cachep++ = (histcell) ((*cptr++) + 1);
+ }
+ }
}
- }
}
@@ -1157,220 +1084,211 @@ fill_inverse_cmap (
METHODDEF (void)
pass2_no_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
{
- register int *inptr;
- register unsigned char *outptr;
- int width = oim->sx;
- int num_rows = oim->sy;
- hist3d histogram = cquantize->histogram;
- register int c0, c1, c2;
- int row;
- JDIMENSION col;
- register histptr cachep;
-
-
- for (row = 0; row < num_rows; row++)
- {
- inptr = input_buf[row];
- outptr = output_buf[row];
- for (col = width; col > 0; col--)
- {
- /* get pixel value and index into the cache */
- int r, g, b;
- r = gdTrueColorGetRed (*inptr);
- g = gdTrueColorGetGreen (*inptr);
- /*
- 2.0.24: inptr must not be incremented until after
- transparency check, if any. Thanks to "Super Pikeman."
- */
- b = gdTrueColorGetBlue (*inptr);
-
- /* If the pixel is transparent, we assign it the palette index that
- * will later be added at the end of the palette as the transparent
- * index. */
- if ((oim->transparent >= 0) && (oim->transparent == *inptr))
- {
- *outptr++ = nim->colorsTotal;
- inptr++;
- continue;
- }
- inptr++;
- c0 = r >> C0_SHIFT;
- c1 = g >> C1_SHIFT;
- c2 = b >> C2_SHIFT;
- cachep = &histogram[c0][c1][c2];
- /* If we have not seen this color before, find nearest colormap entry */
- /* and update the cache */
- if (*cachep == 0)
- fill_inverse_cmap (oim, nim, cquantize, c0, c1, c2);
- /* Now emit the colormap index for this cell */
- *outptr++ = (*cachep - 1);
+ register int *inptr;
+ register unsigned char *outptr;
+ int width = oim->sx;
+ int num_rows = oim->sy;
+ hist3d histogram = cquantize->histogram;
+ register int c0, c1, c2;
+ int row;
+ JDIMENSION col;
+ register histptr cachep;
+
+
+ for (row = 0; row < num_rows; row++) {
+ inptr = input_buf[row];
+ outptr = output_buf[row];
+ for (col = width; col > 0; col--) {
+ /* get pixel value and index into the cache */
+ int r, g, b;
+ r = gdTrueColorGetRed (*inptr);
+ g = gdTrueColorGetGreen (*inptr);
+ /*
+ 2.0.24: inptr must not be incremented until after
+ transparency check, if any. Thanks to "Super Pikeman."
+ */
+ b = gdTrueColorGetBlue (*inptr);
+
+ /* If the pixel is transparent, we assign it the palette index that
+ * will later be added at the end of the palette as the transparent
+ * index. */
+ if ((oim->transparent >= 0) && (oim->transparent == *inptr)) {
+ *outptr++ = nim->colorsTotal;
+ inptr++;
+ continue;
+ }
+ inptr++;
+ c0 = r >> C0_SHIFT;
+ c1 = g >> C1_SHIFT;
+ c2 = b >> C2_SHIFT;
+ cachep = &histogram[c0][c1][c2];
+ /* If we have not seen this color before, find nearest colormap entry */
+ /* and update the cache */
+ if (*cachep == 0)
+ fill_inverse_cmap (oim, nim, cquantize, c0, c1, c2);
+ /* Now emit the colormap index for this cell */
+ *outptr++ = (*cachep - 1);
+ }
}
- }
}
METHODDEF (void)
pass2_fs_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
{
- hist3d histogram = cquantize->histogram;
- register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
- LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
- LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
- register FSERRPTR errorptr; /* => fserrors[] at column before current */
- histptr cachep;
- int dir; /* +1 or -1 depending on direction */
- int dir3; /* 3*dir, for advancing inptr & errorptr */
- int row;
- JDIMENSION col;
- int *inptr; /* => current input pixel */
- unsigned char *outptr; /* => current output pixel */
- int width = oim->sx;
- int num_rows = oim->sy;
- int *colormap0 = nim->red;
- int *colormap1 = nim->green;
- int *colormap2 = nim->blue;
- int *error_limit = cquantize->error_limiter;
-
-
- SHIFT_TEMPS for (row = 0; row < num_rows; row++)
- {
- inptr = input_buf[row];
- outptr = output_buf[row];
- if (cquantize->on_odd_row)
- {
- /* work right to left in this row */
- inptr += (width - 1) * 3; /* so point to rightmost pixel */
- outptr += width - 1;
- dir = -1;
- dir3 = -3;
- errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
- }
- else
- {
- /* work left to right in this row */
- dir = 1;
- dir3 = 3;
- errorptr = cquantize->fserrors; /* => entry before first real column */
- }
- /* Preset error values: no error propagated to first pixel from left */
- cur0 = cur1 = cur2 = 0;
- /* and no error propagated to row below yet */
- belowerr0 = belowerr1 = belowerr2 = 0;
- bpreverr0 = bpreverr1 = bpreverr2 = 0;
-
- for (col = width; col > 0; col--)
- {
-
- /* If this pixel is transparent, we want to assign it to the special
- * transparency color index past the end of the palette rather than
- * go through matching / dithering. */
- if ((oim->transparent >= 0) && (*inptr == oim->transparent))
- {
- *outptr = nim->colorsTotal;
- errorptr[0] = 0;
- errorptr[1] = 0;
- errorptr[2] = 0;
- errorptr[3] = 0;
- inptr += dir;
- outptr += dir;
- errorptr += dir3;
- continue;
- }
- /* curN holds the error propagated from the previous pixel on the
- * current line. Add the error propagated from the previous line
- * to form the complete error correction term for this pixel, and
- * round the error term (which is expressed * 16) to an integer.
- * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
- * for either sign of the error value.
- * Note: errorptr points to *previous* column's array entry.
- */
- cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4);
- cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4);
- cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4);
- /* Limit the error using transfer function set by init_error_limit.
- * See comments with init_error_limit for rationale.
- */
- cur0 = error_limit[cur0];
- cur1 = error_limit[cur1];
- cur2 = error_limit[cur2];
- /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
- * The maximum error is +- MAXJSAMPLE (or less with error limiting);
- * this sets the required size of the range_limit array.
- */
- cur0 += gdTrueColorGetRed (*inptr);
- cur1 += gdTrueColorGetGreen (*inptr);
- cur2 += gdTrueColorGetBlue (*inptr);
- range_limit (cur0);
- range_limit (cur1);
- range_limit (cur2);
-
- /* Index into the cache with adjusted pixel value */
- cachep =
- &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
- /* If we have not seen this color before, find nearest colormap */
- /* entry and update the cache */
- if (*cachep == 0)
- fill_inverse_cmap (oim, nim, cquantize, cur0 >> C0_SHIFT,
- cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
- /* Now emit the colormap index for this cell */
- {
- register int pixcode = *cachep - 1;
- *outptr = (JSAMPLE) pixcode;
- /* Compute representation error for this pixel */
+ hist3d histogram = cquantize->histogram;
+ register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
+ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
+ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */
+ histptr cachep;
+ int dir; /* +1 or -1 depending on direction */
+ int dir3; /* 3*dir, for advancing inptr & errorptr */
+ int row;
+ JDIMENSION col;
+ int *inptr; /* => current input pixel */
+ unsigned char *outptr; /* => current output pixel */
+ int width = oim->sx;
+ int num_rows = oim->sy;
+ int *colormap0 = nim->red;
+ int *colormap1 = nim->green;
+ int *colormap2 = nim->blue;
+ int *error_limit = cquantize->error_limiter;
+
+
+ SHIFT_TEMPS for (row = 0; row < num_rows; row++) {
+ inptr = input_buf[row];
+ outptr = output_buf[row];
+ if (cquantize->on_odd_row) {
+ /* work right to left in this row */
+ inptr += (width - 1) * 3; /* so point to rightmost pixel */
+ outptr += width - 1;
+ dir = -1;
+ dir3 = -3;
+ errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
+ } else {
+ /* work left to right in this row */
+ dir = 1;
+ dir3 = 3;
+ errorptr = cquantize->fserrors; /* => entry before first real column */
+ }
+ /* Preset error values: no error propagated to first pixel from left */
+ cur0 = cur1 = cur2 = 0;
+ /* and no error propagated to row below yet */
+ belowerr0 = belowerr1 = belowerr2 = 0;
+ bpreverr0 = bpreverr1 = bpreverr2 = 0;
+
+ for (col = width; col > 0; col--) {
+
+ /* If this pixel is transparent, we want to assign it to the special
+ * transparency color index past the end of the palette rather than
+ * go through matching / dithering. */
+ if ((oim->transparent >= 0) && (*inptr == oim->transparent)) {
+ *outptr = nim->colorsTotal;
+ errorptr[0] = 0;
+ errorptr[1] = 0;
+ errorptr[2] = 0;
+ errorptr[3] = 0;
+ inptr += dir;
+ outptr += dir;
+ errorptr += dir3;
+ continue;
+ }
+ /* curN holds the error propagated from the previous pixel on the
+ * current line. Add the error propagated from the previous line
+ * to form the complete error correction term for this pixel, and
+ * round the error term (which is expressed * 16) to an integer.
+ * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+ * for either sign of the error value.
+ * Note: errorptr points to *previous* column's array entry.
+ */
+ cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4);
+ cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4);
+ cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4);
+ /* Limit the error using transfer function set by init_error_limit.
+ * See comments with init_error_limit for rationale.
+ */
+ cur0 = error_limit[cur0];
+ cur1 = error_limit[cur1];
+ cur2 = error_limit[cur2];
+ /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+ * The maximum error is +- MAXJSAMPLE (or less with error limiting);
+ * this sets the required size of the range_limit array.
+ */
+ cur0 += gdTrueColorGetRed (*inptr);
+ cur1 += gdTrueColorGetGreen (*inptr);
+ cur2 += gdTrueColorGetBlue (*inptr);
+ range_limit (cur0);
+ range_limit (cur1);
+ range_limit (cur2);
+
+ /* Index into the cache with adjusted pixel value */
+ cachep =
+ &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
+ /* If we have not seen this color before, find nearest colormap */
+ /* entry and update the cache */
+ if (*cachep == 0)
+ fill_inverse_cmap (oim, nim, cquantize, cur0 >> C0_SHIFT,
+ cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
+ /* Now emit the colormap index for this cell */
+ {
+ register int pixcode = *cachep - 1;
+ *outptr = (JSAMPLE) pixcode;
+ /* Compute representation error for this pixel */
#define GETJSAMPLE
- cur0 -= GETJSAMPLE (colormap0[pixcode]);
- cur1 -= GETJSAMPLE (colormap1[pixcode]);
- cur2 -= GETJSAMPLE (colormap2[pixcode]);
+ cur0 -= GETJSAMPLE (colormap0[pixcode]);
+ cur1 -= GETJSAMPLE (colormap1[pixcode]);
+ cur2 -= GETJSAMPLE (colormap2[pixcode]);
#undef GETJSAMPLE
- }
- /* Compute error fractions to be propagated to adjacent pixels.
- * Add these into the running sums, and simultaneously shift the
- * next-line error sums left by 1 column.
- */
- {
- register LOCFSERROR bnexterr, delta;
-
- bnexterr = cur0; /* Process component 0 */
- delta = cur0 * 2;
- cur0 += delta; /* form error * 3 */
- errorptr[0] = (FSERROR) (bpreverr0 + cur0);
- cur0 += delta; /* form error * 5 */
- bpreverr0 = belowerr0 + cur0;
- belowerr0 = bnexterr;
- cur0 += delta; /* form error * 7 */
- bnexterr = cur1; /* Process component 1 */
- delta = cur1 * 2;
- cur1 += delta; /* form error * 3 */
- errorptr[1] = (FSERROR) (bpreverr1 + cur1);
- cur1 += delta; /* form error * 5 */
- bpreverr1 = belowerr1 + cur1;
- belowerr1 = bnexterr;
- cur1 += delta; /* form error * 7 */
- bnexterr = cur2; /* Process component 2 */
- delta = cur2 * 2;
- cur2 += delta; /* form error * 3 */
- errorptr[2] = (FSERROR) (bpreverr2 + cur2);
- cur2 += delta; /* form error * 5 */
- bpreverr2 = belowerr2 + cur2;
- belowerr2 = bnexterr;
- cur2 += delta; /* form error * 7 */
- }
- /* At this point curN contains the 7/16 error value to be propagated
- * to the next pixel on the current line, and all the errors for the
- * next line have been shifted over. We are therefore ready to move on.
- */
- inptr += dir; /* Advance pixel pointers to next column */
- outptr += dir;
- errorptr += dir3; /* advance errorptr to current column */
+ }
+ /* Compute error fractions to be propagated to adjacent pixels.
+ * Add these into the running sums, and simultaneously shift the
+ * next-line error sums left by 1 column.
+ */
+ {
+ register LOCFSERROR bnexterr, delta;
+
+ bnexterr = cur0; /* Process component 0 */
+ delta = cur0 * 2;
+ cur0 += delta; /* form error * 3 */
+ errorptr[0] = (FSERROR) (bpreverr0 + cur0);
+ cur0 += delta; /* form error * 5 */
+ bpreverr0 = belowerr0 + cur0;
+ belowerr0 = bnexterr;
+ cur0 += delta; /* form error * 7 */
+ bnexterr = cur1; /* Process component 1 */
+ delta = cur1 * 2;
+ cur1 += delta; /* form error * 3 */
+ errorptr[1] = (FSERROR) (bpreverr1 + cur1);
+ cur1 += delta; /* form error * 5 */
+ bpreverr1 = belowerr1 + cur1;
+ belowerr1 = bnexterr;
+ cur1 += delta; /* form error * 7 */
+ bnexterr = cur2; /* Process component 2 */
+ delta = cur2 * 2;
+ cur2 += delta; /* form error * 3 */
+ errorptr[2] = (FSERROR) (bpreverr2 + cur2);
+ cur2 += delta; /* form error * 5 */
+ bpreverr2 = belowerr2 + cur2;
+ belowerr2 = bnexterr;
+ cur2 += delta; /* form error * 7 */
+ }
+ /* At this point curN contains the 7/16 error value to be propagated
+ * to the next pixel on the current line, and all the errors for the
+ * next line have been shifted over. We are therefore ready to move on.
+ */
+ inptr += dir; /* Advance pixel pointers to next column */
+ outptr += dir;
+ errorptr += dir3; /* advance errorptr to current column */
+ }
+ /* Post-loop cleanup: we must unload the final error values into the
+ * final fserrors[] entry. Note we need not unload belowerrN because
+ * it is for the dummy column before or after the actual array.
+ */
+ errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
+ errorptr[1] = (FSERROR) bpreverr1;
+ errorptr[2] = (FSERROR) bpreverr2;
}
- /* Post-loop cleanup: we must unload the final error values into the
- * final fserrors[] entry. Note we need not unload belowerrN because
- * it is for the dummy column before or after the actual array.
- */
- errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
- errorptr[1] = (FSERROR) bpreverr1;
- errorptr[2] = (FSERROR) bpreverr2;
- }
}
@@ -1395,42 +1313,38 @@ LOCAL (void)
init_error_limit (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
/* Allocate and fill in the error_limiter table */
{
- int *table;
- int in, out;
- (void)oim;
- (void)nim;
-
- cquantize->error_limiter_storage =
- (int *) gdMalloc ((MAXJSAMPLE * 2 + 1) * sizeof (int));
- if (!cquantize->error_limiter_storage)
- {
- return;
- }
- table = cquantize->error_limiter_storage;
-
- table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
- cquantize->error_limiter = table;
+ int *table;
+ int in, out;
+ (void)oim;
+ (void)nim;
+
+ cquantize->error_limiter_storage =
+ (int *) gdMalloc ((MAXJSAMPLE * 2 + 1) * sizeof (int));
+ if (!cquantize->error_limiter_storage) {
+ return;
+ }
+ table = cquantize->error_limiter_storage;
+
+ table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
+ cquantize->error_limiter = table;
#define STEPSIZE ((MAXJSAMPLE+1)/16)
- /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
- out = 0;
- for (in = 0; in < STEPSIZE; in++, out++)
- {
- table[in] = out;
- table[-in] = -out;
- }
- /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
- for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1)
- {
- table[in] = out;
- table[-in] = -out;
- }
- /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
- for (; in <= MAXJSAMPLE; in++)
- {
- table[in] = out;
- table[-in] = -out;
- }
+ /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
+ out = 0;
+ for (in = 0; in < STEPSIZE; in++, out++) {
+ table[in] = out;
+ table[-in] = -out;
+ }
+ /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
+ for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) {
+ table[in] = out;
+ table[-in] = -out;
+ }
+ /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
+ for (; in <= MAXJSAMPLE; in++) {
+ table[in] = out;
+ table[-in] = -out;
+ }
#undef STEPSIZE
}
@@ -1442,13 +1356,12 @@ init_error_limit (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
static void
zeroHistogram (hist3d histogram)
{
- int i;
- /* Zero the histogram or inverse color map */
- for (i = 0; i < HIST_C0_ELEMS; i++)
- {
- memset (histogram[i],
- 0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
- }
+ int i;
+ /* Zero the histogram or inverse color map */
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ memset (histogram[i],
+ 0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
+ }
}
@@ -1462,24 +1375,21 @@ zeroHistogram (hist3d histogram)
*/
BGD_DECLARE(int) gdImageTrueColorToPaletteSetMethod (gdImagePtr im, int method, int speed)
{
- #ifndef HAVE_LIBIMAGEQUANT_H
- if (method == GD_QUANT_LIQ)
- {
- return FALSE;
- }
- #endif
-
- if (method >= GD_QUANT_DEFAULT && method <= GD_QUANT_LIQ)
- {
- im->paletteQuantizationMethod = method;
-
- if (speed < 0 || speed > 10)
- {
- speed = 0;
- }
- im->paletteQuantizationSpeed = speed;
- }
- return TRUE;
+#ifndef HAVE_LIBIMAGEQUANT_H
+ if (method == GD_QUANT_LIQ) {
+ return FALSE;
+ }
+#endif
+
+ if (method >= GD_QUANT_DEFAULT && method <= GD_QUANT_LIQ) {
+ im->paletteQuantizationMethod = method;
+
+ if (speed < 0 || speed > 10) {
+ speed = 0;
+ }
+ im->paletteQuantizationSpeed = speed;
+ }
+ return TRUE;
}
/*
@@ -1491,12 +1401,11 @@ BGD_DECLARE(int) gdImageTrueColorToPaletteSetMethod (gdImagePtr im, int method,
*/
BGD_DECLARE(void) gdImageTrueColorToPaletteSetQuality (gdImagePtr im, int min_quality, int max_quality)
{
- if (min_quality >= 0 && min_quality <= 100 &&
- max_quality >= 0 && max_quality <= 100 && min_quality <= max_quality)
- {
- im->paletteQuantizationMinQuality = min_quality;
- im->paletteQuantizationMaxQuality = max_quality;
- }
+ if (min_quality >= 0 && min_quality <= 100 &&
+ max_quality >= 0 && max_quality <= 100 && min_quality <= max_quality) {
+ im->paletteQuantizationMinQuality = min_quality;
+ im->paletteQuantizationMaxQuality = max_quality;
+ }
}
static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP);
@@ -1504,10 +1413,9 @@ static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colors
BGD_DECLARE(gdImagePtr) gdImageCreatePaletteFromTrueColor (gdImagePtr im, int dither, int colorsWanted)
{
gdImagePtr nim;
- if (TRUE == gdImageTrueColorToPaletteBody(im, dither, colorsWanted, &nim))
- {
- return nim;
- }
+ if (TRUE == gdImageTrueColorToPaletteBody(im, dither, colorsWanted, &nim)) {
+ return nim;
+ }
return NULL;
}
@@ -1523,34 +1431,31 @@ BGD_DECLARE(int) gdImageTrueColorToPalette (gdImagePtr im, int dither, int color
*/
static void convert_gdpixel_to_rgba(liq_color output_row[], int y, int width, void *userinfo)
{
- gdImagePtr oim = userinfo;
- int x;
- for(x = 0; x < width; x++)
- {
- output_row[x].r = gdTrueColorGetRed(input_buf[y][x]) * 255/gdRedMax;
- output_row[x].g = gdTrueColorGetGreen(input_buf[y][x]) * 255/gdGreenMax;
- output_row[x].b = gdTrueColorGetBlue(input_buf[y][x]) * 255/gdBlueMax;
- int alpha = gdTrueColorGetAlpha(input_buf[y][x]);
- if (gdAlphaOpaque < gdAlphaTransparent)
- {
- alpha = gdAlphaTransparent - alpha;
- }
- output_row[x].a = alpha * 255/gdAlphaMax;
- }
+ gdImagePtr oim = userinfo;
+ int x;
+ for(x = 0; x < width; x++) {
+ output_row[x].r = gdTrueColorGetRed(input_buf[y][x]) * 255/gdRedMax;
+ output_row[x].g = gdTrueColorGetGreen(input_buf[y][x]) * 255/gdGreenMax;
+ output_row[x].b = gdTrueColorGetBlue(input_buf[y][x]) * 255/gdBlueMax;
+ int alpha = gdTrueColorGetAlpha(input_buf[y][x]);
+ if (gdAlphaOpaque < gdAlphaTransparent) {
+ alpha = gdAlphaTransparent - alpha;
+ }
+ output_row[x].a = alpha * 255/gdAlphaMax;
+ }
}
#endif
static void free_truecolor_image_data(gdImagePtr oim)
{
- int i;
- oim->trueColor = 0;
- /* Junk the truecolor pixels */
- for (i = 0; i < oim->sy; i++)
- {
- gdFree (oim->tpixels[i]);
- }
- gdFree (oim->tpixels);
- oim->tpixels = 0;
+ int i;
+ oim->trueColor = 0;
+ /* Junk the truecolor pixels */
+ for (i = 0; i < oim->sy; i++) {
+ gdFree (oim->tpixels[i]);
+ }
+ gdFree (oim->tpixels);
+ oim->tpixels = 0;
}
/*
@@ -1559,314 +1464,262 @@ static void free_truecolor_image_data(gdImagePtr oim)
static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP)
{
- my_cquantize_ptr cquantize = NULL;
- int i, conversionSucceeded=0;
-
- /* Allocate the JPEG palette-storage */
- size_t arraysize;
- int maxColors = gdMaxColors;
- gdImagePtr nim;
-
- if (cimP) {
- nim = gdImageCreate(oim->sx, oim->sy);
- *cimP = nim;
- if (!nim)
- {
- return FALSE;
- }
- }
- else
- {
- nim = oim;
- }
-
- if (!oim->trueColor)
- {
- /* (Almost) nothing to do! */
- if (cimP) {
- gdImageCopy(nim, oim, 0, 0, 0, 0, oim->sx, oim->sy);
- *cimP = nim;
- }
- return TRUE;
- }
-
- /* If we have a transparent color (the alphaless mode of transparency), we
- * must reserve a palette entry for it at the end of the palette. */
- if (oim->transparent >= 0)
- {
- maxColors--;
- }
- if (colorsWanted > maxColors)
- {
- colorsWanted = maxColors;
- }
- if (!cimP) {
- nim->pixels = gdCalloc (sizeof (unsigned char *), oim->sy);
- if (!nim->pixels)
- {
- /* No can do */
- goto outOfMemory;
- }
- for (i = 0; (i < nim->sy); i++)
- {
- nim->pixels[i] = gdCalloc (sizeof (unsigned char *), oim->sx);
- if (!nim->pixels[i])
- {
- goto outOfMemory;
- }
- }
- }
-
-
- if (oim->paletteQuantizationMethod == GD_QUANT_NEUQUANT)
- {
- if (cimP) /* NeuQuant alwasy creates a copy, so the new blank image can't be used */
- {
- gdImageDestroy(nim);
- }
- nim = gdImageNeuQuant(oim, colorsWanted, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 2);
- if (cimP)
- {
- *cimP = nim;
- }
- else
- {
- gdImageCopy(oim, nim, 0, 0, 0, 0, oim->sx, oim->sy);
- gdImageDestroy(nim);
- }
- return TRUE;
- }
+ my_cquantize_ptr cquantize = NULL;
+ int i, conversionSucceeded=0;
+
+ /* Allocate the JPEG palette-storage */
+ size_t arraysize;
+ int maxColors = gdMaxColors;
+ gdImagePtr nim;
+
+ if (cimP) {
+ nim = gdImageCreate(oim->sx, oim->sy);
+ *cimP = nim;
+ if (!nim) {
+ return FALSE;
+ }
+ } else {
+ nim = oim;
+ }
+
+ if (!oim->trueColor) {
+ /* (Almost) nothing to do! */
+ if (cimP) {
+ gdImageCopy(nim, oim, 0, 0, 0, 0, oim->sx, oim->sy);
+ *cimP = nim;
+ }
+ return TRUE;
+ }
+
+ /* If we have a transparent color (the alphaless mode of transparency), we
+ * must reserve a palette entry for it at the end of the palette. */
+ if (oim->transparent >= 0) {
+ maxColors--;
+ }
+ if (colorsWanted > maxColors) {
+ colorsWanted = maxColors;
+ }
+ if (!cimP) {
+ nim->pixels = gdCalloc (sizeof (unsigned char *), oim->sy);
+ if (!nim->pixels) {
+ /* No can do */
+ goto outOfMemory;
+ }
+ for (i = 0; (i < nim->sy); i++) {
+ nim->pixels[i] = gdCalloc (sizeof (unsigned char *), oim->sx);
+ if (!nim->pixels[i]) {
+ goto outOfMemory;
+ }
+ }
+ }
+
+
+ if (oim->paletteQuantizationMethod == GD_QUANT_NEUQUANT) {
+ if (cimP) { /* NeuQuant alwasy creates a copy, so the new blank image can't be used */
+ gdImageDestroy(nim);
+ }
+ nim = gdImageNeuQuant(oim, colorsWanted, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 2);
+ if (cimP) {
+ *cimP = nim;
+ } else {
+ gdImageCopy(oim, nim, 0, 0, 0, 0, oim->sx, oim->sy);
+ gdImageDestroy(nim);
+ }
+ return TRUE;
+ }
#ifdef HAVE_LIBIMAGEQUANT_H
- if (oim->paletteQuantizationMethod == GD_QUANT_DEFAULT ||
- oim->paletteQuantizationMethod == GD_QUANT_LIQ)
- {
- liq_attr *attr = liq_attr_create_with_allocator(gdMalloc, gdFree);
- liq_image *image;
- liq_result *remap;
- int remapped_ok = 0;
-
- liq_set_max_colors(attr, colorsWanted);
-
- /* by default make it fast to match speed of previous implementation */
- liq_set_speed(attr, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 9);
- if (oim->paletteQuantizationMaxQuality)
- {
- liq_set_quality(attr, oim->paletteQuantizationMinQuality, oim->paletteQuantizationMaxQuality);
- }
- image = liq_image_create_custom(attr, convert_gdpixel_to_rgba, oim, oim->sx, oim->sy, 0);
- remap = liq_quantize_image(attr, image);
- if (!remap) /* minimum quality not met, leave image unmodified */
- {
- liq_image_destroy(image);
- liq_attr_destroy(attr);
- goto outOfMemory;
- }
-
- liq_set_dithering_level(remap, dither ? 1 : 0);
- if (LIQ_OK == liq_write_remapped_image_rows(remap, image, output_buf))
- {
- remapped_ok = 1;
- const liq_palette *pal = liq_get_palette(remap);
- nim->transparent = -1;
- unsigned int icolor;
- for(icolor=0; icolor < pal->count; icolor++)
- {
- nim->open[icolor] = 0;
- nim->red[icolor] = pal->entries[icolor].r * gdRedMax/255;
- nim->green[icolor] = pal->entries[icolor].g * gdGreenMax/255;
- nim->blue[icolor] = pal->entries[icolor].b * gdBlueMax/255;
- int alpha = pal->entries[icolor].a * gdAlphaMax/255;
- if (gdAlphaOpaque < gdAlphaTransparent)
- {
- alpha = gdAlphaTransparent - alpha;
- }
- nim->alpha[icolor] = alpha;
- if (nim->transparent == -1 && alpha == gdAlphaTransparent)
- {
- nim->transparent = icolor;
- }
- }
- nim->colorsTotal = pal->count;
- }
- liq_result_destroy(remap);
- liq_image_destroy(image);
- liq_attr_destroy(attr);
-
- if (remapped_ok)
- {
- if (!cimP)
- {
- free_truecolor_image_data(oim);
- }
- return TRUE;
- }
- }
+ if (oim->paletteQuantizationMethod == GD_QUANT_DEFAULT ||
+ oim->paletteQuantizationMethod == GD_QUANT_LIQ) {
+ liq_attr *attr = liq_attr_create_with_allocator(gdMalloc, gdFree);
+ liq_image *image;
+ liq_result *remap;
+ int remapped_ok = 0;
+
+ liq_set_max_colors(attr, colorsWanted);
+
+ /* by default make it fast to match speed of previous implementation */
+ liq_set_speed(attr, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 9);
+ if (oim->paletteQuantizationMaxQuality) {
+ liq_set_quality(attr, oim->paletteQuantizationMinQuality, oim->paletteQuantizationMaxQuality);
+ }
+ image = liq_image_create_custom(attr, convert_gdpixel_to_rgba, oim, oim->sx, oim->sy, 0);
+ remap = liq_quantize_image(attr, image);
+ if (!remap) { /* minimum quality not met, leave image unmodified */
+ liq_image_destroy(image);
+ liq_attr_destroy(attr);
+ goto outOfMemory;
+ }
+
+ liq_set_dithering_level(remap, dither ? 1 : 0);
+ if (LIQ_OK == liq_write_remapped_image_rows(remap, image, output_buf)) {
+ remapped_ok = 1;
+ const liq_palette *pal = liq_get_palette(remap);
+ nim->transparent = -1;
+ unsigned int icolor;
+ for(icolor=0; icolor < pal->count; icolor++) {
+ nim->open[icolor] = 0;
+ nim->red[icolor] = pal->entries[icolor].r * gdRedMax/255;
+ nim->green[icolor] = pal->entries[icolor].g * gdGreenMax/255;
+ nim->blue[icolor] = pal->entries[icolor].b * gdBlueMax/255;
+ int alpha = pal->entries[icolor].a * gdAlphaMax/255;
+ if (gdAlphaOpaque < gdAlphaTransparent) {
+ alpha = gdAlphaTransparent - alpha;
+ }
+ nim->alpha[icolor] = alpha;
+ if (nim->transparent == -1 && alpha == gdAlphaTransparent) {
+ nim->transparent = icolor;
+ }
+ }
+ nim->colorsTotal = pal->count;
+ }
+ liq_result_destroy(remap);
+ liq_image_destroy(image);
+ liq_attr_destroy(attr);
+
+ if (remapped_ok) {
+ if (!cimP) {
+ free_truecolor_image_data(oim);
+ }
+ return TRUE;
+ }
+ }
#endif
- cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1);
- if (!cquantize)
- {
- /* No can do */
- goto outOfMemory;
- }
- cquantize->fserrors = NULL; /* flag optional arrays not allocated */
- cquantize->error_limiter = NULL;
-
-
- /* Allocate the histogram/inverse colormap storage */
- cquantize->histogram = (hist3d) gdMalloc (HIST_C0_ELEMS * sizeof (hist2d));
- for (i = 0; i < HIST_C0_ELEMS; i++)
- {
- cquantize->histogram[i] =
- (hist2d) gdMalloc (HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
- if (!cquantize->histogram[i])
- {
- goto outOfMemory;
+ cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1);
+ if (!cquantize) {
+ /* No can do */
+ goto outOfMemory;
}
- }
+ cquantize->fserrors = NULL; /* flag optional arrays not allocated */
+ cquantize->error_limiter = NULL;
- cquantize->fserrors = (FSERRPTR) gdMalloc (3 * sizeof (FSERROR));
- init_error_limit (oim, nim, cquantize);
- arraysize = (size_t) ((nim->sx + 2) * (3 * sizeof (FSERROR)));
- /* Allocate Floyd-Steinberg workspace. */
+ /* Allocate the histogram/inverse colormap storage */
+ cquantize->histogram = (hist3d) gdMalloc (HIST_C0_ELEMS * sizeof (hist2d));
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ cquantize->histogram[i] =
+ (hist2d) gdMalloc (HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
+ if (!cquantize->histogram[i]) {
+ goto outOfMemory;
+ }
+ }
+
+
+ cquantize->fserrors = (FSERRPTR) gdMalloc (3 * sizeof (FSERROR));
+ init_error_limit (oim, nim, cquantize);
+ arraysize = (size_t) ((nim->sx + 2) * (3 * sizeof (FSERROR)));
+ /* Allocate Floyd-Steinberg workspace. */
cquantize->fserrors = gdRealloc(cquantize->fserrors, arraysize);
- if (!cquantize->fserrors)
- {
- goto outOfMemory;
- }
- memset(cquantize->fserrors, 0, arraysize);
- cquantize->on_odd_row = FALSE;
-
- /* Do the work! */
- zeroHistogram (cquantize->histogram);
- prescan_quantize (oim, nim, cquantize);
- /* TBB 2.0.5: pass colorsWanted, not 256! */
- select_colors (oim, nim, cquantize, colorsWanted);
- zeroHistogram (cquantize->histogram);
- if (dither)
- {
- pass2_fs_dither (oim, nim, cquantize);
- }
- else
- {
- pass2_no_dither (oim, nim, cquantize);
- }
-#if 0 /* 2.0.12; we no longer attempt full alpha in palettes */
- if (cquantize->transparentIsPresent)
- {
- int mt = -1;
- int mtIndex = -1;
- for (i = 0; (i < im->colorsTotal); i++)
- {
- if (im->alpha[i] > mt)
- {
- mtIndex = i;
- mt = im->alpha[i];
- }
+ if (!cquantize->fserrors) {
+ goto outOfMemory;
}
- for (i = 0; (i < im->colorsTotal); i++)
- {
- if (im->alpha[i] == mt)
- {
- im->alpha[i] = gdAlphaTransparent;
- }
+ memset(cquantize->fserrors, 0, arraysize);
+ cquantize->on_odd_row = FALSE;
+
+ /* Do the work! */
+ zeroHistogram (cquantize->histogram);
+ prescan_quantize (oim, nim, cquantize);
+ /* TBB 2.0.5: pass colorsWanted, not 256! */
+ select_colors (oim, nim, cquantize, colorsWanted);
+ zeroHistogram (cquantize->histogram);
+ if (dither) {
+ pass2_fs_dither (oim, nim, cquantize);
+ } else {
+ pass2_no_dither (oim, nim, cquantize);
}
- }
- if (cquantize->opaqueIsPresent)
- {
- int mo = 128;
- int moIndex = -1;
- for (i = 0; (i < im->colorsTotal); i++)
- {
- if (im->alpha[i] < mo)
- {
- moIndex = i;
- mo = im->alpha[i];
- }
+#if 0 /* 2.0.12; we no longer attempt full alpha in palettes */
+ if (cquantize->transparentIsPresent) {
+ int mt = -1;
+ int mtIndex = -1;
+ for (i = 0; (i < im->colorsTotal); i++) {
+ if (im->alpha[i] > mt) {
+ mtIndex = i;
+ mt = im->alpha[i];
+ }
+ }
+ for (i = 0; (i < im->colorsTotal); i++) {
+ if (im->alpha[i] == mt) {
+ im->alpha[i] = gdAlphaTransparent;
+ }
+ }
}
- for (i = 0; (i < im->colorsTotal); i++)
- {
- if (im->alpha[i] == mo)
- {
- im->alpha[i] = gdAlphaOpaque;
- }
+ if (cquantize->opaqueIsPresent) {
+ int mo = 128;
+ int moIndex = -1;
+ for (i = 0; (i < im->colorsTotal); i++) {
+ if (im->alpha[i] < mo) {
+ moIndex = i;
+ mo = im->alpha[i];
+ }
+ }
+ for (i = 0; (i < im->colorsTotal); i++) {
+ if (im->alpha[i] == mo) {
+ im->alpha[i] = gdAlphaOpaque;
+ }
+ }
}
- }
#endif
- /* If we had a 'transparent' color, increment the color count so it's
- * officially in the palette and convert the transparent variable to point to
- * an index rather than a color (Its data already exists and transparent
- * pixels have already been mapped to it by this point, it is done late as to
- * avoid color matching / dithering with it). */
- if (oim->transparent >= 0)
- {
- nim->transparent = nim->colorsTotal;
- nim->colorsTotal++;
- }
-
- /* Success! Get rid of the truecolor image data. */
- conversionSucceeded = TRUE;
- if (!cimP)
- {
- free_truecolor_image_data(oim);
- }
-
- goto freeQuantizeData;
- /* Tediously free stuff. */
+ /* If we had a 'transparent' color, increment the color count so it's
+ * officially in the palette and convert the transparent variable to point to
+ * an index rather than a color (Its data already exists and transparent
+ * pixels have already been mapped to it by this point, it is done late as to
+ * avoid color matching / dithering with it). */
+ if (oim->transparent >= 0) {
+ nim->transparent = nim->colorsTotal;
+ nim->colorsTotal++;
+ }
+
+ /* Success! Get rid of the truecolor image data. */
+ conversionSucceeded = TRUE;
+ if (!cimP) {
+ free_truecolor_image_data(oim);
+ }
+
+ goto freeQuantizeData;
+ /* Tediously free stuff. */
outOfMemory:
- conversionSucceeded = FALSE;
- if (oim->trueColor)
- {
- if (!cimP) {
- /* On failure only */
- for (i = 0; i < nim->sy; i++)
- {
- if (nim->pixels[i])
- {
- gdFree (nim->pixels[i]);
- }
- }
- if (nim->pixels)
- {
- gdFree (nim->pixels);
- }
- nim->pixels = 0;
- } else {
- gdImageDestroy(nim);
- *cimP = 0;
- }
- }
+ conversionSucceeded = FALSE;
+ if (oim->trueColor) {
+ if (!cimP) {
+ /* On failure only */
+ for (i = 0; i < nim->sy; i++) {
+ if (nim->pixels[i]) {
+ gdFree (nim->pixels[i]);
+ }
+ }
+ if (nim->pixels) {
+ gdFree (nim->pixels);
+ }
+ nim->pixels = 0;
+ } else {
+ gdImageDestroy(nim);
+ *cimP = 0;
+ }
+ }
freeQuantizeData:
- if (cquantize)
- {
- if (cquantize->histogram)
- {
- for (i = 0; i < HIST_C0_ELEMS; i++)
- {
- if (cquantize->histogram[i])
- {
- gdFree (cquantize->histogram[i]);
- }
- }
- gdFree (cquantize->histogram);
- }
- if (cquantize->fserrors)
- {
- gdFree (cquantize->fserrors);
- }
- if (cquantize->error_limiter_storage)
- {
- gdFree (cquantize->error_limiter_storage);
- }
- gdFree (cquantize);
- }
-
- return conversionSucceeded;
+ if (cquantize) {
+ if (cquantize->histogram) {
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ if (cquantize->histogram[i]) {
+ gdFree (cquantize->histogram[i]);
+ }
+ }
+ gdFree (cquantize->histogram);
+ }
+ if (cquantize->fserrors) {
+ gdFree (cquantize->fserrors);
+ }
+ if (cquantize->error_limiter_storage) {
+ gdFree (cquantize->error_limiter_storage);
+ }
+ gdFree (cquantize);
+ }
+
+ return conversionSucceeded;
}
#endif