summaryrefslogtreecommitdiff
path: root/vp9/encoder/vp9_pickmode.c
blob: cc018fcbe640442be572b6b2b014fd398566f8d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
/*
 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>

#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"

#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"

#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_scan.h"

#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"

typedef struct {
  uint8_t *data;
  int stride;
  int in_use;
} PRED_BUFFER;

static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCK *x,
                      const MACROBLOCKD *xd,
                      const TileInfo *const tile,
                      MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
                      int_mv *mv_ref_list,
                      int mi_row, int mi_col) {
  const int *ref_sign_bias = cm->ref_frame_sign_bias;
  int i, refmv_count = 0;

  const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];

  int different_ref_found = 0;
  int context_counter = 0;
  int const_motion = 0;

  // Blank the reference vector list
  memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);

  // The nearest 2 blocks are treated differently
  // if the size < 8x8 we get the mv from the bmi substructure,
  // and we also need to keep a mode count.
  for (i = 0; i < 2; ++i) {
    const POSITION *const mv_ref = &mv_ref_search[i];
    if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
      const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
                                                   xd->mi_stride];
      const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
      // Keep counts for entropy encoding.
      context_counter += mode_2_counter[candidate->mode];
      different_ref_found = 1;

      if (candidate->ref_frame[0] == ref_frame)
        ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
                        refmv_count, mv_ref_list, Done);
    }
  }

  const_motion = 1;

  // Check the rest of the neighbors in much the same way
  // as before except we don't need to keep track of sub blocks or
  // mode counts.
  for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
    const POSITION *const mv_ref = &mv_ref_search[i];
    if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
      const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
                                                    xd->mi_stride]->mbmi;
      different_ref_found = 1;

      if (candidate->ref_frame[0] == ref_frame)
        ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done);
    }
  }

  // Since we couldn't find 2 mvs from the same reference frame
  // go back through the neighbors and find motion vectors from
  // different reference frames.
  if (different_ref_found && !refmv_count) {
    for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
      const POSITION *mv_ref = &mv_ref_search[i];
      if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
        const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
                                              * xd->mi_stride]->mbmi;

        // If the candidate is INTRA we don't want to consider its mv.
        IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias,
                                 refmv_count, mv_ref_list, Done);
      }
    }
  }

 Done:

  x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter];

  // Clamp vectors
  for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
    clamp_mv_ref(&mv_ref_list[i].as_mv, xd);

  return const_motion;
}

static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
                                  BLOCK_SIZE bsize, int mi_row, int mi_col,
                                  int_mv *tmp_mv, int *rate_mv,
                                  int64_t best_rd_sofar) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
  const int step_param = cpi->sf.mv.fullpel_search_step_param;
  const int sadpb = x->sadperbit16;
  MV mvp_full;
  const int ref = mbmi->ref_frame[0];
  const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
  int dis;
  int rate_mode;
  const int tmp_col_min = x->mv_col_min;
  const int tmp_col_max = x->mv_col_max;
  const int tmp_row_min = x->mv_row_min;
  const int tmp_row_max = x->mv_row_max;
  int rv = 0;
  int cost_list[5];
  const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
                                                                        ref);
  if (scaled_ref_frame) {
    int i;
    // Swap out the reference frame for a version that's been scaled to
    // match the resolution of the current frame, allowing the existing
    // motion search code to be used without additional modifications.
    for (i = 0; i < MAX_MB_PLANE; i++)
      backup_yv12[i] = xd->plane[i].pre[0];
    vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
  }
  vp9_set_mv_search_range(x, &ref_mv);

  assert(x->mv_best_ref_index[ref] <= 2);
  if (x->mv_best_ref_index[ref] < 2)
    mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
  else
    mvp_full = x->pred_mv[ref];

  mvp_full.col >>= 3;
  mvp_full.row >>= 3;

  vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
                        cond_cost_list(cpi, cost_list),
                        &ref_mv, &tmp_mv->as_mv, INT_MAX, 0);

  x->mv_col_min = tmp_col_min;
  x->mv_col_max = tmp_col_max;
  x->mv_row_min = tmp_row_min;
  x->mv_row_max = tmp_row_max;

  // calculate the bit cost on motion vector
  mvp_full.row = tmp_mv->as_mv.row * 8;
  mvp_full.col = tmp_mv->as_mv.col * 8;

  *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
                             x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);

  rate_mode = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]]
                                  [INTER_OFFSET(NEWMV)];
  rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) >
         best_rd_sofar);

  if (rv) {
    cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
                                 cpi->common.allow_high_precision_mv,
                                 x->errorperbit,
                                 &cpi->fn_ptr[bsize],
                                 cpi->sf.mv.subpel_force_stop,
                                 cpi->sf.mv.subpel_iters_per_step,
                                 cond_cost_list(cpi, cost_list),
                                 x->nmvjointcost, x->mvcost,
                                 &dis, &x->pred_sse[ref], NULL, 0, 0);
    *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
                               x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
  }

  if (scaled_ref_frame) {
    int i;
    for (i = 0; i < MAX_MB_PLANE; i++)
      xd->plane[i].pre[0] = backup_yv12[i];
  }
  return rv;
}

static void block_variance(const uint8_t *src, int src_stride,
                           const uint8_t *ref, int ref_stride,
                           int w, int h, unsigned int *sse, int *sum,
                           int block_size, unsigned int *sse8x8,
                           int *sum8x8, unsigned int *var8x8) {
  int i, j, k = 0;

  *sse = 0;
  *sum = 0;

  for (i = 0; i < h; i += block_size) {
    for (j = 0; j < w; j += block_size) {
      vpx_get8x8var(src + src_stride * i + j, src_stride,
                    ref + ref_stride * i + j, ref_stride,
                    &sse8x8[k], &sum8x8[k]);
      *sse += sse8x8[k];
      *sum += sum8x8[k];
      var8x8[k] = sse8x8[k] - (((unsigned int)sum8x8[k] * sum8x8[k]) >> 6);
      k++;
    }
  }
}

static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
                               unsigned int *sse_i, int *sum_i,
                               unsigned int *var_o, unsigned int *sse_o,
                               int *sum_o) {
  const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
  const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
  const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
  int i, j, k = 0;

  for (i = 0; i < nh; i += 2) {
    for (j = 0; j < nw; j += 2) {
      sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
          sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
      sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
          sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
      var_o[k] = sse_o[k] - (((unsigned int)sum_o[k] * sum_o[k]) >>
          (b_width_log2_lookup[unit_size] +
              b_height_log2_lookup[unit_size] + 6));
      k++;
    }
  }
}

static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
                                    MACROBLOCK *x, MACROBLOCKD *xd,
                                    int *out_rate_sum, int64_t *out_dist_sum,
                                    unsigned int *var_y, unsigned int *sse_y,
                                    int mi_row, int mi_col, int *early_term) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  unsigned int sse;
  int rate;
  int64_t dist;
  struct macroblock_plane *const p = &x->plane[0];
  struct macroblockd_plane *const pd = &xd->plane[0];
  const uint32_t dc_quant = pd->dequant[0];
  const uint32_t ac_quant = pd->dequant[1];
  const int64_t dc_thr = dc_quant * dc_quant >> 6;
  const int64_t ac_thr = ac_quant * ac_quant >> 6;
  unsigned int var;
  int sum;
  int skip_dc = 0;

  const int bw = b_width_log2_lookup[bsize];
  const int bh = b_height_log2_lookup[bsize];
  const int num8x8 = 1 << (bw + bh - 2);
  unsigned int sse8x8[64] = {0};
  int sum8x8[64] = {0};
  unsigned int var8x8[64] = {0};
  TX_SIZE tx_size;
  int i, k;

  // Calculate variance for whole partition, and also save 8x8 blocks' variance
  // to be used in following transform skipping test.
  block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
                 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
  var = sse - (((int64_t)sum * sum) >> (bw + bh + 4));

  *var_y = var;
  *sse_y = sse;

  if (cpi->common.tx_mode == TX_MODE_SELECT) {
    if (sse > (var << 2))
      tx_size = MIN(max_txsize_lookup[bsize],
                    tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
    else
      tx_size = TX_8X8;

    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
        cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
      tx_size = TX_8X8;
    else if (tx_size > TX_16X16)
      tx_size = TX_16X16;
  } else {
    tx_size = MIN(max_txsize_lookup[bsize],
                  tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
  }

  assert(tx_size >= TX_8X8);
  xd->mi[0]->mbmi.tx_size = tx_size;

  // Evaluate if the partition block is a skippable block in Y plane.
  {
    unsigned int sse16x16[16] = {0};
    int sum16x16[16] = {0};
    unsigned int var16x16[16] = {0};
    const int num16x16 = num8x8 >> 2;

    unsigned int sse32x32[4] = {0};
    int sum32x32[4] = {0};
    unsigned int var32x32[4] = {0};
    const int num32x32 = num8x8 >> 4;

    int ac_test = 1;
    int dc_test = 1;
    const int num = (tx_size == TX_8X8) ? num8x8 :
        ((tx_size == TX_16X16) ? num16x16 : num32x32);
    const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 :
        ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
    const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 :
        ((tx_size == TX_16X16) ? var16x16 : var32x32);

    // Calculate variance if tx_size > TX_8X8
    if (tx_size >= TX_16X16)
      calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
                         sum16x16);
    if (tx_size == TX_32X32)
      calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
                         sse32x32, sum32x32);

    // Skipping test
    x->skip_txfm[0] = SKIP_TXFM_NONE;
    for (k = 0; k < num; k++)
      // Check if all ac coefficients can be quantized to zero.
      if (!(var_tx[k] < ac_thr || var == 0)) {
        ac_test = 0;
        break;
      }

    for (k = 0; k < num; k++)
      // Check if dc coefficient can be quantized to zero.
      if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
        dc_test = 0;
        break;
      }

    if (ac_test) {
      x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;

      if (dc_test)
        x->skip_txfm[0] = SKIP_TXFM_AC_DC;
    } else if (dc_test) {
      skip_dc = 1;
    }
  }

  if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
    int skip_uv[2] = {0};
    unsigned int var_uv[2];
    unsigned int sse_uv[2];

    *out_rate_sum = 0;
    *out_dist_sum = sse << 4;

    // Transform skipping test in UV planes.
    for (i = 1; i <= 2; i++) {
      struct macroblock_plane *const p = &x->plane[i];
      struct macroblockd_plane *const pd = &xd->plane[i];
      const TX_SIZE uv_tx_size = get_uv_tx_size(&xd->mi[0]->mbmi, pd);
      const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size];
      const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd);
      const int uv_bw = b_width_log2_lookup[uv_bsize];
      const int uv_bh = b_height_log2_lookup[uv_bsize];
      const int sf = (uv_bw - b_width_log2_lookup[unit_size]) +
          (uv_bh - b_height_log2_lookup[unit_size]);
      const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf);
      const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf);
      int j = i - 1;

      vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i);
      var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride,
          pd->dst.buf, pd->dst.stride, &sse_uv[j]);

      if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
          (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
        skip_uv[j] = 1;
      else
        break;
    }

    // If the transform in YUV planes are skippable, the mode search checks
    // fewer inter modes and doesn't check intra modes.
    if (skip_uv[0] & skip_uv[1]) {
      *early_term = 1;
    }

    return;
  }

  if (!skip_dc) {
#if CONFIG_VP9_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
                                   dc_quant >> (xd->bd - 5), &rate, &dist);
    } else {
      vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
                                   dc_quant >> 3, &rate, &dist);
    }
#else
    vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
                                 dc_quant >> 3, &rate, &dist);
#endif  // CONFIG_VP9_HIGHBITDEPTH
  }

  if (!skip_dc) {
    *out_rate_sum = rate >> 1;
    *out_dist_sum = dist << 3;
  } else {
    *out_rate_sum = 0;
    *out_dist_sum = (sse - var) << 4;
  }

#if CONFIG_VP9_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
                                 ac_quant >> (xd->bd - 5), &rate, &dist);
  } else {
    vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
                                 ac_quant >> 3, &rate, &dist);
  }
#else
  vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
                               ac_quant >> 3, &rate, &dist);
#endif  // CONFIG_VP9_HIGHBITDEPTH

  *out_rate_sum += rate;
  *out_dist_sum += dist << 4;
}

static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
                              MACROBLOCK *x, MACROBLOCKD *xd,
                              int *out_rate_sum, int64_t *out_dist_sum,
                              unsigned int *var_y, unsigned int *sse_y) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  unsigned int sse;
  int rate;
  int64_t dist;
  struct macroblock_plane *const p = &x->plane[0];
  struct macroblockd_plane *const pd = &xd->plane[0];
  const int64_t dc_thr = p->quant_thred[0] >> 6;
  const int64_t ac_thr = p->quant_thred[1] >> 6;
  const uint32_t dc_quant = pd->dequant[0];
  const uint32_t ac_quant = pd->dequant[1];
  unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
                                           pd->dst.buf, pd->dst.stride, &sse);
  int skip_dc = 0;

  *var_y = var;
  *sse_y = sse;

  if (cpi->common.tx_mode == TX_MODE_SELECT) {
    if (sse > (var << 2))
      xd->mi[0]->mbmi.tx_size =
          MIN(max_txsize_lookup[bsize],
              tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
    else
      xd->mi[0]->mbmi.tx_size = TX_8X8;

    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
        cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
      xd->mi[0]->mbmi.tx_size = TX_8X8;
    else if (xd->mi[0]->mbmi.tx_size > TX_16X16)
      xd->mi[0]->mbmi.tx_size = TX_16X16;
  } else {
    xd->mi[0]->mbmi.tx_size =
        MIN(max_txsize_lookup[bsize],
            tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
  }

  // Evaluate if the partition block is a skippable block in Y plane.
  {
    const BLOCK_SIZE unit_size =
        txsize_to_bsize[xd->mi[0]->mbmi.tx_size];
    const unsigned int num_blk_log2 =
        (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) +
        (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]);
    const unsigned int sse_tx = sse >> num_blk_log2;
    const unsigned int var_tx = var >> num_blk_log2;

    x->skip_txfm[0] = SKIP_TXFM_NONE;
    // Check if all ac coefficients can be quantized to zero.
    if (var_tx < ac_thr || var == 0) {
      x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
      // Check if dc coefficient can be quantized to zero.
      if (sse_tx - var_tx < dc_thr || sse == var)
        x->skip_txfm[0] = SKIP_TXFM_AC_DC;
    } else {
      if (sse_tx - var_tx < dc_thr || sse == var)
        skip_dc = 1;
    }
  }

  if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
    *out_rate_sum = 0;
    *out_dist_sum = sse << 4;
    return;
  }

  if (!skip_dc) {
#if CONFIG_VP9_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
                                   dc_quant >> (xd->bd - 5), &rate, &dist);
    } else {
      vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
                                   dc_quant >> 3, &rate, &dist);
    }
#else
    vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
                                 dc_quant >> 3, &rate, &dist);
#endif  // CONFIG_VP9_HIGHBITDEPTH
  }

  if (!skip_dc) {
    *out_rate_sum = rate >> 1;
    *out_dist_sum = dist << 3;
  } else {
    *out_rate_sum = 0;
    *out_dist_sum = (sse - var) << 4;
  }

#if CONFIG_VP9_HIGHBITDEPTH
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
                                 ac_quant >> (xd->bd - 5), &rate, &dist);
  } else {
    vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
                                 ac_quant >> 3, &rate, &dist);
  }
#else
  vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
                               ac_quant >> 3, &rate, &dist);
#endif  // CONFIG_VP9_HIGHBITDEPTH

  *out_rate_sum += rate;
  *out_dist_sum += dist << 4;
}

#if CONFIG_VP9_HIGHBITDEPTH
static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
                      int *skippable, int64_t *sse, int plane,
                      BLOCK_SIZE bsize, TX_SIZE tx_size) {
  MACROBLOCKD *xd = &x->e_mbd;
  unsigned int var_y, sse_y;
  (void)plane;
  (void)tx_size;
  model_rd_for_sb_y(cpi, bsize, x, xd, rate, dist, &var_y, &sse_y);
  *sse = INT_MAX;
  *skippable = 0;
  return;
}
#else
static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
                      int *skippable, int64_t *sse, int plane,
                      BLOCK_SIZE bsize, TX_SIZE tx_size) {
  MACROBLOCKD *xd = &x->e_mbd;
  const struct macroblockd_plane *pd = &xd->plane[plane];
  const struct macroblock_plane *const p = &x->plane[plane];
  const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
  const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
  const int step = 1 << (tx_size << 1);
  const int block_step = (1 << tx_size);
  int block = 0, r, c;
  int shift = tx_size == TX_32X32 ? 0 : 2;
  const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 :
      xd->mb_to_right_edge >> (5 + pd->subsampling_x));
  const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 :
      xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
  int eob_cost = 0;

  (void)cpi;
  vp9_subtract_plane(x, bsize, plane);
  *skippable = 1;
  // Keep track of the row and column of the blocks we use so that we know
  // if we are in the unrestricted motion border.
  for (r = 0; r < max_blocks_high; r += block_step) {
    for (c = 0; c < num_4x4_w; c += block_step) {
      if (c < max_blocks_wide) {
        const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
        tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
        tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
        tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
        uint16_t *const eob = &p->eobs[block];
        const int diff_stride = 4 * num_4x4_blocks_wide_lookup[bsize];
        const int16_t *src_diff;
        src_diff = &p->src_diff[(r * diff_stride + c) << 2];

        switch (tx_size) {
          case TX_32X32:
            vpx_fdct32x32_rd(src_diff, coeff, diff_stride);
            vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
                                  p->round_fp, p->quant_fp, p->quant_shift,
                                  qcoeff, dqcoeff, pd->dequant, eob,
                                  scan_order->scan, scan_order->iscan);
            break;
          case TX_16X16:
            vp9_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff);
            vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
                            p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
                            pd->dequant, eob,
                            scan_order->scan, scan_order->iscan);
            break;
          case TX_8X8:
            vp9_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff);
            vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
                            p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
                            pd->dequant, eob,
                            scan_order->scan, scan_order->iscan);
            break;
          case TX_4X4:
            x->fwd_txm4x4(src_diff, coeff, diff_stride);
            vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
                            p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
                            pd->dequant, eob,
                            scan_order->scan, scan_order->iscan);
            break;
          default:
            assert(0);
            break;
        }
        *skippable &= (*eob == 0);
        eob_cost += 1;
      }
      block += step;
    }
  }

  if (*skippable && *sse < INT64_MAX) {
    *rate = 0;
    *dist = (*sse << 6) >> shift;
    *sse = *dist;
    return;
  }

  block = 0;
  *rate = 0;
  *dist = 0;
  if (*sse < INT64_MAX)
    *sse = (*sse << 6) >> shift;
  for (r = 0; r < max_blocks_high; r += block_step) {
    for (c = 0; c < num_4x4_w; c += block_step) {
      if (c < max_blocks_wide) {
        tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
        tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
        tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
        uint16_t *const eob = &p->eobs[block];

        if (*eob == 1)
          *rate += (int)abs(qcoeff[0]);
        else if (*eob > 1)
          *rate += (int)vp9_satd((const int16_t *)qcoeff, step << 4);

        *dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> shift;
      }
      block += step;
    }
  }

  if (*skippable == 0) {
    *rate <<= 10;
    *rate += (eob_cost << 8);
  }
}
#endif

static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE bsize,
                               MACROBLOCK *x, MACROBLOCKD *xd,
                               int *out_rate_sum, int64_t *out_dist_sum,
                               unsigned int *var_y, unsigned int *sse_y) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  unsigned int sse;
  int rate;
  int64_t dist;
  int i;

  *out_rate_sum = 0;
  *out_dist_sum = 0;

  for (i = 1; i <= 2; ++i) {
    struct macroblock_plane *const p = &x->plane[i];
    struct macroblockd_plane *const pd = &xd->plane[i];
    const uint32_t dc_quant = pd->dequant[0];
    const uint32_t ac_quant = pd->dequant[1];
    const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
    unsigned int var;

    if (!x->color_sensitivity[i - 1])
      continue;

    var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
                             pd->dst.buf, pd->dst.stride, &sse);
    *var_y += var;
    *sse_y += sse;

  #if CONFIG_VP9_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
                                   dc_quant >> (xd->bd - 5), &rate, &dist);
    } else {
      vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
                                   dc_quant >> 3, &rate, &dist);
    }
  #else
    vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
                                 dc_quant >> 3, &rate, &dist);
  #endif  // CONFIG_VP9_HIGHBITDEPTH

    *out_rate_sum += rate >> 1;
    *out_dist_sum += dist << 3;

  #if CONFIG_VP9_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
                                   ac_quant >> (xd->bd - 5), &rate, &dist);
    } else {
      vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
                                   ac_quant >> 3, &rate, &dist);
    }
  #else
    vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
                                 ac_quant >> 3, &rate, &dist);
  #endif  // CONFIG_VP9_HIGHBITDEPTH

    *out_rate_sum += rate;
    *out_dist_sum += dist << 4;
  }
}

static int get_pred_buffer(PRED_BUFFER *p, int len) {
  int i;

  for (i = 0; i < len; i++) {
    if (!p[i].in_use) {
      p[i].in_use = 1;
      return i;
    }
  }
  return -1;
}

static void free_pred_buffer(PRED_BUFFER *p) {
  if (p != NULL)
    p->in_use = 0;
}

static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
                                 BLOCK_SIZE bsize, int mi_row, int mi_col,
                                 MV_REFERENCE_FRAME ref_frame,
                                 PREDICTION_MODE this_mode,
                                 unsigned int var_y, unsigned int sse_y,
                                 struct buf_2d yv12_mb[][MAX_MB_PLANE],
                                 int *rate, int64_t *dist) {
  MACROBLOCKD *xd = &x->e_mbd;

  const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
  unsigned int var = var_y, sse = sse_y;
  // Skipping threshold for ac.
  unsigned int thresh_ac;
  // Skipping threshold for dc.
  unsigned int thresh_dc;
  if (x->encode_breakout > 0) {
    // Set a maximum for threshold to avoid big PSNR loss in low bit rate
    // case. Use extreme low threshold for static frames to limit
    // skipping.
    const unsigned int max_thresh = 36000;
    // The encode_breakout input
    const unsigned int min_thresh =
        MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
#if CONFIG_VP9_HIGHBITDEPTH
    const int shift = (xd->bd << 1) - 16;
#endif

    // Calculate threshold according to dequant value.
    thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3;
#if CONFIG_VP9_HIGHBITDEPTH
    if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
      thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
    }
#endif  // CONFIG_VP9_HIGHBITDEPTH
    thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);

    // Adjust ac threshold according to partition size.
    thresh_ac >>=
        8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);

    thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
#if CONFIG_VP9_HIGHBITDEPTH
    if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
      thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
    }
#endif  // CONFIG_VP9_HIGHBITDEPTH
  } else {
    thresh_ac = 0;
    thresh_dc = 0;
  }

  // Y skipping condition checking for ac and dc.
  if (var <= thresh_ac && (sse - var) <= thresh_dc) {
    unsigned int sse_u, sse_v;
    unsigned int var_u, var_v;

    // Skip UV prediction unless breakout is zero (lossless) to save
    // computation with low impact on the result
    if (x->encode_breakout == 0) {
      xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
      xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
      vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
    }

    var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
                                    x->plane[1].src.stride,
                                    xd->plane[1].dst.buf,
                                    xd->plane[1].dst.stride, &sse_u);

    // U skipping condition checking
    if (((var_u << 2) <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
      var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
                                      x->plane[2].src.stride,
                                      xd->plane[2].dst.buf,
                                      xd->plane[2].dst.stride, &sse_v);

      // V skipping condition checking
      if (((var_v << 2) <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
        x->skip = 1;

        // The cost of skip bit needs to be added.
        *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
                                    [INTER_OFFSET(this_mode)];

        // More on this part of rate
        // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);

        // Scaling factor for SSE from spatial domain to frequency
        // domain is 16. Adjust distortion accordingly.
        // TODO(yunqingwang): In this function, only y-plane dist is
        // calculated.
        *dist = (sse << 4);  // + ((sse_u + sse_v) << 4);

        // *disable_skip = 1;
      }
    }
  }
}

struct estimate_block_intra_args {
  VP9_COMP *cpi;
  MACROBLOCK *x;
  PREDICTION_MODE mode;
  int rate;
  int64_t dist;
};

static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
                                 TX_SIZE tx_size, void *arg) {
  struct estimate_block_intra_args* const args = arg;
  VP9_COMP *const cpi = args->cpi;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  struct macroblock_plane *const p = &x->plane[0];
  struct macroblockd_plane *const pd = &xd->plane[0];
  const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
  uint8_t *const src_buf_base = p->src.buf;
  uint8_t *const dst_buf_base = pd->dst.buf;
  const int src_stride = p->src.stride;
  const int dst_stride = pd->dst.stride;
  int i, j;
  int rate;
  int64_t dist;
  int64_t this_sse = INT64_MAX;
  int is_skippable;

  txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
  assert(plane == 0);
  (void) plane;

  p->src.buf = &src_buf_base[4 * (j * src_stride + i)];
  pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)];
  // Use source buffer as an approximation for the fully reconstructed buffer.
  vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize],
                          tx_size, args->mode,
                          x->skip_encode ? p->src.buf : pd->dst.buf,
                          x->skip_encode ? src_stride : dst_stride,
                          pd->dst.buf, dst_stride,
                          i, j, 0);

  // TODO(jingning): This needs further refactoring.
  block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0,
            bsize_tx, MIN(tx_size, TX_16X16));
  x->skip_txfm[0] = is_skippable;
  rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), is_skippable);

  p->src.buf = src_buf_base;
  pd->dst.buf = dst_buf_base;
  args->rate += rate;
  args->dist += dist;
}

static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = {
  {THR_DC, THR_V_PRED, THR_H_PRED, THR_TM},
  {THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV},
  {THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG},
};

static const PREDICTION_MODE intra_mode_list[] = {
  DC_PRED, V_PRED, H_PRED, TM_PRED
};

static int mode_offset(const PREDICTION_MODE mode) {
  if (mode >= NEARESTMV) {
    return INTER_OFFSET(mode);
  } else {
    switch (mode) {
      case DC_PRED:
        return 0;
      case V_PRED:
        return 1;
      case H_PRED:
        return 2;
      case TM_PRED:
        return 3;
      default:
        return -1;
    }
  }
}

static INLINE void update_thresh_freq_fact(VP9_COMP *cpi,
                                           TileDataEnc *tile_data,
                                           BLOCK_SIZE bsize,
                                           MV_REFERENCE_FRAME ref_frame,
                                           THR_MODES best_mode_idx,
                                           PREDICTION_MODE mode) {
  THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
  int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
  if (thr_mode_idx == best_mode_idx)
    *freq_fact -= (*freq_fact >> 4);
  else
    *freq_fact = MIN(*freq_fact + RD_THRESH_INC,
        cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}

void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
                         BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
  RD_COST this_rdc, best_rdc;
  PREDICTION_MODE this_mode;
  struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
  const TX_SIZE intra_tx_size =
      MIN(max_txsize_lookup[bsize],
          tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
  MODE_INFO *const mic = xd->mi[0];
  int *bmode_costs;
  const MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
  const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL;
  const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
  const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
  bmode_costs = cpi->y_mode_costs[A][L];

  (void) ctx;
  vp9_rd_cost_reset(&best_rdc);
  vp9_rd_cost_reset(&this_rdc);

  mbmi->ref_frame[0] = INTRA_FRAME;
  mbmi->mv[0].as_int = INVALID_MV;
  mbmi->uv_mode = DC_PRED;
  memset(x->skip_txfm, 0, sizeof(x->skip_txfm));

  // Change the limit of this loop to add other intra prediction
  // mode tests.
  for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
    args.mode = this_mode;
    args.rate = 0;
    args.dist = 0;
    mbmi->tx_size = intra_tx_size;
    vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
                                           estimate_block_intra, &args);
    this_rdc.rate = args.rate;
    this_rdc.dist = args.dist;
    this_rdc.rate += bmode_costs[this_mode];
    this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
                             this_rdc.rate, this_rdc.dist);

    if (this_rdc.rdcost < best_rdc.rdcost) {
      best_rdc = this_rdc;
      mbmi->mode = this_mode;
    }
  }

  *rd_cost = best_rdc;
}

static void init_ref_frame_cost(VP9_COMMON *const cm,
                                MACROBLOCKD *const xd,
                                int ref_frame_cost[MAX_REF_FRAMES]) {
  vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
  vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
  vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);

  ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
  ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] =
    ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1);

  ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
  ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
  ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
  ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
  ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
}

typedef struct {
  MV_REFERENCE_FRAME ref_frame;
  PREDICTION_MODE pred_mode;
} REF_MODE;

#define RT_INTER_MODES 8
static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
    {LAST_FRAME, ZEROMV},
    {LAST_FRAME, NEARESTMV},
    {GOLDEN_FRAME, ZEROMV},
    {LAST_FRAME, NEARMV},
    {LAST_FRAME, NEWMV},
    {GOLDEN_FRAME, NEARESTMV},
    {GOLDEN_FRAME, NEARMV},
    {GOLDEN_FRAME, NEWMV}
};
static const REF_MODE ref_mode_set_svc[RT_INTER_MODES] = {
    {LAST_FRAME, ZEROMV},
    {GOLDEN_FRAME, ZEROMV},
    {LAST_FRAME, NEARESTMV},
    {LAST_FRAME, NEARMV},
    {GOLDEN_FRAME, NEARESTMV},
    {GOLDEN_FRAME, NEARMV},
    {LAST_FRAME, NEWMV},
    {GOLDEN_FRAME, NEWMV}
};

// TODO(jingning) placeholder for inter-frame non-RD mode decision.
// this needs various further optimizations. to be continued..
void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
                         TileDataEnc *tile_data,
                         int mi_row, int mi_col, RD_COST *rd_cost,
                         BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
  VP9_COMMON *const cm = &cpi->common;
  SPEED_FEATURES *const sf = &cpi->sf;
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
  struct macroblockd_plane *const pd = &xd->plane[0];
  PREDICTION_MODE best_mode = ZEROMV;
  MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
  MV_REFERENCE_FRAME usable_ref_frame;
  TX_SIZE best_tx_size = TX_SIZES;
  INTERP_FILTER best_pred_filter = EIGHTTAP;
  int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
  struct buf_2d yv12_mb[4][MAX_MB_PLANE];
  static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
                                    VP9_ALT_FLAG };
  RD_COST this_rdc, best_rdc;
  uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE;
  // var_y and sse_y are saved to be used in skipping checking
  unsigned int var_y = UINT_MAX;
  unsigned int sse_y = UINT_MAX;
  // Reduce the intra cost penalty for small blocks (<=16x16).
  const int reduction_fac = (bsize <= BLOCK_16X16) ?
      ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
  const int intra_cost_penalty = vp9_get_intra_cost_penalty(
      cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac;
  const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
                                           intra_cost_penalty, 0);
  const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize];
  const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
  INTERP_FILTER filter_ref;
  const int bsl = mi_width_log2_lookup[bsize];
  const int pred_filter_search = cm->interp_filter == SWITCHABLE ?
      (((mi_row + mi_col) >> bsl) +
       get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
  int const_motion[MAX_REF_FRAMES] = { 0 };
  const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
  const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
  // For speed 6, the result of interp filter is reused later in actual encoding
  // process.
  // tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
  PRED_BUFFER tmp[4];
  DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]);
#if CONFIG_VP9_HIGHBITDEPTH
  DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]);
#endif
  struct buf_2d orig_dst = pd->dst;
  PRED_BUFFER *best_pred = NULL;
  PRED_BUFFER *this_mode_pred = NULL;
  const int pixels_in_block = bh * bw;
  int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
  int ref_frame_skip_mask = 0;
  int idx;
  int best_pred_sad = INT_MAX;
  int best_early_term = 0;
  int ref_frame_cost[MAX_REF_FRAMES];

  init_ref_frame_cost(cm, xd, ref_frame_cost);

  if (reuse_inter_pred) {
    int i;
    for (i = 0; i < 3; i++) {
#if CONFIG_VP9_HIGHBITDEPTH
      if (cm->use_highbitdepth)
        tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
      else
        tmp[i].data = &pred_buf[pixels_in_block * i];
#else
      tmp[i].data = &pred_buf[pixels_in_block * i];
#endif  // CONFIG_VP9_HIGHBITDEPTH
      tmp[i].stride = bw;
      tmp[i].in_use = 0;
    }
    tmp[3].data = pd->dst.buf;
    tmp[3].stride = pd->dst.stride;
    tmp[3].in_use = 0;
  }

  x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
  x->skip = 0;

  if (xd->up_available)
    filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
  else if (xd->left_available)
    filter_ref = xd->mi[-1]->mbmi.interp_filter;
  else
    filter_ref = cm->interp_filter;

  // initialize mode decisions
  vp9_rd_cost_reset(&best_rdc);
  vp9_rd_cost_reset(rd_cost);
  mbmi->sb_type = bsize;
  mbmi->ref_frame[0] = NONE;
  mbmi->ref_frame[1] = NONE;
  mbmi->tx_size = MIN(max_txsize_lookup[bsize],
                      tx_mode_to_biggest_tx_size[cm->tx_mode]);

#if CONFIG_VP9_TEMPORAL_DENOISING
  vp9_denoiser_reset_frame_stats(ctx);
#endif

  if (cpi->rc.frames_since_golden == 0 && !cpi->use_svc) {
    usable_ref_frame = LAST_FRAME;
  } else {
    usable_ref_frame = GOLDEN_FRAME;
  }
  for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
    const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);

    x->pred_mv_sad[ref_frame] = INT_MAX;
    frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
    frame_mv[ZEROMV][ref_frame].as_int = 0;

    if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
      int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
      const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;

      vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
                           sf, sf);

      if (cm->use_prev_frame_mvs)
        vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame,
                         candidates, mi_row, mi_col, NULL, NULL,
                         x->mbmi_ext->mode_context);
      else
        const_motion[ref_frame] = mv_refs_rt(cm, x, xd, tile_info,
                                             xd->mi[0],
                                             ref_frame, candidates,
                                             mi_row, mi_col);

      vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
                            &frame_mv[NEARESTMV][ref_frame],
                            &frame_mv[NEARMV][ref_frame]);

      if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
        vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
                    ref_frame, bsize);
    } else {
      ref_frame_skip_mask |= (1 << ref_frame);
    }
  }

  for (idx = 0; idx < RT_INTER_MODES; ++idx) {
    int rate_mv = 0;
    int mode_rd_thresh;
    int mode_index;
    int i;
    int64_t this_sse;
    int is_skippable;
    int this_early_term = 0;
    PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode;
    if (cpi->use_svc)
      this_mode = ref_mode_set_svc[idx].pred_mode;

    if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
      continue;

    ref_frame = ref_mode_set[idx].ref_frame;
    if (cpi->use_svc)
      ref_frame = ref_mode_set_svc[idx].ref_frame;
    if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
      continue;
    if (const_motion[ref_frame] && this_mode == NEARMV)
      continue;

    i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
    if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking)
      if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
        ref_frame_skip_mask |= (1 << ref_frame);
    if (ref_frame_skip_mask & (1 << ref_frame))
      continue;

    // Select prediction reference frames.
    for (i = 0; i < MAX_MB_PLANE; i++)
      xd->plane[i].pre[0] = yv12_mb[ref_frame][i];

    mbmi->ref_frame[0] = ref_frame;
    set_ref_ptrs(cm, xd, ref_frame, NONE);

    mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
    mode_rd_thresh = best_mode_skip_txfm ?
            rd_threshes[mode_index] << 1 : rd_threshes[mode_index];
    if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
                            rd_thresh_freq_fact[mode_index]))
      continue;

    if (this_mode == NEWMV) {
      if (ref_frame > LAST_FRAME && !cpi->use_svc) {
        int tmp_sad;
        int dis, cost_list[5];

        if (bsize < BLOCK_16X16)
          continue;

        tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);

        if (tmp_sad > x->pred_mv_sad[LAST_FRAME])
          continue;
        if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad)
          continue;

        frame_mv[NEWMV][ref_frame].as_int = mbmi->mv[0].as_int;
        rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv,
          &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
          x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
        frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
        frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;

        cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv,
          &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
          cpi->common.allow_high_precision_mv,
          x->errorperbit,
          &cpi->fn_ptr[bsize],
          cpi->sf.mv.subpel_force_stop,
          cpi->sf.mv.subpel_iters_per_step,
          cond_cost_list(cpi, cost_list),
          x->nmvjointcost, x->mvcost, &dis,
          &x->pred_sse[ref_frame], NULL, 0, 0);
      } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
        &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost)) {
        continue;
      }
    }

    if (this_mode == NEWMV && ref_frame == LAST_FRAME &&
        frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
      const int pre_stride = xd->plane[0].pre[0].stride;
      const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
          (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
          (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
      best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
                                   x->plane[0].src.stride,
                                   pre_buf, pre_stride);
      x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
    }

    if (cpi->use_svc) {
      if (this_mode == NEWMV && ref_frame == GOLDEN_FRAME &&
          frame_mv[NEWMV][GOLDEN_FRAME].as_int != INVALID_MV) {
        const int pre_stride = xd->plane[0].pre[0].stride;
        const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
            (frame_mv[NEWMV][GOLDEN_FRAME].as_mv.row >> 3) * pre_stride +
            (frame_mv[NEWMV][GOLDEN_FRAME].as_mv.col >> 3);
        best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
                                               x->plane[0].src.stride,
                                               pre_buf, pre_stride);
        x->pred_mv_sad[GOLDEN_FRAME] = best_pred_sad;
      }
    }


    if (this_mode != NEARESTMV &&
        frame_mv[this_mode][ref_frame].as_int ==
            frame_mv[NEARESTMV][ref_frame].as_int)
      continue;

    mbmi->mode = this_mode;
    mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;

    // Search for the best prediction filter type, when the resulting
    // motion vector is at sub-pixel accuracy level for luma component, i.e.,
    // the last three bits are all zeros.
    if (reuse_inter_pred) {
      if (!this_mode_pred) {
        this_mode_pred = &tmp[3];
      } else {
        this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
        pd->dst.buf = this_mode_pred->data;
        pd->dst.stride = bw;
      }
    }

    if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search
        && (ref_frame == LAST_FRAME ||
            (ref_frame == GOLDEN_FRAME && cpi->use_svc))
        && (((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) != 0)) {
      int pf_rate[3];
      int64_t pf_dist[3];
      unsigned int pf_var[3];
      unsigned int pf_sse[3];
      TX_SIZE pf_tx_size[3];
      int64_t best_cost = INT64_MAX;
      INTERP_FILTER best_filter = SWITCHABLE, filter;
      PRED_BUFFER *current_pred = this_mode_pred;

      for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) {
        int64_t cost;
        mbmi->interp_filter = filter;
        vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
        model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter],
                          &pf_var[filter], &pf_sse[filter]);
        pf_rate[filter] += vp9_get_switchable_rate(cpi, xd);
        cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]);
        pf_tx_size[filter] = mbmi->tx_size;
        if (cost < best_cost) {
          best_filter = filter;
          best_cost = cost;
          skip_txfm = x->skip_txfm[0];

          if (reuse_inter_pred) {
            if (this_mode_pred != current_pred) {
              free_pred_buffer(this_mode_pred);
              this_mode_pred = current_pred;
            }

            if (filter < EIGHTTAP_SHARP) {
              current_pred = &tmp[get_pred_buffer(tmp, 3)];
              pd->dst.buf = current_pred->data;
              pd->dst.stride = bw;
            }
          }
        }
      }

      if (reuse_inter_pred && this_mode_pred != current_pred)
        free_pred_buffer(current_pred);

      mbmi->interp_filter = best_filter;
      mbmi->tx_size = pf_tx_size[best_filter];
      this_rdc.rate = pf_rate[best_filter];
      this_rdc.dist = pf_dist[best_filter];
      var_y = pf_var[best_filter];
      sse_y = pf_sse[best_filter];
      x->skip_txfm[0] = skip_txfm;
      if (reuse_inter_pred) {
        pd->dst.buf = this_mode_pred->data;
        pd->dst.stride = this_mode_pred->stride;
      }
    } else {
      mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref;
      vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);

      // For large partition blocks, extra testing is done.
      if (bsize > BLOCK_32X32 &&
        !cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id) &&
        cm->base_qindex) {
        model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate,
                                &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col,
                                &this_early_term);
      } else {
        model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
                          &var_y, &sse_y);
      }
    }

    if (!this_early_term) {
      this_sse = (int64_t)sse_y;
      block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable,
                &this_sse, 0, bsize, MIN(mbmi->tx_size, TX_16X16));
      x->skip_txfm[0] = is_skippable;
      if (is_skippable) {
        this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
      } else {
        if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) <
            RDCOST(x->rdmult, x->rddiv, 0, this_sse)) {
          this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
        } else {
          this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
          this_rdc.dist = this_sse;
          x->skip_txfm[0] = SKIP_TXFM_AC_DC;
        }
      }

      if (cm->interp_filter == SWITCHABLE) {
        if ((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07)
          this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
      }
    } else {
      this_rdc.rate += cm->interp_filter == SWITCHABLE ?
          vp9_get_switchable_rate(cpi, xd) : 0;
      this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
    }

    if (x->color_sensitivity[0] || x->color_sensitivity[1]) {
      int uv_rate = 0;
      int64_t uv_dist = 0;
      if (x->color_sensitivity[0])
        vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1);
      if (x->color_sensitivity[1])
        vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2);
      model_rd_for_sb_uv(cpi, bsize, x, xd, &uv_rate, &uv_dist,
                         &var_y, &sse_y);
      this_rdc.rate += uv_rate;
      this_rdc.dist += uv_dist;
    }

    this_rdc.rate += rate_mv;
    this_rdc.rate +=
        cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]][INTER_OFFSET(
            this_mode)];
    this_rdc.rate += ref_frame_cost[ref_frame];
    this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);

    // Skipping checking: test to see if this block can be reconstructed by
    // prediction only.
    if (cpi->allow_encode_breakout) {
      encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode,
                           var_y, sse_y, yv12_mb, &this_rdc.rate,
                           &this_rdc.dist);
      if (x->skip) {
        this_rdc.rate += rate_mv;
        this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate,
                                 this_rdc.dist);
      }
    }

#if CONFIG_VP9_TEMPORAL_DENOISING
    if (cpi->oxcf.noise_sensitivity > 0)
      vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx);
#else
    (void)ctx;
#endif

    if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
      best_rdc = this_rdc;
      best_mode = this_mode;
      best_pred_filter = mbmi->interp_filter;
      best_tx_size = mbmi->tx_size;
      best_ref_frame = ref_frame;
      best_mode_skip_txfm = x->skip_txfm[0];
      best_early_term = this_early_term;

      if (reuse_inter_pred) {
        free_pred_buffer(best_pred);
        best_pred = this_mode_pred;
      }
    } else {
      if (reuse_inter_pred)
        free_pred_buffer(this_mode_pred);
    }

    if (x->skip)
      break;

    // If early termination flag is 1 and at least 2 modes are checked,
    // the mode search is terminated.
    if (best_early_term && idx > 0) {
      x->skip = 1;
      break;
    }
  }

  mbmi->mode          = best_mode;
  mbmi->interp_filter = best_pred_filter;
  mbmi->tx_size       = best_tx_size;
  mbmi->ref_frame[0]  = best_ref_frame;
  mbmi->mv[0].as_int  = frame_mv[best_mode][best_ref_frame].as_int;
  xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
  x->skip_txfm[0] = best_mode_skip_txfm;

  // Perform intra prediction search, if the best SAD is above a certain
  // threshold.
  if (best_rdc.rdcost == INT64_MAX ||
      (!x->skip && best_rdc.rdcost > inter_mode_thresh &&
       bsize <= cpi->sf.max_intra_bsize)) {
    struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
    const TX_SIZE intra_tx_size =
        MIN(max_txsize_lookup[bsize],
            tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
    int i;
    TX_SIZE best_intra_tx_size = TX_SIZES;

    if (reuse_inter_pred && best_pred != NULL) {
      if (best_pred->data == orig_dst.buf) {
        this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
#if CONFIG_VP9_HIGHBITDEPTH
        if (cm->use_highbitdepth)
          vpx_highbd_convolve_copy(best_pred->data, best_pred->stride,
                                   this_mode_pred->data, this_mode_pred->stride,
                                   NULL, 0, NULL, 0, bw, bh, xd->bd);
        else
          vpx_convolve_copy(best_pred->data, best_pred->stride,
                          this_mode_pred->data, this_mode_pred->stride,
                          NULL, 0, NULL, 0, bw, bh);
#else
        vpx_convolve_copy(best_pred->data, best_pred->stride,
                          this_mode_pred->data, this_mode_pred->stride,
                          NULL, 0, NULL, 0, bw, bh);
#endif  // CONFIG_VP9_HIGHBITDEPTH
        best_pred = this_mode_pred;
      }
    }
    pd->dst = orig_dst;

    for (i = 0; i < 4; ++i) {
      const PREDICTION_MODE this_mode = intra_mode_list[i];
      THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
      int mode_rd_thresh = rd_threshes[mode_index];

      if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize]))
        continue;

      if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
                              rd_thresh_freq_fact[mode_index]))
        continue;

      mbmi->mode = this_mode;
      mbmi->ref_frame[0] = INTRA_FRAME;
      args.mode = this_mode;
      args.rate = 0;
      args.dist = 0;
      mbmi->tx_size = intra_tx_size;
      vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
                                             estimate_block_intra, &args);
      this_rdc.rate = args.rate;
      this_rdc.dist = args.dist;
      this_rdc.rate += cpi->mbmode_cost[this_mode];
      this_rdc.rate += ref_frame_cost[INTRA_FRAME];
      this_rdc.rate += intra_cost_penalty;
      this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
                               this_rdc.rate, this_rdc.dist);

      if (this_rdc.rdcost < best_rdc.rdcost) {
        best_rdc = this_rdc;
        best_mode = this_mode;
        best_intra_tx_size = mbmi->tx_size;
        best_ref_frame = INTRA_FRAME;
        mbmi->uv_mode = this_mode;
        mbmi->mv[0].as_int = INVALID_MV;
        best_mode_skip_txfm = x->skip_txfm[0];
      }
    }

    // Reset mb_mode_info to the best inter mode.
    if (best_ref_frame != INTRA_FRAME) {
      mbmi->tx_size = best_tx_size;
    } else {
      mbmi->tx_size = best_intra_tx_size;
    }
  }

  pd->dst = orig_dst;
  mbmi->mode = best_mode;
  mbmi->ref_frame[0] = best_ref_frame;
  x->skip_txfm[0] = best_mode_skip_txfm;

  if (reuse_inter_pred && best_pred != NULL) {
    if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) {
#if CONFIG_VP9_HIGHBITDEPTH
      if (cm->use_highbitdepth)
        vpx_highbd_convolve_copy(best_pred->data, best_pred->stride,
                                 pd->dst.buf, pd->dst.stride, NULL, 0,
                                 NULL, 0, bw, bh, xd->bd);
      else
        vpx_convolve_copy(best_pred->data, best_pred->stride,
                          pd->dst.buf, pd->dst.stride, NULL, 0,
                          NULL, 0, bw, bh);
#else
      vpx_convolve_copy(best_pred->data, best_pred->stride,
                        pd->dst.buf, pd->dst.stride, NULL, 0,
                        NULL, 0, bw, bh);
#endif  // CONFIG_VP9_HIGHBITDEPTH
    }
  }

  if (cpi->sf.adaptive_rd_thresh) {
    THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mbmi->mode)];

    if (best_ref_frame == INTRA_FRAME) {
      // Only consider the modes that are included in the intra_mode_list.
      int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE);
      int i;

      // TODO(yunqingwang): Check intra mode mask and only update freq_fact
      // for those valid modes.
      for (i = 0; i < intra_modes; i++) {
        update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME,
                                best_mode_idx, intra_mode_list[i]);
      }
    } else {
      for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
        PREDICTION_MODE this_mode;
        if (best_ref_frame != ref_frame) continue;
        for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
          update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame,
                                  best_mode_idx, this_mode);
        }
      }
    }
  }

  *rd_cost = best_rdc;
}

void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
                                int mi_row, int mi_col, RD_COST *rd_cost,
                                BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
  VP9_COMMON *const cm = &cpi->common;
  SPEED_FEATURES *const sf = &cpi->sf;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
  const struct segmentation *const seg = &cm->seg;
  MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE;
  MV_REFERENCE_FRAME best_ref_frame = NONE;
  unsigned char segment_id = mbmi->segment_id;
  struct buf_2d yv12_mb[4][MAX_MB_PLANE];
  static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
                                    VP9_ALT_FLAG };
  int64_t best_rd = INT64_MAX;
  b_mode_info bsi[MAX_REF_FRAMES][4];
  int ref_frame_skip_mask = 0;
  const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
  const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
  int idx, idy;

  x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
  ctx->pred_pixel_ready = 0;

  for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
    const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
    int_mv dummy_mv[2];
    x->pred_mv_sad[ref_frame] = INT_MAX;

    if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
      int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame];
      const struct scale_factors *const sf =
                             &cm->frame_refs[ref_frame - 1].sf;
      vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
                           sf, sf);
      vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame,
                       candidates, mi_row, mi_col, NULL, NULL,
                       mbmi_ext->mode_context);

      vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
                            &dummy_mv[0], &dummy_mv[1]);
    } else {
      ref_frame_skip_mask |= (1 << ref_frame);
    }
  }

  mbmi->sb_type = bsize;
  mbmi->tx_size = TX_4X4;
  mbmi->uv_mode = DC_PRED;
  mbmi->ref_frame[0] = LAST_FRAME;
  mbmi->ref_frame[1] = NONE;
  mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
                                                        : cm->interp_filter;

  for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
    int64_t this_rd = 0;
    int plane;

    if (ref_frame_skip_mask & (1 << ref_frame))
      continue;

    // TODO(jingning, agrange): Scaling reference frame not supported for
    // sub8x8 blocks. Is this supported now?
    if (ref_frame > INTRA_FRAME &&
        vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
      continue;

    // If the segment reference frame feature is enabled....
    // then do nothing if the current ref frame is not allowed..
    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
        get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
      continue;

    mbmi->ref_frame[0] = ref_frame;
    x->skip = 0;
    set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);

    // Select prediction reference frames.
    for (plane = 0; plane < MAX_MB_PLANE; plane++)
      xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];

    for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
      for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
        int_mv b_mv[MB_MODE_COUNT];
        int64_t b_best_rd = INT64_MAX;
        const int i = idy * 2 + idx;
        PREDICTION_MODE this_mode;
        RD_COST this_rdc;
        unsigned int var_y, sse_y;

        struct macroblock_plane *p = &x->plane[0];
        struct macroblockd_plane *pd = &xd->plane[0];

        const struct buf_2d orig_src = p->src;
        const struct buf_2d orig_dst = pd->dst;
        struct buf_2d orig_pre[2];
        memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));

        // set buffer pointers for sub8x8 motion search.
        p->src.buf =
            &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
        pd->dst.buf =
            &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
        pd->pre[0].buf =
            &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8,
                                                    i, pd->pre[0].stride)];

        b_mv[ZEROMV].as_int = 0;
        b_mv[NEWMV].as_int = INVALID_MV;
        vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col,
                                      &b_mv[NEARESTMV],
                                      &b_mv[NEARMV],
                                      mbmi_ext->mode_context);

        for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
          int b_rate = 0;
          xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;

          if (this_mode == NEWMV) {
            const int step_param = cpi->sf.mv.fullpel_search_step_param;
            MV mvp_full;
            MV tmp_mv;
            int cost_list[5];
            const int tmp_col_min = x->mv_col_min;
            const int tmp_col_max = x->mv_col_max;
            const int tmp_row_min = x->mv_row_min;
            const int tmp_row_max = x->mv_row_max;
            int dummy_dist;

            if (i == 0) {
              mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
              mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
            } else {
              mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3;
              mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3;
            }

            vp9_set_mv_search_range(x, &mbmi_ext->ref_mvs[0]->as_mv);

            vp9_full_pixel_search(
                cpi, x, bsize, &mvp_full, step_param, x->sadperbit4,
                cond_cost_list(cpi, cost_list),
                &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv,
                INT_MAX, 0);

            x->mv_col_min = tmp_col_min;
            x->mv_col_max = tmp_col_max;
            x->mv_row_min = tmp_row_min;
            x->mv_row_max = tmp_row_max;

            // calculate the bit cost on motion vector
            mvp_full.row = tmp_mv.row * 8;
            mvp_full.col = tmp_mv.col * 8;

            b_rate += vp9_mv_bit_cost(&mvp_full,
                                      &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
                                      x->nmvjointcost, x->mvcost,
                                      MV_COST_WEIGHT);

            b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
                                          [INTER_OFFSET(NEWMV)];
            if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd)
              continue;

            cpi->find_fractional_mv_step(x, &tmp_mv,
                                         &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
                                         cpi->common.allow_high_precision_mv,
                                         x->errorperbit,
                                         &cpi->fn_ptr[bsize],
                                         cpi->sf.mv.subpel_force_stop,
                                         cpi->sf.mv.subpel_iters_per_step,
                                         cond_cost_list(cpi, cost_list),
                                         x->nmvjointcost, x->mvcost,
                                         &dummy_dist,
                                         &x->pred_sse[ref_frame], NULL, 0, 0);

            xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv;
          } else {
            b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
                                          [INTER_OFFSET(this_mode)];
          }

#if CONFIG_VP9_HIGHBITDEPTH
          if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
            vp9_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
                                    pd->dst.buf, pd->dst.stride,
                                    &xd->mi[0]->bmi[i].as_mv[0].as_mv,
                                    &xd->block_refs[0]->sf,
                                    4 * num_4x4_blocks_wide,
                                    4 * num_4x4_blocks_high, 0,
                                    vp9_filter_kernels[mbmi->interp_filter],
                                    MV_PRECISION_Q3,
                                    mi_col * MI_SIZE + 4 * (i & 0x01),
                                    mi_row * MI_SIZE + 4 * (i >> 1), xd->bd);
          } else {
#endif
            vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
                                     pd->dst.buf, pd->dst.stride,
                                     &xd->mi[0]->bmi[i].as_mv[0].as_mv,
                                     &xd->block_refs[0]->sf,
                                     4 * num_4x4_blocks_wide,
                                     4 * num_4x4_blocks_high, 0,
                                     vp9_filter_kernels[mbmi->interp_filter],
                                     MV_PRECISION_Q3,
                                     mi_col * MI_SIZE + 4 * (i & 0x01),
                                     mi_row * MI_SIZE + 4 * (i >> 1));

#if CONFIG_VP9_HIGHBITDEPTH
          }
#endif

          model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
                            &var_y, &sse_y);

          this_rdc.rate += b_rate;
          this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
                                   this_rdc.rate, this_rdc.dist);
          if (this_rdc.rdcost < b_best_rd) {
            b_best_rd = this_rdc.rdcost;
            bsi[ref_frame][i].as_mode = this_mode;
            bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv;
          }
        }  // mode search

        // restore source and prediction buffer pointers.
        p->src = orig_src;
        pd->pre[0] = orig_pre[0];
        pd->dst = orig_dst;
        this_rd += b_best_rd;

        xd->mi[0]->bmi[i] = bsi[ref_frame][i];
        if (num_4x4_blocks_wide > 1)
          xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i];
        if (num_4x4_blocks_high > 1)
          xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i];
      }
    }  // loop through sub8x8 blocks

    if (this_rd < best_rd) {
      best_rd = this_rd;
      best_ref_frame = ref_frame;
    }
  }  // reference frames

  mbmi->tx_size = TX_4X4;
  mbmi->ref_frame[0] = best_ref_frame;
  for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
      const int block = idy * 2 + idx;
      xd->mi[0]->bmi[block] = bsi[best_ref_frame][block];
      if (num_4x4_blocks_wide > 1)
        xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block];
      if (num_4x4_blocks_high > 1)
        xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block];
    }
  }
  mbmi->mode = xd->mi[0]->bmi[3].as_mode;
  ctx->mic = *(xd->mi[0]);
  ctx->mbmi_ext = *x->mbmi_ext;
  ctx->skip_txfm[0] = SKIP_TXFM_NONE;
  ctx->skip = 0;
  // Dummy assignment for speed -5. No effect in speed -6.
  rd_cost->rdcost = best_rd;
}