summaryrefslogtreecommitdiff
path: root/tools
diff options
context:
space:
mode:
authorDan Zhu <zxdan@google.com>2019-07-17 19:43:56 -0700
committerDan Zhu <zxdan@google.com>2019-07-23 09:55:03 -0700
commitd7a2451d48ca3b6a01afb88d775f8d0614211b88 (patch)
tree62d6226c7e0d9144e0dedb327c00a14cf3eb75b4 /tools
parente4096639ff0e034cb59c13760727b2e6d4fbe831 (diff)
downloadlibvpx-d7a2451d48ca3b6a01afb88d775f8d0614211b88.tar.gz
Add Exhaust Search (Neighbor Constrain) Estimator
Change-Id: I1e306979a0d308285155c152837125fb2036091a
Diffstat (limited to 'tools')
-rw-r--r--tools/3D-Reconstruction/MotionEST/Exhaust.py132
1 files changed, 132 insertions, 0 deletions
diff --git a/tools/3D-Reconstruction/MotionEST/Exhaust.py b/tools/3D-Reconstruction/MotionEST/Exhaust.py
new file mode 100644
index 000000000..3c0346814
--- /dev/null
+++ b/tools/3D-Reconstruction/MotionEST/Exhaust.py
@@ -0,0 +1,132 @@
+#!/usr/bin/env python
+# coding: utf-8
+import numpy as np
+import numpy.linalg as LA
+from Util import MSE
+from MotionEST import MotionEST
+"""Exhaust Search:"""
+
+
+class Exhaust(MotionEST):
+ """
+ Constructor:
+ cur_f: current frame
+ ref_f: reference frame
+ blk_sz: block size
+ wnd_size: search window size
+ metric: metric to compare the blocks distrotion
+ """
+
+ def __init__(self, cur_f, ref_f, blk_size, wnd_size, metric=MSE):
+ self.name = 'exhaust'
+ self.wnd_sz = wnd_size
+ self.metric = metric
+ super(Exhaust, self).__init__(cur_f, ref_f, blk_size)
+
+ """
+ search method:
+ cur_r: start row
+ cur_c: start column
+ """
+
+ def search(self, cur_r, cur_c):
+ min_loss = self.dist(cur_r, cur_c, [0, 0], self.metric)
+ cur_x = cur_c * self.blk_sz
+ cur_y = cur_r * self.blk_sz
+ ref_x = cur_x
+ ref_y = cur_y
+ #search all validate positions and select the one with minimum distortion
+ for y in xrange(cur_y - self.wnd_sz, cur_y + self.wnd_sz):
+ for x in xrange(cur_x - self.wnd_sz, cur_x + self.wnd_sz):
+ if 0 <= x < self.width - self.blk_sz and 0 <= y < self.height - self.blk_sz:
+ loss = self.dist(cur_r, cur_c, [y - cur_y, x - cur_x], self.metric)
+ if loss < min_loss:
+ min_loss = loss
+ ref_x = x
+ ref_y = y
+ return ref_x, ref_y
+
+ def est(self):
+ for i in xrange(self.num_row):
+ for j in xrange(self.num_col):
+ ref_x, ref_y = self.search(i, j)
+ self.mf[i, j] = np.array(
+ [ref_y - i * self.blk_sz, ref_x - j * self.blk_sz])
+
+
+"""Exhaust with Neighbor Constraint"""
+
+
+class ExhaustNeighbor(MotionEST):
+ """
+ Constructor:
+ cur_f: current frame
+ ref_f: reference frame
+ blk_sz: block size
+ wnd_size: search window size
+ beta: neigbor loss weight
+ metric: metric to compare the blocks distrotion
+ """
+
+ def __init__(self, cur_f, ref_f, blk_size, wnd_size, beta, metric=MSE):
+ self.name = 'exhaust + neighbor'
+ self.wnd_sz = wnd_size
+ self.beta = beta
+ self.metric = metric
+ super(ExhaustNeighbor, self).__init__(cur_f, ref_f, blk_size)
+ self.assign = np.zeros((self.num_row, self.num_col), dtype=np.bool)
+
+ """
+ estimate neighbor loss:
+ cur_r: current row
+ cur_c: current column
+ mv: current motion vector
+ """
+
+ def neighborLoss(self, cur_r, cur_c, mv):
+ loss = 0
+ #accumulate difference between current block's motion vector with neighbors'
+ for i, j in {(-1, 0), (1, 0), (0, 1), (0, -1)}:
+ nb_r = cur_r + i
+ nb_c = cur_c + j
+ if 0 <= nb_r < self.num_row and 0 <= nb_c < self.num_col and self.assign[
+ nb_r, nb_c]:
+ loss += LA.norm(mv - self.mf[nb_r, nb_c])
+ return loss
+
+ """
+ search method:
+ cur_r: start row
+ cur_c: start column
+ """
+
+ def search(self, cur_r, cur_c):
+ dist_loss = self.dist(cur_r, cur_c, [0, 0], self.metric)
+ nb_loss = self.neighborLoss(cur_r, cur_c, np.array([0, 0]))
+ min_loss = dist_loss + self.beta * nb_loss
+ cur_x = cur_c * self.blk_sz
+ cur_y = cur_r * self.blk_sz
+ ref_x = cur_x
+ ref_y = cur_y
+ #search all validate positions and select the one with minimum distortion
+ # as well as weighted neighbor loss
+ for y in xrange(cur_y - self.wnd_sz, cur_y + self.wnd_sz):
+ for x in xrange(cur_x - self.wnd_sz, cur_x + self.wnd_sz):
+ if 0 <= x < self.width - self.blk_sz and 0 <= y < self.height - self.blk_sz:
+ dist_loss = self.dist(cur_r, cur_c, [y - cur_y, x - cur_x],
+ self.metric)
+ nb_loss = self.neighborLoss(cur_r, cur_c, [y - cur_y, x - cur_x])
+ loss = dist_loss + self.beta * nb_loss
+ if loss < min_loss:
+ min_loss = loss
+ ref_x = x
+ ref_y = y
+ return ref_x, ref_y
+
+ def est(self):
+ for i in xrange(self.num_row):
+ for j in xrange(self.num_col):
+ ref_x, ref_y = self.search(i, j)
+ self.mf[i, j] = np.array(
+ [ref_y - i * self.blk_sz, ref_x - j * self.blk_sz])
+ self.assign[i, j] = True