summaryrefslogtreecommitdiff
path: root/vp8/common/ppc/loopfilter_filters_altivec.asm
blob: 78a5cf9b3cef1bdd9bb48c5bfb7c926fb59d551d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
;
;  Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
;
;  Use of this source code is governed by a BSD-style license and patent
;  grant that can be found in the LICENSE file in the root of the source
;  tree. All contributing project authors may be found in the AUTHORS
;  file in the root of the source tree.
;


    .globl mbloop_filter_horizontal_edge_y_ppc
    .globl loop_filter_horizontal_edge_y_ppc
    .globl mbloop_filter_vertical_edge_y_ppc
    .globl loop_filter_vertical_edge_y_ppc

    .globl mbloop_filter_horizontal_edge_uv_ppc
    .globl loop_filter_horizontal_edge_uv_ppc
    .globl mbloop_filter_vertical_edge_uv_ppc
    .globl loop_filter_vertical_edge_uv_ppc

    .globl loop_filter_simple_horizontal_edge_ppc
    .globl loop_filter_simple_vertical_edge_ppc

    .text
;# We often need to perform transposes (and other transpose-like operations)
;#   on matrices of data.  This is simplified by the fact that we usually
;#   operate on hunks of data whose dimensions are powers of 2, or at least
;#   divisible by highish powers of 2.
;#
;#   These operations can be very confusing.  They become more straightforward
;#   when we think of them as permutations of address bits: Concatenate a
;#   group of vector registers and think of it as occupying a block of
;#   memory beginning at address zero.  The low four bits 0...3 of the
;#   address then correspond to position within a register, the higher-order
;#   address bits select the register.
;#
;#   Although register selection, at the code level, is arbitrary, things
;#   are simpler if we use contiguous ranges of register numbers, simpler
;#   still if the low-order bits of the register number correspond to
;#   conceptual address bits.  We do this whenever reasonable.
;#
;#   A 16x16 transpose can then be thought of as an operation on
;#   a 256-element block of memory.  It takes 8 bits 0...7 to address this
;#   memory and the effect of a transpose is to interchange address bit
;#   0 with 4, 1 with 5, 2 with 6, and 3 with 7.  Bits 0...3 index the
;#   column, which is interchanged with the row addressed by bits 4..7.
;#
;#   The altivec merge instructions provide a rapid means of effecting
;#   many of these transforms.  They operate at three widths (8,16,32).
;#   Writing V(x) for vector register #x, paired merges permute address
;#   indices as follows.
;#
;#   0->1  1->2  2->3  3->(4+d)  (4+s)->0:
;#
;#      vmrghb  V( x),          V( y), V( y + (1<<s))
;#      vmrglb  V( x + (1<<d)), V( y), V( y + (1<<s))
;#
;#
;#   =0=   1->2  2->3  3->(4+d)  (4+s)->1:
;#
;#      vmrghh  V( x),          V( y), V( y + (1<<s))
;#      vmrglh  V( x + (1<<d)), V( y), V( y + (1<<s))
;#
;#
;#   =0=   =1=   2->3  3->(4+d)  (4+s)->2:
;#
;#      vmrghw  V( x),          V( y), V( y + (1<<s))
;#      vmrglw  V( x + (1<<d)), V( y), V( y + (1<<s))
;#
;#
;#   Unfortunately, there is no doubleword merge instruction.
;#   The following sequence uses "vperm" is a substitute.
;#   Assuming that the selection masks b_hihi and b_lolo (defined in LFppc.c)
;#   are in registers Vhihi and Vlolo, we can also effect the permutation
;#
;#   =0=   =1=   =2=   3->(4+d)  (4+s)->3   by the sequence:
;#
;#      vperm   V( x),          V( y), V( y + (1<<s)), Vhihi
;#      vperm   V( x + (1<<d)), V( y), V( y + (1<<s)), Vlolo
;#
;#
;#   Except for bits s and d, the other relationships between register
;#   number (= high-order part of address) bits are at the disposal of
;#   the programmer.
;#

;# To avoid excess transposes, we filter all 3 vertical luma subblock
;#   edges together.  This requires a single 16x16 transpose, which, in
;#   the above language, amounts to the following permutation of address
;#   indices:  0<->4   1<->5  2<->6  3<->7, which we accomplish by
;#   4 iterations of the cyclic transform 0->1->2->3->4->5->6->7->0.
;#
;#   Except for the fact that the destination registers get written
;#   before we are done referencing the old contents, the cyclic transform
;#   is effected by
;#
;#      x = 0;  do {
;#          vmrghb V(2x),   V(x), V(x+8);
;#          vmrghb V(2x+1), V(x), V(x+8);
;#      } while( ++x < 8);
;#
;#   For clarity, and because we can afford it, we do this transpose
;#   using all 32 registers, alternating the banks 0..15  and  16 .. 31,
;#   leaving the final result in 16 .. 31, as the lower registers are
;#   used in the filtering itself.
;#
.macro Tpair A, B, X, Y
    vmrghb  \A, \X, \Y
    vmrglb  \B, \X, \Y
.endm

;# Each step takes 8*2 = 16 instructions

.macro t16_even
    Tpair v16,v17,  v0,v8
    Tpair v18,v19,  v1,v9
    Tpair v20,v21,  v2,v10
    Tpair v22,v23,  v3,v11
    Tpair v24,v25,  v4,v12
    Tpair v26,v27,  v5,v13
    Tpair v28,v29,  v6,v14
    Tpair v30,v31,  v7,v15
.endm

.macro t16_odd
    Tpair v0,v1, v16,v24
    Tpair v2,v3, v17,v25
    Tpair v4,v5, v18,v26
    Tpair v6,v7, v19,v27
    Tpair v8,v9, v20,v28
    Tpair v10,v11, v21,v29
    Tpair v12,v13, v22,v30
    Tpair v14,v15, v23,v31
.endm

;# Whole transpose takes 4*16 = 64 instructions

.macro t16_full
    t16_odd
    t16_even
    t16_odd
    t16_even
.endm

;# Vertical edge filtering requires transposes.  For the simple filter,
;#   we need to convert 16 rows of 4 pels each into 4 registers of 16 pels
;#   each.  Writing 0 ... 63 for the pixel indices, the desired result is:
;#
;#  v0 =  0  1 ... 14 15
;#  v1 = 16 17 ... 30 31
;#  v2 = 32 33 ... 47 48
;#  v3 = 49 50 ... 62 63
;#
;#  In frame-buffer memory, the layout is:
;#
;#     0  16  32  48
;#     1  17  33  49
;#     ...
;#    15  31  47  63.
;#
;#  We begin by reading the data 32 bits at a time (using scalar operations)
;#  into a temporary array, reading the rows of the array into vector registers,
;#  with the following layout:
;#
;#  v0 =  0 16 32 48  4 20 36 52  8 24 40 56  12 28 44 60
;#  v1 =  1 17 33 49  5 21 ...                      45 61
;#  v2 =  2 18 ...                                  46 62
;#  v3 =  3 19 ...                                  47 63
;#
;#  From the "address-bit" perspective discussed above, we simply need to
;#  interchange bits 0 <-> 4 and 1 <-> 5, leaving bits 2 and 3 alone.
;#  In other words, we transpose each of the four 4x4 submatrices.
;#
;#  This transformation is its own inverse, and we need to perform it
;#  again before writing the pixels back into the frame buffer.
;#
;#  It acts in place on registers v0...v3, uses v4...v7 as temporaries,
;#  and assumes that v14/v15 contain the b_hihi/b_lolo selectors
;#  defined above.  We think of both groups of 4 registers as having
;#  "addresses" {0,1,2,3} * 16.
;#
.macro Transpose4times4x4 Vlo, Vhi

    ;# d=s=0        0->1  1->2  2->3  3->4  4->0  =5=

    vmrghb  v4, v0, v1
    vmrglb  v5, v0, v1
    vmrghb  v6, v2, v3
    vmrglb  v7, v2, v3

    ;# d=0 s=1      =0=   1->2  2->3  3->4  4->5  5->1

    vmrghh  v0, v4, v6
    vmrglh  v1, v4, v6
    vmrghh  v2, v5, v7
    vmrglh  v3, v5, v7

    ;# d=s=0        =0=   =1=   2->3  3->4  4->2  =5=

    vmrghw  v4, v0, v1
    vmrglw  v5, v0, v1
    vmrghw  v6, v2, v3
    vmrglw  v7, v2, v3

    ;# d=0  s=1     =0=   =1=   =2=   3->4  4->5  5->3

    vperm   v0, v4, v6, \Vlo
    vperm   v1, v4, v6, \Vhi
    vperm   v2, v5, v7, \Vlo
    vperm   v3, v5, v7, \Vhi
.endm
;# end Transpose4times4x4


;# Normal mb vertical edge filter transpose.
;#
;#   We read 8 columns of data, initially in the following pattern:
;#
;#  (0,0)  (1,0) ... (7,0)  (0,1)  (1,1) ... (7,1)
;#  (0,2)  (1,2) ... (7,2)  (0,3)  (1,3) ... (7,3)
;#  ...
;#  (0,14) (1,14) .. (7,14) (0,15) (1,15) .. (7,15)
;#
;#   and wish to convert to:
;#
;#  (0,0) ... (0,15)
;#  (1,0) ... (1,15)
;#  ...
;#  (7,0) ... (7,15).
;#
;#  In "address bit" language, we wish to map
;#
;#  0->4  1->5  2->6  3->0  4->1  5->2  6->3, i.e., I -> (I+4) mod 7.
;#
;#  This can be accomplished by 4 iterations of the cyclic transform
;#
;#  I -> (I+1) mod 7;
;#
;#  each iteration can be realized by (d=0, s=2):
;#
;#  x = 0;  do  Tpair( V(2x),V(2x+1),  V(x),V(x+4))  while( ++x < 4);
;#
;#  The input/output is in registers v0...v7.  We use v10...v17 as mirrors;
;#  preserving v8 = sign converter.
;#
;#  Inverse transpose is similar, except here I -> (I+3) mod 7 and the
;#  result lands in the "mirror" registers v10...v17
;#
.macro t8x16_odd
    Tpair v10, v11,  v0, v4
    Tpair v12, v13,  v1, v5
    Tpair v14, v15,  v2, v6
    Tpair v16, v17,  v3, v7
.endm

.macro t8x16_even
    Tpair v0, v1,  v10, v14
    Tpair v2, v3,  v11, v15
    Tpair v4, v5,  v12, v16
    Tpair v6, v7,  v13, v17
.endm

.macro transpose8x16_fwd
    t8x16_odd
    t8x16_even
    t8x16_odd
    t8x16_even
.endm

.macro transpose8x16_inv
    t8x16_odd
    t8x16_even
    t8x16_odd
.endm

.macro Transpose16x16
    vmrghb  v0, v16, v24
    vmrglb  v1, v16, v24
    vmrghb  v2, v17, v25
    vmrglb  v3, v17, v25
    vmrghb  v4, v18, v26
    vmrglb  v5, v18, v26
    vmrghb  v6, v19, v27
    vmrglb  v7, v19, v27
    vmrghb  v8, v20, v28
    vmrglb  v9, v20, v28
    vmrghb  v10, v21, v29
    vmrglb  v11, v21, v29
    vmrghb  v12, v22, v30
    vmrglb  v13, v22, v30
    vmrghb  v14, v23, v31
    vmrglb  v15, v23, v31
    vmrghb  v16, v0, v8
    vmrglb  v17, v0, v8
    vmrghb  v18, v1, v9
    vmrglb  v19, v1, v9
    vmrghb  v20, v2, v10
    vmrglb  v21, v2, v10
    vmrghb  v22, v3, v11
    vmrglb  v23, v3, v11
    vmrghb  v24, v4, v12
    vmrglb  v25, v4, v12
    vmrghb  v26, v5, v13
    vmrglb  v27, v5, v13
    vmrghb  v28, v6, v14
    vmrglb  v29, v6, v14
    vmrghb  v30, v7, v15
    vmrglb  v31, v7, v15
    vmrghb  v0, v16, v24
    vmrglb  v1, v16, v24
    vmrghb  v2, v17, v25
    vmrglb  v3, v17, v25
    vmrghb  v4, v18, v26
    vmrglb  v5, v18, v26
    vmrghb  v6, v19, v27
    vmrglb  v7, v19, v27
    vmrghb  v8, v20, v28
    vmrglb  v9, v20, v28
    vmrghb  v10, v21, v29
    vmrglb  v11, v21, v29
    vmrghb  v12, v22, v30
    vmrglb  v13, v22, v30
    vmrghb  v14, v23, v31
    vmrglb  v15, v23, v31
    vmrghb  v16, v0, v8
    vmrglb  v17, v0, v8
    vmrghb  v18, v1, v9
    vmrglb  v19, v1, v9
    vmrghb  v20, v2, v10
    vmrglb  v21, v2, v10
    vmrghb  v22, v3, v11
    vmrglb  v23, v3, v11
    vmrghb  v24, v4, v12
    vmrglb  v25, v4, v12
    vmrghb  v26, v5, v13
    vmrglb  v27, v5, v13
    vmrghb  v28, v6, v14
    vmrglb  v29, v6, v14
    vmrghb  v30, v7, v15
    vmrglb  v31, v7, v15
.endm

;# load_g loads a global vector (whose address is in the local variable Gptr)
;#   into vector register Vreg.  Trashes r0
.macro load_g Vreg, Gptr
    lwz     r0, \Gptr
    lvx     \Vreg, 0, r0
.endm

;# exploit the saturation here.  if the answer is negative
;# it will be clamped to 0.  orring 0 with a positive
;# number will be the positive number (abs)
;# RES = abs( A-B), trashes TMP
.macro Abs RES, TMP, A, B
    vsububs \RES, \A, \B
    vsububs \TMP, \B, \A
    vor     \RES, \RES, \TMP
.endm

;# RES = Max( RES, abs( A-B)), trashes TMP
.macro max_abs RES, TMP, A, B
    vsububs \TMP, \A, \B
    vmaxub  \RES, \RES, \TMP
    vsububs \TMP, \B, \A
    vmaxub  \RES, \RES, \TMP
.endm

.macro Masks
    ;# build masks
    ;# input is all 8 bit unsigned (0-255).  need to
    ;# do abs(vala-valb) > limit.  but no need to compare each
    ;# value to the limit.  find the max of the absolute differences
    ;# and compare that to the limit.
    ;# First hev
    Abs     v14, v13, v2, v3    ;# |P1 - P0|
    max_abs  v14, v13, v5, v4    ;# |Q1 - Q0|

    vcmpgtub v10, v14, v10      ;# HEV = true if thresh exceeded

    ;# Next limit
    max_abs  v14, v13, v0, v1    ;# |P3 - P2|
    max_abs  v14, v13, v1, v2    ;# |P2 - P1|
    max_abs  v14, v13, v6, v5    ;# |Q2 - Q1|
    max_abs  v14, v13, v7, v6    ;# |Q3 - Q2|

    vcmpgtub v9, v14, v9        ;# R = true if limit exceeded

    ;# flimit
    Abs     v14, v13, v3, v4    ;# |P0 - Q0|

    vcmpgtub v8, v14, v8        ;# X = true if flimit exceeded

    vor     v8, v8, v9          ;# R = true if flimit or limit exceeded
    ;# done building masks
.endm

.macro build_constants RFL, RLI, RTH, FL, LI, TH
    ;# build constants
    lvx     \FL, 0, \RFL        ;# flimit
    lvx     \LI, 0, \RLI        ;# limit
    lvx     \TH, 0, \RTH        ;# thresh

    vspltisb v11, 8
    vspltisb v12, 4
    vslb    v11, v11, v12       ;# 0x80808080808080808080808080808080
.endm

.macro load_data_y
    ;# setup strides/pointers to be able to access
    ;# all of the data
    add     r5, r4, r4          ;# r5 = 2 * stride
    sub     r6, r3, r5          ;# r6 -> 2 rows back
    neg     r7, r4              ;# r7 = -stride

    ;# load 16 pixels worth of data to work on
    sub     r0, r6, r5          ;# r0 -> 4 rows back (temp)
    lvx     v0,  0, r0          ;# P3  (read only)
    lvx     v1, r7, r6          ;# P2
    lvx     v2,  0, r6          ;# P1
    lvx     v3, r7, r3          ;# P0
    lvx     v4,  0, r3          ;# Q0
    lvx     v5, r4, r3          ;# Q1
    lvx     v6, r5, r3          ;# Q2
    add     r0, r3, r5          ;# r0 -> 2 rows fwd (temp)
    lvx     v7, r4, r0          ;# Q3  (read only)
.endm

;# Expects
;#  v10 == HEV
;#  v13 == tmp
;#  v14 == tmp
.macro common_adjust P0, Q0, P1, Q1, HEV_PRESENT
    vxor    \P1, \P1, v11       ;# SP1
    vxor    \P0, \P0, v11       ;# SP0
    vxor    \Q0, \Q0, v11       ;# SQ0
    vxor    \Q1, \Q1, v11       ;# SQ1

    vsubsbs v13, \P1, \Q1       ;# f  = c (P1 - Q1)
.if \HEV_PRESENT
    vand    v13, v13, v10       ;# f &= hev
.endif
    vsubsbs v14, \Q0, \P0       ;# -126 <=  X = Q0-P0  <= +126
    vaddsbs v13, v13, v14
    vaddsbs v13, v13, v14
    vaddsbs v13, v13, v14       ;# A = c( c(P1-Q1) + 3*(Q0-P0))

    vandc   v13, v13, v8        ;# f &= mask

    vspltisb v8, 3
    vspltisb v9, 4

    vaddsbs v14, v13, v9        ;# f1 = c (f+4)
    vaddsbs v15, v13, v8        ;# f2 = c (f+3)

    vsrab   v13, v14, v8        ;# f1 >>= 3
    vsrab   v15, v15, v8        ;# f2 >>= 3

    vsubsbs \Q0, \Q0, v13       ;# u1 = c (SQ0 - f1)
    vaddsbs \P0, \P0, v15       ;# u2 = c (SP0 + f2)
.endm

.macro vp8_mbfilter
    Masks

    ;# start the fitering here
    vxor    v1, v1, v11         ;# SP2
    vxor    v2, v2, v11         ;# SP1
    vxor    v3, v3, v11         ;# SP0
    vxor    v4, v4, v11         ;# SQ0
    vxor    v5, v5, v11         ;# SQ1
    vxor    v6, v6, v11         ;# SQ2

    ;# add outer taps if we have high edge variance
    vsubsbs v13, v2, v5         ;# f  = c (SP1-SQ1)

    vsubsbs v14, v4, v3         ;# SQ0-SP0
    vaddsbs v13, v13, v14
    vaddsbs v13, v13, v14
    vaddsbs v13, v13, v14       ;# f  = c( c(SP1-SQ1) + 3*(SQ0-SP0))

    vandc   v13, v13, v8        ;# f &= mask
    vand    v15, v13, v10       ;# f2 = f & hev

    ;# save bottom 3 bits so that we round one side +4 and the other +3
    vspltisb v8, 3
    vspltisb v9, 4

    vaddsbs v14, v15, v9        ;# f1 = c (f+4)
    vaddsbs v15, v15, v8        ;# f2 = c (f+3)

    vsrab   v14, v14, v8        ;# f1 >>= 3
    vsrab   v15, v15, v8        ;# f2 >>= 3

    vsubsbs v4, v4, v14         ;# u1 = c (SQ0 - f1)
    vaddsbs v3, v3, v15         ;# u2 = c (SP0 + f2)

    ;# only apply wider filter if not high edge variance
    vandc   v13, v13, v10       ;# f &= ~hev

    vspltisb v9, 2
    vnor    v8, v8, v8
    vsrb    v9, v8, v9          ;# 0x3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f
    vupkhsb v9, v9              ;# 0x003f003f003f003f003f003f003f003f
    vspltisb v8, 9

    ;# roughly 1/7th difference across boundary
    vspltish v10, 7
    vmulosb v14, v8, v13        ;# A = c( c(P1-Q1) + 3*(Q0-P0))
    vmulesb v15, v8, v13
    vaddshs v14, v14, v9        ;# +=  63
    vaddshs v15, v15, v9
    vsrah   v14, v14, v10       ;# >>= 7
    vsrah   v15, v15, v10
    vmrglh  v10, v15, v14
    vmrghh  v15, v15, v14

    vpkshss v10, v15, v10       ;# X = saturated down to bytes

    vsubsbs v6, v6, v10         ;# subtract from Q and add to P
    vaddsbs v1, v1, v10

    vxor    v6, v6, v11
    vxor    v1, v1, v11

    ;# roughly 2/7th difference across boundary
    vspltish v10, 7
    vaddubm v12, v8, v8
    vmulosb v14, v12, v13       ;# A = c( c(P1-Q1) + 3*(Q0-P0))
    vmulesb v15, v12, v13
    vaddshs v14, v14, v9
    vaddshs v15, v15, v9
    vsrah   v14, v14, v10       ;# >>= 7
    vsrah   v15, v15, v10
    vmrglh  v10, v15, v14
    vmrghh  v15, v15, v14

    vpkshss v10, v15, v10       ;# X = saturated down to bytes

    vsubsbs v5, v5, v10         ;# subtract from Q and add to P
    vaddsbs v2, v2, v10

    vxor    v5, v5, v11
    vxor    v2, v2, v11

    ;# roughly 3/7th difference across boundary
    vspltish v10, 7
    vaddubm v12, v12, v8
    vmulosb v14, v12, v13       ;# A = c( c(P1-Q1) + 3*(Q0-P0))
    vmulesb v15, v12, v13
    vaddshs v14, v14, v9
    vaddshs v15, v15, v9
    vsrah   v14, v14, v10       ;# >>= 7
    vsrah   v15, v15, v10
    vmrglh  v10, v15, v14
    vmrghh  v15, v15, v14

    vpkshss v10, v15, v10       ;# X = saturated down to bytes

    vsubsbs v4, v4, v10         ;# subtract from Q and add to P
    vaddsbs v3, v3, v10

    vxor    v4, v4, v11
    vxor    v3, v3, v11
.endm

.macro SBFilter
    Masks

    common_adjust v3, v4, v2, v5, 1

    ;# outer tap adjustments
    vspltisb v8, 1

    vaddubm v13, v13, v8        ;# f  += 1
    vsrab   v13, v13, v8        ;# f >>= 1

    vandc   v13, v13, v10       ;# f &= ~hev

    vsubsbs v5, v5, v13         ;# u1 = c (SQ1 - f)
    vaddsbs v2, v2, v13         ;# u2 = c (SP1 + f)

    vxor    v2, v2, v11
    vxor    v3, v3, v11
    vxor    v4, v4, v11
    vxor    v5, v5, v11
.endm

    .align 2
mbloop_filter_horizontal_edge_y_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    mtspr   256, r12            ;# set VRSAVE

    build_constants r5, r6, r7, v8, v9, v10

    load_data_y

    vp8_mbfilter

    stvx     v1, r7, r6         ;# P2
    stvx     v2,  0, r6         ;# P1
    stvx     v3, r7, r3         ;# P0
    stvx     v4,  0, r3         ;# Q0
    stvx     v5, r4, r3         ;# Q1
    stvx     v6, r5, r3         ;# Q2

    mtspr   256, r11            ;# reset old VRSAVE

    blr

    .align 2
;#  r3 unsigned char *s
;#  r4 int p
;#  r5 const signed char *flimit
;#  r6 const signed char *limit
;#  r7 const signed char *thresh
loop_filter_horizontal_edge_y_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    mtspr   256, r12            ;# set VRSAVE

    build_constants r5, r6, r7, v8, v9, v10

    load_data_y

    SBFilter

    stvx     v2,  0, r6         ;# P1
    stvx     v3, r7, r3         ;# P0
    stvx     v4,  0, r3         ;# Q0
    stvx     v5, r4, r3         ;# Q1

    mtspr   256, r11            ;# reset old VRSAVE

    blr

;# Filtering a vertical mb.  Each mb is aligned on a 16 byte boundary.
;#  So we can read in an entire mb aligned.  However if we want to filter the mb
;#  edge we run into problems.  For the loopfilter we require 4 bytes before the mb
;#  and 4 after for a total of 8 bytes.  Reading 16 bytes inorder to get 4 is a bit
;#  of a waste.  So this is an even uglier way to get around that.
;# Using the regular register file words are read in and then saved back out to
;#  memory to align and order them up.  Then they are read in using the
;#  vector register file.
.macro RLVmb V, R
    lwzux   r0, r3, r4
    stw     r0, 4(\R)
    lwz     r0,-4(r3)
    stw     r0, 0(\R)
    lwzux   r0, r3, r4
    stw     r0,12(\R)
    lwz     r0,-4(r3)
    stw     r0, 8(\R)
    lvx     \V, 0, \R
.endm

.macro WLVmb V, R
    stvx    \V, 0, \R
    lwz     r0,12(\R)
    stwux   r0, r3, r4
    lwz     r0, 8(\R)
    stw     r0,-4(r3)
    lwz     r0, 4(\R)
    stwux   r0, r3, r4
    lwz     r0, 0(\R)
    stw     r0,-4(r3)
.endm

    .align 2
;#  r3 unsigned char *s
;#  r4 int p
;#  r5 const signed char *flimit
;#  r6 const signed char *limit
;#  r7 const signed char *thresh
mbloop_filter_vertical_edge_y_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xc000
    mtspr   256, r12            ;# set VRSAVE

    la      r9, -48(r1)         ;# temporary space for reading in vectors
    sub     r3, r3, r4

    RLVmb v0, r9
    RLVmb v1, r9
    RLVmb v2, r9
    RLVmb v3, r9
    RLVmb v4, r9
    RLVmb v5, r9
    RLVmb v6, r9
    RLVmb v7, r9

    transpose8x16_fwd

    build_constants r5, r6, r7, v8, v9, v10

    vp8_mbfilter

    transpose8x16_inv

    add r3, r3, r4
    neg r4, r4

    WLVmb v17, r9
    WLVmb v16, r9
    WLVmb v15, r9
    WLVmb v14, r9
    WLVmb v13, r9
    WLVmb v12, r9
    WLVmb v11, r9
    WLVmb v10, r9

    mtspr   256, r11            ;# reset old VRSAVE

    blr

.macro RL V, R, P
    lvx     \V, 0,  \R
    add     \R, \R, \P
.endm

.macro WL V, R, P
    stvx    \V, 0,  \R
    add     \R, \R, \P
.endm

.macro Fil P3, P2, P1, P0, Q0, Q1, Q2, Q3
                                ;# K = |P0-P1| already
    Abs     v14, v13, \Q0, \Q1  ;# M = |Q0-Q1|
    vmaxub  v14, v14, v4        ;# M = max( |P0-P1|, |Q0-Q1|)
    vcmpgtub v10, v14, v0

    Abs     v4, v5, \Q2, \Q3    ;# K = |Q2-Q3| = next |P0-P1]

    max_abs  v14, v13, \Q1, \Q2  ;# M = max( M, |Q1-Q2|)
    max_abs  v14, v13, \P1, \P2  ;# M = max( M, |P1-P2|)
    max_abs  v14, v13, \P2, \P3  ;# M = max( M, |P2-P3|)

    vmaxub   v14, v14, v4       ;# M = max interior abs diff
    vcmpgtub v9, v14, v2        ;# M = true if int_l exceeded

    Abs     v14, v13, \P0, \Q0  ;# X = Abs( P0-Q0)
    vcmpgtub v8, v14, v3        ;# X = true if edge_l exceeded
    vor     v8, v8, v9          ;# M = true if edge_l or int_l exceeded

    ;# replace P1,Q1 w/signed versions
    common_adjust \P0, \Q0, \P1, \Q1, 1

    vaddubm v13, v13, v1        ;# -16 <= M <= 15, saturation irrelevant
    vsrab   v13, v13, v1
    vandc   v13, v13, v10       ;# adjust P1,Q1 by (M+1)>>1  if ! hev
    vsubsbs \Q1, \Q1, v13
    vaddsbs \P1, \P1, v13

    vxor    \P1, \P1, v11       ;# P1
    vxor    \P0, \P0, v11       ;# P0
    vxor    \Q0, \Q0, v11       ;# Q0
    vxor    \Q1, \Q1, v11       ;# Q1
.endm


    .align 2
;#  r3 unsigned char *s
;#  r4 int p
;#  r5 const signed char *flimit
;#  r6 const signed char *limit
;#  r7 const signed char *thresh
loop_filter_vertical_edge_y_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xffff
    mtspr   256, r12            ;# set VRSAVE

    addi    r9, r3, 0
    RL      v16, r9, r4
    RL      v17, r9, r4
    RL      v18, r9, r4
    RL      v19, r9, r4
    RL      v20, r9, r4
    RL      v21, r9, r4
    RL      v22, r9, r4
    RL      v23, r9, r4
    RL      v24, r9, r4
    RL      v25, r9, r4
    RL      v26, r9, r4
    RL      v27, r9, r4
    RL      v28, r9, r4
    RL      v29, r9, r4
    RL      v30, r9, r4
    lvx     v31, 0, r9

    Transpose16x16

    vspltisb v1, 1

    build_constants r5, r6, r7, v3, v2, v0

    Abs v4, v5, v19, v18                            ;# K(v14) = first |P0-P1|

    Fil v16, v17, v18, v19,  v20, v21, v22, v23
    Fil v20, v21, v22, v23,  v24, v25, v26, v27
    Fil v24, v25, v26, v27,  v28, v29, v30, v31

    Transpose16x16

    addi    r9, r3, 0
    WL      v16, r9, r4
    WL      v17, r9, r4
    WL      v18, r9, r4
    WL      v19, r9, r4
    WL      v20, r9, r4
    WL      v21, r9, r4
    WL      v22, r9, r4
    WL      v23, r9, r4
    WL      v24, r9, r4
    WL      v25, r9, r4
    WL      v26, r9, r4
    WL      v27, r9, r4
    WL      v28, r9, r4
    WL      v29, r9, r4
    WL      v30, r9, r4
    stvx    v31, 0, r9

    mtspr   256, r11            ;# reset old VRSAVE

    blr

;# -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- UV FILTERING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
.macro active_chroma_sel V
    andi.   r7, r3, 8       ;# row origin modulo 16
    add     r7, r7, r7      ;# selects selectors
    lis     r12, _chromaSelectors@ha
    la      r0,  _chromaSelectors@l(r12)
    lwzux   r0, r7, r0      ;# leave selector addr in r7

    lvx     \V, 0, r0       ;# mask to concatenate active U,V pels
.endm

.macro hread_uv Dest, U, V, Offs, VMask
    lvx     \U, \Offs, r3
    lvx     \V, \Offs, r4
    vperm   \Dest, \U, \V, \VMask   ;# Dest = active part of U then V
.endm

.macro hwrite_uv New, U, V, Offs, Umask, Vmask
    vperm   \U, \New, \U, \Umask    ;# Combine new pels with siblings
    vperm   \V, \New, \V, \Vmask
    stvx    \U, \Offs, r3           ;# Write to frame buffer
    stvx    \V, \Offs, r4
.endm

;# Process U,V in parallel.
.macro load_chroma_h
    neg     r9, r5          ;# r9 = -1 * stride
    add     r8, r9, r9      ;# r8 = -2 * stride
    add     r10, r5, r5     ;# r10 = 2 * stride

    active_chroma_sel v12

    ;# P3, Q3 are read-only; need not save addresses or sibling pels
    add     r6, r8, r8      ;# r6 = -4 * stride
    hread_uv v0, v14, v15, r6, v12
    add     r6, r10, r5     ;# r6 =  3 * stride
    hread_uv v7, v14, v15, r6, v12

    ;# Others are read/write; save addresses and sibling pels

    add     r6, r8, r9      ;# r6 = -3 * stride
    hread_uv v1, v16, v17, r6,  v12
    hread_uv v2, v18, v19, r8,  v12
    hread_uv v3, v20, v21, r9,  v12
    hread_uv v4, v22, v23, 0,   v12
    hread_uv v5, v24, v25, r5,  v12
    hread_uv v6, v26, v27, r10, v12
.endm

.macro uresult_sel V
    load_g   \V, 4(r7)
.endm

.macro vresult_sel V
    load_g   \V, 8(r7)
.endm

;# always write P1,P0,Q0,Q1
.macro store_chroma_h
    uresult_sel v11
    vresult_sel v12
    hwrite_uv v2, v18, v19, r8, v11, v12
    hwrite_uv v3, v20, v21, r9, v11, v12
    hwrite_uv v4, v22, v23, 0,  v11, v12
    hwrite_uv v5, v24, v25, r5, v11, v12
.endm

    .align 2
;#  r3 unsigned char *u
;#  r4 unsigned char *v
;#  r5 int p
;#  r6 const signed char *flimit
;#  r7 const signed char *limit
;#  r8 const signed char *thresh
mbloop_filter_horizontal_edge_uv_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xffff
    mtspr   256, r12            ;# set VRSAVE

    build_constants r6, r7, r8, v8, v9, v10

    load_chroma_h

    vp8_mbfilter

    store_chroma_h

    hwrite_uv v1, v16, v17, r6,  v11, v12    ;# v1 == P2
    hwrite_uv v6, v26, v27, r10, v11, v12    ;# v6 == Q2

    mtspr   256, r11            ;# reset old VRSAVE

    blr

    .align 2
;#  r3 unsigned char *u
;#  r4 unsigned char *v
;#  r5 int p
;#  r6 const signed char *flimit
;#  r7 const signed char *limit
;#  r8 const signed char *thresh
loop_filter_horizontal_edge_uv_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xffff
    mtspr   256, r12            ;# set VRSAVE

    build_constants r6, r7, r8, v8, v9, v10

    load_chroma_h

    SBFilter

    store_chroma_h

    mtspr   256, r11            ;# reset old VRSAVE

    blr

.macro R V, R
    lwzux   r0, r3, r5
    stw     r0, 4(\R)
    lwz     r0,-4(r3)
    stw     r0, 0(\R)
    lwzux   r0, r4, r5
    stw     r0,12(\R)
    lwz     r0,-4(r4)
    stw     r0, 8(\R)
    lvx     \V, 0, \R
.endm


.macro W V, R
    stvx    \V, 0, \R
    lwz     r0,12(\R)
    stwux   r0, r4, r5
    lwz     r0, 8(\R)
    stw     r0,-4(r4)
    lwz     r0, 4(\R)
    stwux   r0, r3, r5
    lwz     r0, 0(\R)
    stw     r0,-4(r3)
.endm

.macro chroma_vread R
    sub r3, r3, r5          ;# back up one line for simplicity
    sub r4, r4, r5

    R v0, \R
    R v1, \R
    R v2, \R
    R v3, \R
    R v4, \R
    R v5, \R
    R v6, \R
    R v7, \R

    transpose8x16_fwd
.endm

.macro chroma_vwrite R

    transpose8x16_inv

    add     r3, r3, r5
    add     r4, r4, r5
    neg     r5, r5          ;# Write rows back in reverse order

    W v17, \R
    W v16, \R
    W v15, \R
    W v14, \R
    W v13, \R
    W v12, \R
    W v11, \R
    W v10, \R
.endm

    .align 2
;#  r3 unsigned char *u
;#  r4 unsigned char *v
;#  r5 int p
;#  r6 const signed char *flimit
;#  r7 const signed char *limit
;#  r8 const signed char *thresh
mbloop_filter_vertical_edge_uv_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xc000
    mtspr   256, r12            ;# set VRSAVE

    la      r9, -48(r1)         ;# temporary space for reading in vectors

    chroma_vread r9

    build_constants r6, r7, r8, v8, v9, v10

    vp8_mbfilter

    chroma_vwrite r9

    mtspr   256, r11            ;# reset old VRSAVE

    blr

    .align 2
;#  r3 unsigned char *u
;#  r4 unsigned char *v
;#  r5 int p
;#  r6 const signed char *flimit
;#  r7 const signed char *limit
;#  r8 const signed char *thresh
loop_filter_vertical_edge_uv_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xc000
    mtspr   256, r12            ;# set VRSAVE

    la      r9, -48(r1)         ;# temporary space for reading in vectors

    chroma_vread r9

    build_constants r6, r7, r8, v8, v9, v10

    SBFilter

    chroma_vwrite r9

    mtspr   256, r11            ;# reset old VRSAVE

    blr

;# -=-=-=-=-=-=-=-=-=-=-=-=-=-= SIMPLE LOOP FILTER =-=-=-=-=-=-=-=-=-=-=-=-=-=-

.macro vp8_simple_filter
    Abs v14, v13, v1, v2    ;# M = abs( P0 - Q0)
    vcmpgtub v8, v14, v8    ;# v5 = true if _over_ limit

    ;# preserve unsigned v0 and v3
    common_adjust v1, v2, v0, v3, 0

    vxor v1, v1, v11
    vxor v2, v2, v11        ;# cvt Q0, P0 back to pels
.endm

.macro simple_vertical
    addi    r8,  0, 16
    addi    r7, r5, 32

    lvx     v0,  0, r5
    lvx     v1, r8, r5
    lvx     v2,  0, r7
    lvx     v3, r8, r7

    lis     r12, _B_hihi@ha
    la      r0,  _B_hihi@l(r12)
    lvx     v16, 0, r0

    lis     r12, _B_lolo@ha
    la      r0,  _B_lolo@l(r12)
    lvx     v17, 0, r0

    Transpose4times4x4 v16, v17
    vp8_simple_filter

    vxor v0, v0, v11
    vxor v3, v3, v11        ;# cvt Q0, P0 back to pels

    Transpose4times4x4 v16, v17

    stvx    v0,  0, r5
    stvx    v1, r8, r5
    stvx    v2,  0, r7
    stvx    v3, r8, r7
.endm

    .align 2
;#  r3 unsigned char *s
;#  r4 int p
;#  r5 const signed char *flimit
loop_filter_simple_horizontal_edge_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    mtspr   256, r12            ;# set VRSAVE

    ;# build constants
    lvx     v8, 0, r5           ;# flimit

    vspltisb v11, 8
    vspltisb v12, 4
    vslb    v11, v11, v12       ;# 0x80808080808080808080808080808080

    neg     r5, r4              ;# r5 = -1 * stride
    add     r6, r5, r5          ;# r6 = -2 * stride

    lvx     v0, r6, r3          ;# v0 = P1 = 16 pels two rows above edge
    lvx     v1, r5, r3          ;# v1 = P0 = 16 pels one row  above edge
    lvx     v2,  0, r3          ;# v2 = Q0 = 16 pels one row  below edge
    lvx     v3, r4, r3          ;# v3 = Q1 = 16 pels two rows below edge

    vp8_simple_filter

    stvx    v1, r5, r3          ;# store P0
    stvx    v2,  0, r3          ;# store Q0

    mtspr   256, r11            ;# reset old VRSAVE

    blr

.macro RLV Offs
    stw     r0, (\Offs*4)(r5)
    lwzux   r0, r7, r4
.endm

.macro WLV Offs
    lwz     r0, (\Offs*4)(r5)
    stwux   r0, r7, r4
.endm

    .align 2
;#  r3 unsigned char *s
;#  r4 int p
;#  r5 const signed char *flimit
loop_filter_simple_vertical_edge_ppc:
    mfspr   r11, 256            ;# get old VRSAVE
    oris    r12, r11, 0xffff
    ori     r12, r12, 0xc000
    mtspr   256, r12            ;# set VRSAVE

    ;# build constants
    lvx     v8, 0, r5           ;# flimit

    vspltisb v11, 8
    vspltisb v12, 4
    vslb    v11, v11, v12       ;# 0x80808080808080808080808080808080

    la r5, -96(r1)              ;# temporary space for reading in vectors

    ;# Store 4 pels at word "Offs" in temp array, then advance r7
    ;#   to next row and read another 4 pels from the frame buffer.

    subi    r7, r3,  2          ;# r7 -> 2 pels before start
    lwzx    r0,  0, r7          ;# read first 4 pels

    ;# 16 unaligned word accesses
    RLV 0
    RLV 4
    RLV 8
    RLV 12
    RLV 1
    RLV 5
    RLV 9
    RLV 13
    RLV 2
    RLV 6
    RLV 10
    RLV 14
    RLV 3
    RLV 7
    RLV 11

    stw     r0, (15*4)(r5)      ;# write last 4 pels

    simple_vertical

    ;# Read temp array, write frame buffer.
    subi    r7, r3,  2          ;# r7 -> 2 pels before start
    lwzx    r0,  0, r5          ;# read/write first 4 pels
    stwx    r0,  0, r7

    WLV 4
    WLV 8
    WLV 12
    WLV 1
    WLV 5
    WLV 9
    WLV 13
    WLV 2
    WLV 6
    WLV 10
    WLV 14
    WLV 3
    WLV 7
    WLV 11
    WLV 15

    mtspr   256, r11            ;# reset old VRSAVE

    blr

    .data

_chromaSelectors:
    .long   _B_hihi
    .long   _B_Ures0
    .long   _B_Vres0
    .long   0
    .long   _B_lolo
    .long   _B_Ures8
    .long   _B_Vres8
    .long   0

    .align 4
_B_Vres8:
    .byte   16, 17, 18, 19, 20, 21, 22, 23,  8,  9, 10, 11, 12, 13, 14, 15

    .align 4
_B_Ures8:
    .byte   16, 17, 18, 19, 20, 21, 22, 23,  0,  1,  2,  3,  4,  5,  6,  7

    .align 4
_B_lolo:
    .byte    8,  9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31

    .align 4
_B_Vres0:
    .byte    8,  9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31
    .align 4
_B_Ures0:
    .byte    0,  1,  2,  3,  4,  5,  6,  7, 24, 25, 26, 27, 28, 29, 30, 31

    .align 4
_B_hihi:
    .byte    0,  1,  2,  3,  4,  5,  6,  7, 16, 17, 18, 19, 20, 21, 22, 23