summaryrefslogtreecommitdiff
path: root/src/gd_topal.c
blob: 217ea968c313d1eafc6e5777ecd17dc02952216f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
/* TODO: oim and nim in the lower level functions;
  correct use of stub (sigh). */

/* 2.0.12: a new adaptation from the same original, this time
	by Barend Gehrels. My attempt to incorporate alpha channel
	into the result worked poorly and degraded the quality of
	palette conversion even when the source contained no
	alpha channel data. This version does not attempt to produce
	an output file with transparency in some of the palette
	indexes, which, in practice, doesn't look so hot anyway. TBB */

/*
 * gd_topal, adapted from jquant2.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains 2-pass color quantization (color mapping) routines.
 * These routines provide selection of a custom color map for an image,
 * followed by mapping of the image to that color map, with optional
 * Floyd-Steinberg dithering.
 * It is also possible to use just the second pass to map to an arbitrary
 * externally-given color map.
 *
 * Note: ordered dithering is not supported, since there isn't any fast
 * way to compute intercolor distances; it's unclear that ordered dither's
 * fundamental assumptions even hold with an irregularly spaced color map.
 */


/*
 * THOMAS BOUTELL & BAREND GEHRELS, february 2003
 * adapted the code to work within gd rather than within libjpeg.
 * If it is not working, it's not Thomas G. Lane's fault.
 */

/*
  SETTING THIS ONE CAUSES STRIPED IMAGE
  to be done: solve this
  #define ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS
 */

#include <string.h>
#include "gd.h"
#include "gdhelpers.h"

#ifdef HAVE_LIBIMAGEQUANT_H
#include <libimagequant.h> /* if this fails then set -DENABLE_LIQ=NO in cmake or make static libimagequant.a in libimagequant/ */
#endif

/* (Re)define some defines known by libjpeg */
#define QUANT_2PASS_SUPPORTED

#define RGB_RED		0
#define RGB_GREEN	1
#define RGB_BLUE	2

#define JSAMPLE unsigned char
#define MAXJSAMPLE (gdMaxColors-1)
#define BITS_IN_JSAMPLE 8

#define JSAMPROW int*
#define JDIMENSION int

#define METHODDEF(type) static type
#define LOCAL(type)	static type


/* We assume that right shift corresponds to signed division by 2 with
 * rounding towards minus infinity.  This is correct for typical "arithmetic
 * shift" instructions that shift in copies of the sign bit.  But some
 * C compilers implement >> with an unsigned shift.  For these machines you
 * must define RIGHT_SHIFT_IS_UNSIGNED.
 * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
 * It is only applied with constant shift counts.  SHIFT_TEMPS must be
 * included in the variables of any routine using RIGHT_SHIFT.
 */

#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define SHIFT_TEMPS	INT32 shift_temp;
#define RIGHT_SHIFT(x,shft)  \
	((shift_temp = (x)) < 0 ? \
	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
	 (shift_temp >> (shft)))
#else
#define SHIFT_TEMPS
#define RIGHT_SHIFT(x,shft)	((x) >> (shft))
#endif


#define range_limit(x) { if(x<0) x=0; if (x>255) x=255; }


#ifndef INT16
#define INT16  short
#endif

#ifndef UINT16
#define UINT16 unsigned short
#endif

#ifndef INT32
#define INT32 int
#endif

#ifndef FAR
#define FAR
#endif



#ifndef boolean
#define boolean int
#endif

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif


#define input_buf (oim->tpixels)
#define output_buf (nim->pixels)


#ifdef QUANT_2PASS_SUPPORTED


/*
 * This module implements the well-known Heckbert paradigm for color
 * quantization.  Most of the ideas used here can be traced back to
 * Heckbert's seminal paper
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
 *
 * In the first pass over the image, we accumulate a histogram showing the
 * usage count of each possible color.  To keep the histogram to a reasonable
 * size, we reduce the precision of the input; typical practice is to retain
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
 * in the same histogram cell.
 *
 * Next, the color-selection step begins with a box representing the whole
 * color space, and repeatedly splits the "largest" remaining box until we
 * have as many boxes as desired colors.  Then the mean color in each
 * remaining box becomes one of the possible output colors.
 *
 * The second pass over the image maps each input pixel to the closest output
 * color (optionally after applying a Floyd-Steinberg dithering correction).
 * This mapping is logically trivial, but making it go fast enough requires
 * considerable care.
 *
 * Heckbert-style quantizers vary a good deal in their policies for choosing
 * the "largest" box and deciding where to cut it.  The particular policies
 * used here have proved out well in experimental comparisons, but better ones
 * may yet be found.
 *
 * In earlier versions of the IJG code, this module quantized in YCbCr color
 * space, processing the raw upsampled data without a color conversion step.
 * This allowed the color conversion math to be done only once per colormap
 * entry, not once per pixel.  However, that optimization precluded other
 * useful optimizations (such as merging color conversion with upsampling)
 * and it also interfered with desired capabilities such as quantizing to an
 * externally-supplied colormap.  We have therefore abandoned that approach.
 * The present code works in the post-conversion color space, typically RGB.
 *
 * To improve the visual quality of the results, we actually work in scaled
 * RGB space, giving G distances more weight than R, and R in turn more than
 * B.  To do everything in integer math, we must use integer scale factors.
 * The 2/3/1 scale factors used here correspond loosely to the relative
 * weights of the colors in the NTSC grayscale equation.
 * If you want to use this code to quantize a non-RGB color space, you'll
 * probably need to change these scale factors.
 */

#define R_SCALE 2		/* scale R distances by this much */
#define G_SCALE 3		/* scale G distances by this much */
#define B_SCALE 1		/* and B by this much */

/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
 * you'll get compile errors until you extend this logic.  In that case
 * you'll probably want to tweak the histogram sizes too.
 */

#if RGB_RED == 0
#define C0_SCALE R_SCALE
#endif
#if RGB_BLUE == 0
#define C0_SCALE B_SCALE
#endif
#if RGB_GREEN == 1
#define C1_SCALE G_SCALE
#endif
#if RGB_RED == 2
#define C2_SCALE R_SCALE
#endif
#if RGB_BLUE == 2
#define C2_SCALE B_SCALE
#endif


/*
 * First we have the histogram data structure and routines for creating it.
 *
 * The number of bits of precision can be adjusted by changing these symbols.
 * We recommend keeping 6 bits for G and 5 each for R and B.
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
 * better results; if you are short of memory, 5 bits all around will save
 * some space but degrade the results.
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
 * (preferably unsigned long) for each cell.  In practice this is overkill;
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
 * and clamping those that do overflow to the maximum value will give close-
 * enough results.  This reduces the recommended histogram size from 256Kb
 * to 128Kb, which is a useful savings on PC-class machines.
 * (In the second pass the histogram space is re-used for pixel mapping data;
 * in that capacity, each cell must be able to store zero to the number of
 * desired colors.  16 bits/cell is plenty for that too.)
 * Since the JPEG code is intended to run in small memory model on 80x86
 * machines, we can't just allocate the histogram in one chunk.  Instead
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
 * on 80x86 machines, the pointer row is in near memory but the actual
 * arrays are in far memory (same arrangement as we use for image arrays).
 */

#define MAXNUMCOLORS  (MAXJSAMPLE+1)	/* maximum size of colormap */

/* These will do the right thing for either R,G,B or B,G,R color order,
 * but you may not like the results for other color orders.
 */
#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
#define HIST_C1_BITS  6		/* bits of precision in G histogram */
#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */

/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)

/* These are the amounts to shift an input value to get a histogram index. */
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)


typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */

typedef histcell FAR *histptr;	/* for pointers to histogram cells */

typedef histcell hist1d[HIST_C2_ELEMS];	/* typedefs for the array */
typedef hist1d FAR *hist2d;	/* type for the 2nd-level pointers */
typedef hist2d *hist3d;		/* type for top-level pointer */


/* Declarations for Floyd-Steinberg dithering.
 *
 * Errors are accumulated into the array fserrors[], at a resolution of
 * 1/16th of a pixel count.  The error at a given pixel is propagated
 * to its not-yet-processed neighbors using the standard F-S fractions,
 *		...	(here)	7/16
 *		3/16	5/16	1/16
 * We work left-to-right on even rows, right-to-left on odd rows.
 *
 * We can get away with a single array (holding one row's worth of errors)
 * by using it to store the current row's errors at pixel columns not yet
 * processed, but the next row's errors at columns already processed.  We
 * need only a few extra variables to hold the errors immediately around the
 * current column.  (If we are lucky, those variables are in registers, but
 * even if not, they're probably cheaper to access than array elements are.)
 *
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
 * each end saves us from special-casing the first and last pixels.
 * Each entry is three values long, one value for each color component.
 *
 * Note: on a wide image, we might not have enough room in a PC's near data
 * segment to hold the error array; so it is allocated with alloc_large.
 */

#if BITS_IN_JSAMPLE == 8
typedef INT16 FSERROR;		/* 16 bits should be enough */
typedef int LOCFSERROR;		/* use 'int' for calculation temps */
#else
typedef INT32 FSERROR;		/* may need more than 16 bits */
typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
#endif

typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */


/* Private subobject */

typedef struct
{
  /* Variables for accumulating image statistics */
  hist3d histogram;		/* pointer to the histogram */


  /* Variables for Floyd-Steinberg dithering */
  FSERRPTR fserrors;		/* accumulated errors */

  boolean on_odd_row;		/* flag to remember which row we are on */
  int *error_limiter;		/* table for clamping the applied error */
  int *error_limiter_storage;	/* gdMalloc'd storage for the above */
}
my_cquantizer;

typedef my_cquantizer *my_cquantize_ptr;


/*
 * Prescan some rows of pixels.
 * In this module the prescan simply updates the histogram, which has been
 * initialized to zeroes by start_pass.
 * An output_buf parameter is required by the method signature, but no data
 * is actually output (in fact the buffer controller is probably passing a
 * NULL pointer).
 */

METHODDEF (void)
prescan_quantize (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
{
  register JSAMPROW ptr;
  register histptr histp;
  register hist3d histogram = cquantize->histogram;
  int row;
  JDIMENSION col;
  int width = oim->sx;
  int num_rows = oim->sy;

  (void)nim;

  for (row = 0; row < num_rows; row++)
    {
      ptr = input_buf[row];
      for (col = width; col > 0; col--)
	{
	  int r = gdTrueColorGetRed (*ptr) >> C0_SHIFT;
	  int g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT;
	  int b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT;
	  /* 2.0.12: Steven Brown: support a single totally transparent
	     color in the original. */
	  if ((oim->transparent >= 0) && (*ptr == oim->transparent))
	    {
	      ptr++;
	      continue;
	    }
	  /* get pixel value and index into the histogram */
	  histp = &histogram[r][g][b];
	  /* increment, check for overflow and undo increment if so. */
	  if (++(*histp) == 0)
	    (*histp)--;
	  ptr++;
	}
    }
}


/*
 * Next we have the really interesting routines: selection of a colormap
 * given the completed histogram.
 * These routines work with a list of "boxes", each representing a rectangular
 * subset of the input color space (to histogram precision).
 */

typedef struct
{
  /* The bounds of the box (inclusive); expressed as histogram indexes */
  int c0min, c0max;
  int c1min, c1max;
  int c2min, c2max;
  /* The volume (actually 2-norm) of the box */
  INT32 volume;
  /* The number of nonzero histogram cells within this box */
  long colorcount;
}
box;

typedef box *boxptr;


LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
  register boxptr boxp;
  register int i;
  register long maxc = 0;
  boxptr which = NULL;

  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
    {
      if (boxp->colorcount > maxc && boxp->volume > 0)
	{
	  which = boxp;
	  maxc = boxp->colorcount;
	}
    }
  return which;
}


LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
  register boxptr boxp;
  register int i;
  register INT32 maxv = 0;
  boxptr which = NULL;

  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
    {
      if (boxp->volume > maxv)
	{
	  which = boxp;
	  maxv = boxp->volume;
	}
    }
  return which;
}


LOCAL (void)
  update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp)
{
  hist3d histogram = cquantize->histogram;
  histptr histp;
  int c0, c1, c2;
  int c0min, c0max, c1min, c1max, c2min, c2max;
  INT32 dist0, dist1, dist2;
  long ccount;
  (void)oim;
  (void)nim;

  c0min = boxp->c0min;
  c0max = boxp->c0max;
  c1min = boxp->c1min;
  c1max = boxp->c1max;
  c2min = boxp->c2min;
  c2max = boxp->c2max;

  if (c0max > c0min)
    for (c0 = c0min; c0 <= c0max; c0++)
      for (c1 = c1min; c1 <= c1max; c1++)
	{
	  histp = &histogram[c0][c1][c2min];
	  for (c2 = c2min; c2 <= c2max; c2++)
	    if (*histp++ != 0)
	      {
		boxp->c0min = c0min = c0;
		goto have_c0min;
	      }
	}
have_c0min:
  if (c0max > c0min)
    for (c0 = c0max; c0 >= c0min; c0--)
      for (c1 = c1min; c1 <= c1max; c1++)
	{
	  histp = &histogram[c0][c1][c2min];
	  for (c2 = c2min; c2 <= c2max; c2++)
	    if (*histp++ != 0)
	      {
		boxp->c0max = c0max = c0;
		goto have_c0max;
	      }
	}
have_c0max:
  if (c1max > c1min)
    for (c1 = c1min; c1 <= c1max; c1++)
      for (c0 = c0min; c0 <= c0max; c0++)
	{
	  histp = &histogram[c0][c1][c2min];
	  for (c2 = c2min; c2 <= c2max; c2++)
	    if (*histp++ != 0)
	      {
		boxp->c1min = c1min = c1;
		goto have_c1min;
	      }
	}
have_c1min:
  if (c1max > c1min)
    for (c1 = c1max; c1 >= c1min; c1--)
      for (c0 = c0min; c0 <= c0max; c0++)
	{
	  histp = &histogram[c0][c1][c2min];
	  for (c2 = c2min; c2 <= c2max; c2++)
	    if (*histp++ != 0)
	      {
		boxp->c1max = c1max = c1;
		goto have_c1max;
	      }
	}
have_c1max:
  if (c2max > c2min)
    for (c2 = c2min; c2 <= c2max; c2++)
      for (c0 = c0min; c0 <= c0max; c0++)
	{
	  histp = &histogram[c0][c1min][c2];
	  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
	    if (*histp != 0)
	      {
		boxp->c2min = c2min = c2;
		goto have_c2min;
	      }
	}
have_c2min:
  if (c2max > c2min)
    for (c2 = c2max; c2 >= c2min; c2--)
      for (c0 = c0min; c0 <= c0max; c0++)
	{
	  histp = &histogram[c0][c1min][c2];
	  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
	    if (*histp != 0)
	      {
		boxp->c2max = c2max = c2;
		goto have_c2max;
	      }
	}
have_c2max:

  /* Update box volume.
   * We use 2-norm rather than real volume here; this biases the method
   * against making long narrow boxes, and it has the side benefit that
   * a box is splittable iff norm > 0.
   * Since the differences are expressed in histogram-cell units,
   * we have to shift back to JSAMPLE units to get consistent distances;
   * after which, we scale according to the selected distance scale factors.
   */
  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
  boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;

  /* Now scan remaining volume of box and compute population */
  ccount = 0;
  for (c0 = c0min; c0 <= c0max; c0++)
    for (c1 = c1min; c1 <= c1max; c1++)
      {
	histp = &histogram[c0][c1][c2min];
	for (c2 = c2min; c2 <= c2max; c2++, histp++)
	  if (*histp != 0)
	    {
	      ccount++;
	    }
      }
  boxp->colorcount = ccount;
}


LOCAL (int)
median_cut (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
	    boxptr boxlist, int numboxes, int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
  int n, lb;
  int c0, c1, c2, cmax;
  register boxptr b1, b2;

  while (numboxes < desired_colors)
    {
      /* Select box to split.
       * Current algorithm: by population for first half, then by volume.
       */
      if (numboxes * 2 <= desired_colors)
	{
	  b1 = find_biggest_color_pop (boxlist, numboxes);
	}
      else
	{
	  b1 = find_biggest_volume (boxlist, numboxes);
	}
      if (b1 == NULL)		/* no splittable boxes left! */
	break;
      b2 = &boxlist[numboxes];	/* where new box will go */
      /* Copy the color bounds to the new box. */
      b2->c0max = b1->c0max;
      b2->c1max = b1->c1max;
      b2->c2max = b1->c2max;
      b2->c0min = b1->c0min;
      b2->c1min = b1->c1min;
      b2->c2min = b1->c2min;
      /* Choose which axis to split the box on.
       * Current algorithm: longest scaled axis.
       * See notes in update_box about scaling distances.
       */
      c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
      c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
      c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
      /* We want to break any ties in favor of green, then red, blue last.
       * This code does the right thing for R,G,B or B,G,R color orders only.
       */
#if RGB_RED == 0
      cmax = c1;
      n = 1;
      if (c0 > cmax)
	{
	  cmax = c0;
	  n = 0;
	}
      if (c2 > cmax)
	{
	  n = 2;
	}
#else
      cmax = c1;
      n = 1;
      if (c2 > cmax)
	{
	  cmax = c2;
	  n = 2;
	}
      if (c0 > cmax)
	{
	  n = 0;
	}
#endif
      /* Choose split point along selected axis, and update box bounds.
       * Current algorithm: split at halfway point.
       * (Since the box has been shrunk to minimum volume,
       * any split will produce two nonempty subboxes.)
       * Note that lb value is max for lower box, so must be < old max.
       */
      switch (n)
	{
	case 0:
	  lb = (b1->c0max + b1->c0min) / 2;
	  b1->c0max = lb;
	  b2->c0min = lb + 1;
	  break;
	case 1:
	  lb = (b1->c1max + b1->c1min) / 2;
	  b1->c1max = lb;
	  b2->c1min = lb + 1;
	  break;
	case 2:
	  lb = (b1->c2max + b1->c2min) / 2;
	  b1->c2max = lb;
	  b2->c2min = lb + 1;
	  break;
	}
      /* Update stats for boxes */
      update_box (oim, nim, cquantize, b1);
      update_box (oim, nim, cquantize, b2);
      numboxes++;
    }
  return numboxes;
}


LOCAL (void)
  compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
	       boxptr boxp, int icolor)
{
  hist3d histogram = cquantize->histogram;
  histptr histp;
  int c0, c1, c2;
  int c0min, c0max, c1min, c1max, c2min, c2max;
  long count = 0; /* 2.0.28: = 0 */
  long total = 0;
  long c0total = 0;
  long c1total = 0;
  long c2total = 0;
  (void)oim;

  c0min = boxp->c0min;
  c0max = boxp->c0max;
  c1min = boxp->c1min;
  c1max = boxp->c1max;
  c2min = boxp->c2min;
  c2max = boxp->c2max;

  for (c0 = c0min; c0 <= c0max; c0++)
    for (c1 = c1min; c1 <= c1max; c1++)
      {
	histp = &histogram[c0][c1][c2min];
	for (c2 = c2min; c2 <= c2max; c2++)
	  {
	    if ((count = *histp++) != 0)
	      {
		total += count;
		c0total +=
		  ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
		c1total +=
		  ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
		c2total +=
		  ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
	      }
	  }
      }

  /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */
  if (count)
    {
      nim->red[icolor] = (int) ((c0total + (total >> 1)) / total);
      nim->green[icolor] = (int) ((c1total + (total >> 1)) / total);
      nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total);
    }
  else
    {
      nim->red[icolor] = 255;
      nim->green[icolor] = 255;
      nim->blue[icolor] = 255;
    }
		nim->open[icolor] = 0;
}


LOCAL (void)
select_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int desired_colors)
/* Master routine for color selection */
{
  boxptr boxlist;
  int numboxes;
  int i;

  /* Allocate workspace for box list */
  /* This can't happen because we clamp desired_colors at gdMaxColors,
    but anyway */
  if (overflow2(desired_colors, sizeof (box))) {
    return;
   }
  boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box));
	if (!boxlist) {
		return;
	}
  /* Initialize one box containing whole space */
  numboxes = 1;
  boxlist[0].c0min = 0;
  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
  boxlist[0].c1min = 0;
  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
  boxlist[0].c2min = 0;
  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
  /* Shrink it to actually-used volume and set its statistics */
  update_box (oim, nim, cquantize, &boxlist[0]);
  /* Perform median-cut to produce final box list */
  numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors);
  /* Compute the representative color for each box, fill colormap */
  for (i = 0; i < numboxes; i++)
    compute_color (oim, nim, cquantize, &boxlist[i], i);
  nim->colorsTotal = numboxes;

  /* If we had a pure transparency color, add it as the last palette entry.
   * Skip incrementing the color count so that the dither / matching phase
   * won't use it on pixels that shouldn't have been transparent.  We'll
   * increment it after all that finishes. */
  if (oim->transparent >= 0)
    {
      /* Save the transparent color. */
      nim->red[nim->colorsTotal] = gdTrueColorGetRed (oim->transparent);
      nim->green[nim->colorsTotal] = gdTrueColorGetGreen (oim->transparent);
      nim->blue[nim->colorsTotal] = gdTrueColorGetBlue (oim->transparent);
      nim->alpha[nim->colorsTotal] = gdAlphaTransparent;
      nim->open[nim->colorsTotal] = 0;
    }

  gdFree (boxlist);
}


/*
 * These routines are concerned with the time-critical task of mapping input
 * colors to the nearest color in the selected colormap.
 *
 * We re-use the histogram space as an "inverse color map", essentially a
 * cache for the results of nearest-color searches.  All colors within a
 * histogram cell will be mapped to the same colormap entry, namely the one
 * closest to the cell's center.  This may not be quite the closest entry to
 * the actual input color, but it's almost as good.  A zero in the cache
 * indicates we haven't found the nearest color for that cell yet; the array
 * is cleared to zeroes before starting the mapping pass.  When we find the
 * nearest color for a cell, its colormap index plus one is recorded in the
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
 * when they need to use an unfilled entry in the cache.
 *
 * Our method of efficiently finding nearest colors is based on the "locally
 * sorted search" idea described by Heckbert and on the incremental distance
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
 * the distances from a given colormap entry to each cell of the histogram can
 * be computed quickly using an incremental method: the differences between
 * distances to adjacent cells themselves differ by a constant.  This allows a
 * fairly fast implementation of the "brute force" approach of computing the
 * distance from every colormap entry to every histogram cell.  Unfortunately,
 * it needs a work array to hold the best-distance-so-far for each histogram
 * cell (because the inner loop has to be over cells, not colormap entries).
 * The work array elements have to be INT32s, so the work array would need
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
 *
 * To get around these problems, we apply Thomas' method to compute the
 * nearest colors for only the cells within a small subbox of the histogram.
 * The work array need be only as big as the subbox, so the memory usage
 * problem is solved.  Furthermore, we need not fill subboxes that are never
 * referenced in pass2; many images use only part of the color gamut, so a
 * fair amount of work is saved.  An additional advantage of this
 * approach is that we can apply Heckbert's locality criterion to quickly
 * eliminate colormap entries that are far away from the subbox; typically
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
 * and we need not compute their distances to individual cells in the subbox.
 * The speed of this approach is heavily influenced by the subbox size: too
 * small means too much overhead, too big loses because Heckbert's criterion
 * can't eliminate as many colormap entries.  Empirically the best subbox
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
 *
 * Thomas' article also describes a refined method which is asymptotically
 * faster than the brute-force method, but it is also far more complex and
 * cannot efficiently be applied to small subboxes.  It is therefore not
 * useful for programs intended to be portable to DOS machines.  On machines
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
 * refined method might be faster than the present code --- but then again,
 * it might not be any faster, and it's certainly more complicated.
 */


/* log2(histogram cells in update box) for each axis; this can be adjusted */
#define BOX_C0_LOG  (HIST_C0_BITS-3)
#define BOX_C1_LOG  (HIST_C1_BITS-3)
#define BOX_C2_LOG  (HIST_C2_BITS-3)

#define BOX_C0_ELEMS  (1<<BOX_C0_LOG)	/* # of hist cells in update box */
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)

#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)


/*
 * The next three routines implement inverse colormap filling.  They could
 * all be folded into one big routine, but splitting them up this way saves
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
 * and may allow some compilers to produce better code by registerizing more
 * inner-loop variables.
 */

LOCAL (int)
find_nearby_colors (
		     gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
		     int minc0, int minc1, int minc2, JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
 * for the nearest entry to some cell(s) in the update box.  The update box
 * is specified by the center coordinates of its first cell.  The number of
 * candidate colormap entries is returned, and their colormap indexes are
 * placed in colorlist[].
 * This routine uses Heckbert's "locally sorted search" criterion to select
 * the colors that need further consideration.
 */
{
  int numcolors = nim->colorsTotal;
  int maxc0, maxc1, maxc2;
  int centerc0, centerc1, centerc2;
  int i, x, ncolors;
  INT32 minmaxdist, min_dist, max_dist, tdist;
  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
  (void)oim;
  (void)cquantize;

  /* Compute true coordinates of update box's upper corner and center.
   * Actually we compute the coordinates of the center of the upper-corner
   * histogram cell, which are the upper bounds of the volume we care about.
   * Note that since ">>" rounds down, the "center" values may be closer to
   * min than to max; hence comparisons to them must be "<=", not "<".
   */
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
  centerc0 = (minc0 + maxc0) >> 1;
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
  centerc1 = (minc1 + maxc1) >> 1;
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
  centerc2 = (minc2 + maxc2) >> 1;

  /* For each color in colormap, find:
   *  1. its minimum squared-distance to any point in the update box
   *     (zero if color is within update box);
   *  2. its maximum squared-distance to any point in the update box.
   * Both of these can be found by considering only the corners of the box.
   * We save the minimum distance for each color in mindist[];
   * only the smallest maximum distance is of interest.
   */
  minmaxdist = 0x7FFFFFFFL;

  for (i = 0; i < numcolors; i++)
    {
      /* We compute the squared-c0-distance term, then add in the other two. */
      x = nim->red[i];
      if (x < minc0)
	{
	  tdist = (x - minc0) * C0_SCALE;
	  min_dist = tdist * tdist;
	  tdist = (x - maxc0) * C0_SCALE;
	  max_dist = tdist * tdist;
	}
      else if (x > maxc0)
	{
	  tdist = (x - maxc0) * C0_SCALE;
	  min_dist = tdist * tdist;
	  tdist = (x - minc0) * C0_SCALE;
	  max_dist = tdist * tdist;
	}
      else
	{
	  /* within cell range so no contribution to min_dist */
	  min_dist = 0;
	  if (x <= centerc0)
	    {
	      tdist = (x - maxc0) * C0_SCALE;
	      max_dist = tdist * tdist;
	    }
	  else
	    {
	      tdist = (x - minc0) * C0_SCALE;
	      max_dist = tdist * tdist;
	    }
	}

      x = nim->green[i];
      if (x < minc1)
	{
	  tdist = (x - minc1) * C1_SCALE;
	  min_dist += tdist * tdist;
	  tdist = (x - maxc1) * C1_SCALE;
	  max_dist += tdist * tdist;
	}
      else if (x > maxc1)
	{
	  tdist = (x - maxc1) * C1_SCALE;
	  min_dist += tdist * tdist;
	  tdist = (x - minc1) * C1_SCALE;
	  max_dist += tdist * tdist;
	}
      else
	{
	  /* within cell range so no contribution to min_dist */
	  if (x <= centerc1)
	    {
	      tdist = (x - maxc1) * C1_SCALE;
	      max_dist += tdist * tdist;
	    }
	  else
	    {
	      tdist = (x - minc1) * C1_SCALE;
	      max_dist += tdist * tdist;
	    }
	}

      x = nim->blue[i];
      if (x < minc2)
	{
	  tdist = (x - minc2) * C2_SCALE;
	  min_dist += tdist * tdist;
	  tdist = (x - maxc2) * C2_SCALE;
	  max_dist += tdist * tdist;
	}
      else if (x > maxc2)
	{
	  tdist = (x - maxc2) * C2_SCALE;
	  min_dist += tdist * tdist;
	  tdist = (x - minc2) * C2_SCALE;
	  max_dist += tdist * tdist;
	}
      else
	{
	  /* within cell range so no contribution to min_dist */
	  if (x <= centerc2)
	    {
	      tdist = (x - maxc2) * C2_SCALE;
	      max_dist += tdist * tdist;
	    }
	  else
	    {
	      tdist = (x - minc2) * C2_SCALE;
	      max_dist += tdist * tdist;
	    }
	}

      mindist[i] = min_dist;	/* save away the results */
      if (max_dist < minmaxdist)
	minmaxdist = max_dist;
    }

  /* Now we know that no cell in the update box is more than minmaxdist
   * away from some colormap entry.  Therefore, only colors that are
   * within minmaxdist of some part of the box need be considered.
   */
  ncolors = 0;
  for (i = 0; i < numcolors; i++)
    {
      if (mindist[i] <= minmaxdist)
	colorlist[ncolors++] = (JSAMPLE) i;
    }
  return ncolors;
}


LOCAL (void) find_best_colors (
				gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
				int minc0, int minc1, int minc2,
				int numcolors, JSAMPLE colorlist[],
				JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
 * given the list of candidate colors prepared by find_nearby_colors.
 * Return the indexes of the closest entries in the bestcolor[] array.
 * This routine uses Thomas' incremental distance calculation method to
 * find the distance from a colormap entry to successive cells in the box.
 */
{
  int ic0, ic1, ic2;
  int i, icolor;
  register INT32 *bptr;		/* pointer into bestdist[] array */
  JSAMPLE *cptr;		/* pointer into bestcolor[] array */
  INT32 dist0, dist1;		/* initial distance values */
  register INT32 dist2;		/* current distance in inner loop */
  INT32 xx0, xx1;		/* distance increments */
  register INT32 xx2;
  INT32 inc0, inc1, inc2;	/* initial values for increments */
  /* This array holds the distance to the nearest-so-far color for each cell */
  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
  (void)oim;
  (void)cquantize;

  /* Initialize best-distance for each cell of the update box */
  bptr = bestdist;
  for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
    *bptr++ = 0x7FFFFFFFL;

  /* For each color selected by find_nearby_colors,
   * compute its distance to the center of each cell in the box.
   * If that's less than best-so-far, update best distance and color number.
   */

  /* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)

  for (i = 0; i < numcolors; i++)
    {
      int r, g, b;
      icolor = colorlist[i];
      r = nim->red[icolor];
      g = nim->green[icolor];
      b = nim->blue[icolor];

      /* Compute (square of) distance from minc0/c1/c2 to this color */
      inc0 = (minc0 - r) * C0_SCALE;
      dist0 = inc0 * inc0;
      inc1 = (minc1 - g) * C1_SCALE;
      dist0 += inc1 * inc1;
      inc2 = (minc2 - b) * C2_SCALE;
      dist0 += inc2 * inc2;
      /* Form the initial difference increments */
      inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
      inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
      inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
      /* Now loop over all cells in box, updating distance per Thomas method */
      bptr = bestdist;
      cptr = bestcolor;
      xx0 = inc0;
      for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--)
	{
	  dist1 = dist0;
	  xx1 = inc1;
	  for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--)
	    {
	      dist2 = dist1;
	      xx2 = inc2;
	      for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--)
		{
		  if (dist2 < *bptr)
		    {
		      *bptr = dist2;
		      *cptr = (JSAMPLE) icolor;
		    }
		  dist2 += xx2;
		  xx2 += 2 * STEP_C2 * STEP_C2;
		  bptr++;
		  cptr++;
		}
	      dist1 += xx1;
	      xx1 += 2 * STEP_C1 * STEP_C1;
	    }
	  dist0 += xx0;
	  xx0 += 2 * STEP_C0 * STEP_C0;
	}
    }
}


LOCAL (void)
fill_inverse_cmap (
		    gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
		    int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
  hist3d histogram = cquantize->histogram;
  int minc0, minc1, minc2;	/* lower left corner of update box */
  int ic0, ic1, ic2;
  register JSAMPLE *cptr;	/* pointer into bestcolor[] array */
  register histptr cachep;	/* pointer into main cache array */
  /* This array lists the candidate colormap indexes. */
  JSAMPLE colorlist[MAXNUMCOLORS];
  int numcolors;		/* number of candidate colors */
  /* This array holds the actually closest colormap index for each cell. */
  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];

  /* Convert cell coordinates to update box ID */
  c0 >>= BOX_C0_LOG;
  c1 >>= BOX_C1_LOG;
  c2 >>= BOX_C2_LOG;

  /* Compute true coordinates of update box's origin corner.
   * Actually we compute the coordinates of the center of the corner
   * histogram cell, which are the lower bounds of the volume we care about.
   */
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);

  /* Determine which colormap entries are close enough to be candidates
   * for the nearest entry to some cell in the update box.
   */
  numcolors =
    find_nearby_colors (oim, nim, cquantize, minc0, minc1, minc2, colorlist);
  find_best_colors (oim, nim, cquantize, minc0, minc1, minc2, numcolors,
		    colorlist, bestcolor);

  /* Save the best color numbers (plus 1) in the main cache array */
  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
  c1 <<= BOX_C1_LOG;
  c2 <<= BOX_C2_LOG;
  cptr = bestcolor;
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++)
    {
      for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++)
	{
	  cachep = &histogram[c0 + ic0][c1 + ic1][c2];
	  for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++)
	    {
	      *cachep++ = (histcell) ((*cptr++) + 1);
	    }
	}
    }
}


/*
 * Map some rows of pixels to the output colormapped representation.
 */

METHODDEF (void)
pass2_no_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
{
  register int *inptr;
  register unsigned char *outptr;
  int width = oim->sx;
  int num_rows = oim->sy;
  hist3d histogram = cquantize->histogram;
  register int c0, c1, c2;
  int row;
  JDIMENSION col;
  register histptr cachep;


  for (row = 0; row < num_rows; row++)
    {
      inptr = input_buf[row];
      outptr = output_buf[row];
      for (col = width; col > 0; col--)
	{
	  /* get pixel value and index into the cache */
	  int r, g, b;
	  r = gdTrueColorGetRed (*inptr);
	  g = gdTrueColorGetGreen (*inptr);
	  /*
	     2.0.24: inptr must not be incremented until after
	     transparency check, if any. Thanks to "Super Pikeman."
	   */
	  b = gdTrueColorGetBlue (*inptr);

	  /* If the pixel is transparent, we assign it the palette index that
	   * will later be added at the end of the palette as the transparent
	   * index. */
	  if ((oim->transparent >= 0) && (oim->transparent == *inptr))
	    {
	      *outptr++ = nim->colorsTotal;
	      inptr++;
	      continue;
	    }
	  inptr++;
	  c0 = r >> C0_SHIFT;
	  c1 = g >> C1_SHIFT;
	  c2 = b >> C2_SHIFT;
	  cachep = &histogram[c0][c1][c2];
	  /* If we have not seen this color before, find nearest colormap entry */
	  /* and update the cache */
	  if (*cachep == 0)
	    fill_inverse_cmap (oim, nim, cquantize, c0, c1, c2);
	  /* Now emit the colormap index for this cell */
	  *outptr++ = (*cachep - 1);
	}
    }
}


METHODDEF (void)
pass2_fs_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
{
  hist3d histogram = cquantize->histogram;
  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
  LOCFSERROR belowerr0, belowerr1, belowerr2;	/* error for pixel below cur */
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2;	/* error for below/prev col */
  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
  histptr cachep;
  int dir;			/* +1 or -1 depending on direction */
  int dir3;			/* 3*dir, for advancing inptr & errorptr */
  int row;
  JDIMENSION col;
  int *inptr;			/* => current input pixel */
  unsigned char *outptr;	/* => current output pixel */
  int width = oim->sx;
  int num_rows = oim->sy;
  int *colormap0 = nim->red;
  int *colormap1 = nim->green;
  int *colormap2 = nim->blue;
  int *error_limit = cquantize->error_limiter;


  SHIFT_TEMPS for (row = 0; row < num_rows; row++)
    {
      inptr = input_buf[row];
      outptr = output_buf[row];
      if (cquantize->on_odd_row)
	{
	  /* work right to left in this row */
	  inptr += (width - 1) * 3;	/* so point to rightmost pixel */
	  outptr += width - 1;
	  dir = -1;
	  dir3 = -3;
	  errorptr = cquantize->fserrors + (width + 1) * 3;	/* => entry after last column */
	}
      else
	{
	  /* work left to right in this row */
	  dir = 1;
	  dir3 = 3;
	  errorptr = cquantize->fserrors;	/* => entry before first real column */
	}
      /* Preset error values: no error propagated to first pixel from left */
      cur0 = cur1 = cur2 = 0;
      /* and no error propagated to row below yet */
      belowerr0 = belowerr1 = belowerr2 = 0;
      bpreverr0 = bpreverr1 = bpreverr2 = 0;

      for (col = width; col > 0; col--)
	{

	  /* If this pixel is transparent, we want to assign it to the special
	   * transparency color index past the end of the palette rather than
	   * go through matching / dithering. */
	  if ((oim->transparent >= 0) && (*inptr == oim->transparent))
	    {
	      *outptr = nim->colorsTotal;
	      errorptr[0] = 0;
	      errorptr[1] = 0;
	      errorptr[2] = 0;
	      errorptr[3] = 0;
	      inptr += dir;
	      outptr += dir;
	      errorptr += dir3;
	      continue;
	    }
	  /* curN holds the error propagated from the previous pixel on the
	   * current line.  Add the error propagated from the previous line
	   * to form the complete error correction term for this pixel, and
	   * round the error term (which is expressed * 16) to an integer.
	   * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
	   * for either sign of the error value.
	   * Note: errorptr points to *previous* column's array entry.
	   */
	  cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4);
	  cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4);
	  cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4);
	  /* Limit the error using transfer function set by init_error_limit.
	   * See comments with init_error_limit for rationale.
	   */
	  cur0 = error_limit[cur0];
	  cur1 = error_limit[cur1];
	  cur2 = error_limit[cur2];
	  /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
	   * The maximum error is +- MAXJSAMPLE (or less with error limiting);
	   * this sets the required size of the range_limit array.
	   */
	  cur0 += gdTrueColorGetRed (*inptr);
	  cur1 += gdTrueColorGetGreen (*inptr);
	  cur2 += gdTrueColorGetBlue (*inptr);
	  range_limit (cur0);
	  range_limit (cur1);
	  range_limit (cur2);

	  /* Index into the cache with adjusted pixel value */
	  cachep =
	    &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
	  /* If we have not seen this color before, find nearest colormap */
	  /* entry and update the cache */
	  if (*cachep == 0)
	    fill_inverse_cmap (oim, nim, cquantize, cur0 >> C0_SHIFT,
			       cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
	  /* Now emit the colormap index for this cell */
	  {
	    register int pixcode = *cachep - 1;
	    *outptr = (JSAMPLE) pixcode;
	    /* Compute representation error for this pixel */
#define GETJSAMPLE
	    cur0 -= GETJSAMPLE (colormap0[pixcode]);
	    cur1 -= GETJSAMPLE (colormap1[pixcode]);
	    cur2 -= GETJSAMPLE (colormap2[pixcode]);
#undef GETJSAMPLE
	  }
	  /* Compute error fractions to be propagated to adjacent pixels.
	   * Add these into the running sums, and simultaneously shift the
	   * next-line error sums left by 1 column.
	   */
	  {
	    register LOCFSERROR bnexterr, delta;

	    bnexterr = cur0;	/* Process component 0 */
	    delta = cur0 * 2;
	    cur0 += delta;	/* form error * 3 */
	    errorptr[0] = (FSERROR) (bpreverr0 + cur0);
	    cur0 += delta;	/* form error * 5 */
	    bpreverr0 = belowerr0 + cur0;
	    belowerr0 = bnexterr;
	    cur0 += delta;	/* form error * 7 */
	    bnexterr = cur1;	/* Process component 1 */
	    delta = cur1 * 2;
	    cur1 += delta;	/* form error * 3 */
	    errorptr[1] = (FSERROR) (bpreverr1 + cur1);
	    cur1 += delta;	/* form error * 5 */
	    bpreverr1 = belowerr1 + cur1;
	    belowerr1 = bnexterr;
	    cur1 += delta;	/* form error * 7 */
	    bnexterr = cur2;	/* Process component 2 */
	    delta = cur2 * 2;
	    cur2 += delta;	/* form error * 3 */
	    errorptr[2] = (FSERROR) (bpreverr2 + cur2);
	    cur2 += delta;	/* form error * 5 */
	    bpreverr2 = belowerr2 + cur2;
	    belowerr2 = bnexterr;
	    cur2 += delta;	/* form error * 7 */
	  }
	  /* At this point curN contains the 7/16 error value to be propagated
	   * to the next pixel on the current line, and all the errors for the
	   * next line have been shifted over.  We are therefore ready to move on.
	   */
	  inptr += dir;		/* Advance pixel pointers to next column */
	  outptr += dir;
	  errorptr += dir3;	/* advance errorptr to current column */
	}
      /* Post-loop cleanup: we must unload the final error values into the
       * final fserrors[] entry.  Note we need not unload belowerrN because
       * it is for the dummy column before or after the actual array.
       */
      errorptr[0] = (FSERROR) bpreverr0;	/* unload prev errs into array */
      errorptr[1] = (FSERROR) bpreverr1;
      errorptr[2] = (FSERROR) bpreverr2;
    }
}


/*
 * Initialize the error-limiting transfer function (lookup table).
 * The raw F-S error computation can potentially compute error values of up to
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
 * much less, otherwise obviously wrong pixels will be created.  (Typical
 * effects include weird fringes at color-area boundaries, isolated bright
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
 * is to ensure that the "corners" of the color cube are allocated as output
 * colors; then repeated errors in the same direction cannot cause cascading
 * error buildup.  However, that only prevents the error from getting
 * completely out of hand; Aaron Giles reports that error limiting improves
 * the results even with corner colors allocated.
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
 * well, but the smoother transfer function used below is even better.  Thanks
 * to Aaron Giles for this idea.
 */

LOCAL (void)
init_error_limit (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
/* Allocate and fill in the error_limiter table */
{
  int *table;
  int in, out;
  (void)oim;
  (void)nim;

  cquantize->error_limiter_storage =
    (int *) gdMalloc ((MAXJSAMPLE * 2 + 1) * sizeof (int));
  if (!cquantize->error_limiter_storage)
    {
      return;
    }
  table = cquantize->error_limiter_storage;

  table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
  cquantize->error_limiter = table;

#define STEPSIZE ((MAXJSAMPLE+1)/16)
  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
  out = 0;
  for (in = 0; in < STEPSIZE; in++, out++)
    {
      table[in] = out;
      table[-in] = -out;
    }
  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
  for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1)
    {
      table[in] = out;
      table[-in] = -out;
    }
  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
  for (; in <= MAXJSAMPLE; in++)
    {
      table[in] = out;
      table[-in] = -out;
    }
#undef STEPSIZE
}


/*
 * Finish up at the end of each pass.
 */

static void
zeroHistogram (hist3d histogram)
{
  int i;
  /* Zero the histogram or inverse color map */
  for (i = 0; i < HIST_C0_ELEMS; i++)
    {
      memset (histogram[i],
	      0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
    }
}


/*
  Selects quantization method used for subsequent gdImageTrueColorToPalette calls.
  See gdPaletteQuantizationMethod enum (e.g. GD_QUANT_NEUQUANT, GD_QUANT_LIQ).
  Speed is from 1 (highest quality) to 10 (fastest).
  Speed 0 selects method-specific default (recommended).

  Returns FALSE if the given method is invalid or not available.
*/
BGD_DECLARE(int) gdImageTrueColorToPaletteSetMethod (gdImagePtr im, int method, int speed)
{
  #ifndef HAVE_LIBIMAGEQUANT_H
    if (method == GD_QUANT_LIQ)
      {
        return FALSE;
      }
  #endif

    if (method >= GD_QUANT_DEFAULT && method <= GD_QUANT_LIQ)
      {
        im->paletteQuantizationMethod = method;

        if (speed < 0 || speed > 10)
          {
            speed = 0;
          }
        im->paletteQuantizationSpeed = speed;
      }
    return TRUE;
}

/*
  Chooses quality range that subsequent call to gdImageTrueColorToPalette will aim for.
  Min and max quality is in range 1-100 (1 = ugly, 100 = perfect). Max must be higher than min.
  If palette cannot represent image with at least min_quality, then image will remain true-color.
  If palette can represent image with quality better than max_quality, then lower number of colors will be used.
  This function has effect only when GD_QUANT_LIQ method has been selected.
*/
BGD_DECLARE(void) gdImageTrueColorToPaletteSetQuality (gdImagePtr im, int min_quality, int max_quality)
{
    if (min_quality >= 0 && min_quality <= 100 &&
        max_quality >= 0 && max_quality <= 100 && min_quality <= max_quality)
      {
        im->paletteQuantizationMinQuality = min_quality;
        im->paletteQuantizationMaxQuality = max_quality;
      }
}

static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP);

BGD_DECLARE(gdImagePtr) gdImageCreatePaletteFromTrueColor (gdImagePtr im, int dither, int colorsWanted)
{
	gdImagePtr nim;
	if (TRUE == gdImageTrueColorToPaletteBody(im, dither, colorsWanted, &nim))
    {
       return nim;
    }
	return NULL;
}

BGD_DECLARE(int) gdImageTrueColorToPalette (gdImagePtr im, int dither, int colorsWanted)
{
	return gdImageTrueColorToPaletteBody(im, dither, colorsWanted, 0);
}

#ifdef HAVE_LIBIMAGEQUANT_H
/**
  LIQ library needs pixels in RGBA order with alpha 0-255 (opaque 255).
  This callback is run whenever source rows need to be converted from GD's format.
*/
static void convert_gdpixel_to_rgba(liq_color output_row[], int y, int width, void *userinfo)
{
  gdImagePtr oim = userinfo;
  int x;
  for(x = 0; x < width; x++)
    {
      output_row[x].r = gdTrueColorGetRed(input_buf[y][x]) * 255/gdRedMax;
      output_row[x].g = gdTrueColorGetGreen(input_buf[y][x]) * 255/gdGreenMax;
      output_row[x].b = gdTrueColorGetBlue(input_buf[y][x]) * 255/gdBlueMax;
      int alpha = gdTrueColorGetAlpha(input_buf[y][x]);
      if (gdAlphaOpaque < gdAlphaTransparent)
        {
          alpha = gdAlphaTransparent - alpha;
        }
      output_row[x].a = alpha * 255/gdAlphaMax;
    }
}
#endif

static void free_truecolor_image_data(gdImagePtr oim)
{
  int i;
  oim->trueColor = 0;
  /* Junk the truecolor pixels */
  for (i = 0; i < oim->sy; i++)
    {
      gdFree (oim->tpixels[i]);
    }
  gdFree (oim->tpixels);
  oim->tpixels = 0;
}

/*
 * Module initialization routine for 2-pass color quantization.
 */

static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP)
{
  my_cquantize_ptr cquantize = NULL;
  int i, conversionSucceeded=0;

  /* Allocate the JPEG palette-storage */
  size_t arraysize;
  int maxColors = gdMaxColors;
  gdImagePtr nim;

  if (cimP) {
    nim = gdImageCreate(oim->sx, oim->sy);
    *cimP = nim;
      if (!nim)
        {
          return FALSE;
        }
    }
  else
    {
      nim = oim;
    }

  if (!oim->trueColor)
    {
      /* (Almost) nothing to do! */
      if (cimP) {
        gdImageCopy(nim, oim, 0, 0, 0, 0, oim->sx, oim->sy);
        *cimP = nim;
      }
      return TRUE;
    }

  /* If we have a transparent color (the alphaless mode of transparency), we
   * must reserve a palette entry for it at the end of the palette. */
  if (oim->transparent >= 0)
    {
      maxColors--;
    }
  if (colorsWanted > maxColors)
    {
      colorsWanted = maxColors;
    }
  if (!cimP) {
    nim->pixels = gdCalloc (sizeof (unsigned char *), oim->sy);
    if (!nim->pixels)
      {
        /* No can do */
        goto outOfMemory;
      }
    for (i = 0; (i < nim->sy); i++)
      {
        nim->pixels[i] = gdCalloc (sizeof (unsigned char *), oim->sx);
        if (!nim->pixels[i])
  	{
  	  goto outOfMemory;
  	}
      }
  }


  if (oim->paletteQuantizationMethod == GD_QUANT_NEUQUANT)
    {
      if (cimP) /* NeuQuant alwasy creates a copy, so the new blank image can't be used */
        {
          gdImageDestroy(nim);
        }
      nim = gdImageNeuQuant(oim, colorsWanted, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 2);
      if (cimP)
        {
          *cimP = nim;
        }
      else
        {
          gdImageCopy(oim, nim, 0, 0, 0, 0, oim->sx, oim->sy);
          gdImageDestroy(nim);
        }
      return TRUE;
    }


#ifdef HAVE_LIBIMAGEQUANT_H
  if (oim->paletteQuantizationMethod == GD_QUANT_DEFAULT ||
      oim->paletteQuantizationMethod == GD_QUANT_LIQ)
    {
      liq_attr *attr = liq_attr_create_with_allocator(gdMalloc, gdFree);
      liq_image *image;
      liq_result *remap;
      int remapped_ok = 0;

      liq_set_max_colors(attr, colorsWanted);

      /* by default make it fast to match speed of previous implementation */
      liq_set_speed(attr, oim->paletteQuantizationSpeed ? oim->paletteQuantizationSpeed : 9);
      if (oim->paletteQuantizationMaxQuality)
        {
          liq_set_quality(attr, oim->paletteQuantizationMinQuality, oim->paletteQuantizationMaxQuality);
        }
      image = liq_image_create_custom(attr, convert_gdpixel_to_rgba, oim, oim->sx, oim->sy, 0);
      remap = liq_quantize_image(attr, image);
      if (!remap)  /* minimum quality not met, leave image unmodified */
        {
          liq_image_destroy(image);
          liq_attr_destroy(attr);
          goto outOfMemory;
        }

      liq_set_dithering_level(remap, dither ? 1 : 0);
      if (LIQ_OK == liq_write_remapped_image_rows(remap, image, output_buf))
        {
          remapped_ok = 1;
          const liq_palette *pal = liq_get_palette(remap);
          nim->transparent = -1;
          for(int icolor=0; icolor < pal->count; icolor++)
            {
              nim->open[icolor] = 0;
              nim->red[icolor] = pal->entries[icolor].r * gdRedMax/255;
              nim->green[icolor] = pal->entries[icolor].g * gdGreenMax/255;
              nim->blue[icolor] = pal->entries[icolor].b * gdBlueMax/255;
              int alpha = pal->entries[icolor].a * gdAlphaMax/255;
              if (gdAlphaOpaque < gdAlphaTransparent)
                {
                  alpha = gdAlphaTransparent - alpha;
                }
              nim->alpha[icolor] = alpha;
              if (nim->transparent == -1 && alpha == gdAlphaTransparent)
                {
                  nim->transparent = icolor;
                }
            }
          nim->colorsTotal = pal->count;
        }
      liq_result_destroy(remap);
      liq_image_destroy(image);
      liq_attr_destroy(attr);

      if (remapped_ok)
        {
          if (!cimP)
            {
              free_truecolor_image_data(oim);
            }
          return TRUE;
        }
    }
#endif

  cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1);
  if (!cquantize)
    {
      /* No can do */
      goto outOfMemory;
    }
  cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
  cquantize->error_limiter = NULL;


  /* Allocate the histogram/inverse colormap storage */
  cquantize->histogram = (hist3d) gdMalloc (HIST_C0_ELEMS * sizeof (hist2d));
  for (i = 0; i < HIST_C0_ELEMS; i++)
    {
      cquantize->histogram[i] =
	(hist2d) gdMalloc (HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
      if (!cquantize->histogram[i])
	{
	  goto outOfMemory;
	}
    }


  cquantize->fserrors = (FSERRPTR) gdMalloc (3 * sizeof (FSERROR));
  init_error_limit (oim, nim, cquantize);
  arraysize = (size_t) ((nim->sx + 2) * (3 * sizeof (FSERROR)));
  /* Allocate Floyd-Steinberg workspace. */
	cquantize->fserrors = gdRealloc(cquantize->fserrors, arraysize);
  if (!cquantize->fserrors)
    {
      goto outOfMemory;
    }
  memset(cquantize->fserrors, 0, arraysize);
  cquantize->on_odd_row = FALSE;

  /* Do the work! */
  zeroHistogram (cquantize->histogram);
  prescan_quantize (oim, nim, cquantize);
  /* TBB 2.0.5: pass colorsWanted, not 256! */
  select_colors (oim, nim, cquantize, colorsWanted);
  zeroHistogram (cquantize->histogram);
  if (dither)
    {
      pass2_fs_dither (oim, nim, cquantize);
    }
  else
    {
      pass2_no_dither (oim, nim, cquantize);
    }
#if 0				/* 2.0.12; we no longer attempt full alpha in palettes */
  if (cquantize->transparentIsPresent)
    {
      int mt = -1;
      int mtIndex = -1;
      for (i = 0; (i < im->colorsTotal); i++)
	{
	  if (im->alpha[i] > mt)
	    {
	      mtIndex = i;
	      mt = im->alpha[i];
	    }
	}
      for (i = 0; (i < im->colorsTotal); i++)
	{
	  if (im->alpha[i] == mt)
	    {
	      im->alpha[i] = gdAlphaTransparent;
	    }
	}
    }
  if (cquantize->opaqueIsPresent)
    {
      int mo = 128;
      int moIndex = -1;
      for (i = 0; (i < im->colorsTotal); i++)
	{
	  if (im->alpha[i] < mo)
	    {
	      moIndex = i;
	      mo = im->alpha[i];
	    }
	}
      for (i = 0; (i < im->colorsTotal); i++)
	{
	  if (im->alpha[i] == mo)
	    {
	      im->alpha[i] = gdAlphaOpaque;
	    }
	}
    }
#endif

  /* If we had a 'transparent' color, increment the color count so it's
   * officially in the palette and convert the transparent variable to point to
   * an index rather than a color (Its data already exists and transparent
   * pixels have already been mapped to it by this point, it is done late as to
   * avoid color matching / dithering with it). */
  if (oim->transparent >= 0)
    {
      nim->transparent = nim->colorsTotal;
      nim->colorsTotal++;
    }

  /* Success! Get rid of the truecolor image data. */
  conversionSucceeded = TRUE;
  if (!cimP)
    {
      free_truecolor_image_data(oim);
    }

  goto freeQuantizeData;
  /* Tediously free stuff. */
outOfMemory:
  conversionSucceeded = FALSE;
  if (oim->trueColor)
    {
      if (!cimP) {
        /* On failure only */
        for (i = 0; i < nim->sy; i++)
  	{
  	  if (nim->pixels[i])
  	    {
  	      gdFree (nim->pixels[i]);
  	    }
  	}
        if (nim->pixels)
  	{
  	  gdFree (nim->pixels);
  	}
        nim->pixels = 0;
      } else {
        gdImageDestroy(nim);
        *cimP = 0;
      }
    }

freeQuantizeData:
  if (cquantize)
    {
      if (cquantize->histogram)
        {
          for (i = 0; i < HIST_C0_ELEMS; i++)
            {
               if (cquantize->histogram[i])
                 {
                    gdFree (cquantize->histogram[i]);
                 }
            }
          gdFree (cquantize->histogram);
        }
      if (cquantize->fserrors)
        {
          gdFree (cquantize->fserrors);
        }
      if (cquantize->error_limiter_storage)
        {
          gdFree (cquantize->error_limiter_storage);
        }
      gdFree (cquantize);
    }

  return conversionSucceeded;
}

#endif