1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/bitops.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_tokenize.h"
#define RD_THRESH_POW 1.25
// Factor to weigh the rate for switchable interp filters.
#define SWITCHABLE_INTERP_RATE_FACTOR 1
void vp9_rd_cost_reset(RD_COST *rd_cost) {
rd_cost->rate = INT_MAX;
rd_cost->dist = INT64_MAX;
rd_cost->rdcost = INT64_MAX;
}
void vp9_rd_cost_init(RD_COST *rd_cost) {
rd_cost->rate = 0;
rd_cost->dist = 0;
rd_cost->rdcost = 0;
}
int64_t vp9_calculate_rd_cost(int mult, int div, int rate, int64_t dist) {
assert(mult >= 0);
assert(div > 0);
if (rate >= 0 && dist >= 0) {
return RDCOST(mult, div, rate, dist);
}
if (rate >= 0 && dist < 0) {
return RDCOST_NEG_D(mult, div, rate, -dist);
}
if (rate < 0 && dist >= 0) {
return RDCOST_NEG_R(mult, div, -rate, dist);
}
return -RDCOST(mult, div, -rate, -dist);
}
void vp9_rd_cost_update(int mult, int div, RD_COST *rd_cost) {
if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX) {
rd_cost->rdcost =
vp9_calculate_rd_cost(mult, div, rd_cost->rate, rd_cost->dist);
} else {
vp9_rd_cost_reset(rd_cost);
}
}
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for block size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
};
static void fill_mode_costs(VP9_COMP *cpi) {
const FRAME_CONTEXT *const fc = cpi->common.fc;
int i, j;
for (i = 0; i < INTRA_MODES; ++i) {
for (j = 0; j < INTRA_MODES; ++j) {
vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
vp9_intra_mode_tree);
}
}
vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
for (i = 0; i < INTRA_MODES; ++i) {
vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME][i],
vp9_kf_uv_mode_prob[i], vp9_intra_mode_tree);
vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME][i],
fc->uv_mode_prob[i], vp9_intra_mode_tree);
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
vp9_cost_tokens(cpi->switchable_interp_costs[i],
fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
}
for (i = TX_8X8; i < TX_SIZES; ++i) {
for (j = 0; j < TX_SIZE_CONTEXTS; ++j) {
const vpx_prob *tx_probs = get_tx_probs(i, j, &fc->tx_probs);
int k;
for (k = 0; k <= i; ++k) {
int cost = 0;
int m;
for (m = 0; m <= k - (k == i); ++m) {
if (m == k)
cost += vp9_cost_zero(tx_probs[m]);
else
cost += vp9_cost_one(tx_probs[m]);
}
cpi->tx_size_cost[i - 1][j][k] = cost;
}
}
}
}
static void fill_token_costs(vp9_coeff_cost *c,
vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
int i, j, k, l;
TX_SIZE t;
for (t = TX_4X4; t <= TX_32X32; ++t)
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vpx_prob probs[ENTROPY_NODES];
vp9_model_to_full_probs(p[t][i][j][k][l], probs);
vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree);
vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
vp9_coef_tree);
assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
c[t][i][j][k][1][l][EOB_TOKEN]);
}
}
// Values are now correlated to quantizer.
static int sad_per_bit16lut_8[QINDEX_RANGE];
static int sad_per_bit4lut_8[QINDEX_RANGE];
#if CONFIG_VP9_HIGHBITDEPTH
static int sad_per_bit16lut_10[QINDEX_RANGE];
static int sad_per_bit4lut_10[QINDEX_RANGE];
static int sad_per_bit16lut_12[QINDEX_RANGE];
static int sad_per_bit4lut_12[QINDEX_RANGE];
#endif
static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
vpx_bit_depth_t bit_depth) {
int i;
// Initialize the sad lut tables using a formulaic calculation for now.
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < range; i++) {
const double q = vp9_convert_qindex_to_q(i, bit_depth);
bit16lut[i] = (int)(0.0418 * q + 2.4107);
bit4lut[i] = (int)(0.063 * q + 2.742);
}
}
void vp9_init_me_luts(void) {
init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
VPX_BITS_8);
#if CONFIG_VP9_HIGHBITDEPTH
init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
VPX_BITS_10);
init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
VPX_BITS_12);
#endif
}
static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
8, 8, 4, 4, 2, 2, 1, 0 };
// Note that the element below for frame type "USE_BUF_FRAME", which indicates
// that the show frame flag is set, should not be used as no real frame
// is encoded so we should not reach here. However, a dummy value
// is inserted here to make sure the data structure has the right number
// of values assigned.
static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128,
128, 144, 144 };
// Configure Vizier RD parameters.
// Later this function will use passed in command line values.
void vp9_init_rd_parameters(VP9_COMP *cpi) {
RD_CONTROL *const rdc = &cpi->rd_ctrl;
// When |use_vizier_rc_params| is 1, we expect the rd parameters have been
// initialized by the pass in values.
// Be careful that parameters below are only initialized to 1, if we do not
// pass values to them. It is desired to take care of each parameter when
// using |use_vizier_rc_params|.
if (cpi->twopass.use_vizier_rc_params) return;
// Make sure this function is floating point safe.
vpx_clear_system_state();
rdc->rd_mult_inter_qp_fac = 1.0;
rdc->rd_mult_arf_qp_fac = 1.0;
rdc->rd_mult_key_qp_fac = 1.0;
}
// Returns the default rd multiplier for inter frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_inter_rd_multiplier(int qindex) {
return 4.15 + (0.001 * (double)qindex);
}
// Returns the default rd multiplier for ARF/Golden Frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_arf_rd_multiplier(int qindex) {
return 4.25 + (0.001 * (double)qindex);
}
// Returns the default rd multiplier for key frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_kf_rd_multiplier(int qindex) {
return 4.35 + (0.001 * (double)qindex);
}
int vp9_compute_rd_mult_based_on_qindex(const VP9_COMP *cpi, int qindex) {
const RD_CONTROL *rdc = &cpi->rd_ctrl;
const int q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth);
// largest dc_quant is 21387, therefore rdmult should fit in int32_t
int rdmult = q * q;
if (cpi->ext_ratectrl.ready &&
(cpi->ext_ratectrl.funcs.rc_type & VPX_RC_RDMULT) != 0 &&
cpi->ext_ratectrl.ext_rdmult != VPX_DEFAULT_RDMULT) {
return cpi->ext_ratectrl.ext_rdmult;
}
// Make sure this function is floating point safe.
vpx_clear_system_state();
if (cpi->common.frame_type == KEY_FRAME) {
double def_rd_q_mult = def_kf_rd_multiplier(qindex);
rdmult = (int)((double)rdmult * def_rd_q_mult * rdc->rd_mult_key_qp_fac);
} else if (!cpi->rc.is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
double def_rd_q_mult = def_arf_rd_multiplier(qindex);
rdmult = (int)((double)rdmult * def_rd_q_mult * rdc->rd_mult_arf_qp_fac);
} else {
double def_rd_q_mult = def_inter_rd_multiplier(qindex);
rdmult = (int)((double)rdmult * def_rd_q_mult * rdc->rd_mult_inter_qp_fac);
}
#if CONFIG_VP9_HIGHBITDEPTH
switch (cpi->common.bit_depth) {
case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break;
case VPX_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break;
default: break;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
return rdmult > 0 ? rdmult : 1;
}
static int modulate_rdmult(const VP9_COMP *cpi, int rdmult) {
int64_t rdmult_64 = rdmult;
if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
const int gfu_boost = cpi->multi_layer_arf
? gf_group->gfu_boost[gf_group->index]
: cpi->rc.gfu_boost;
const int boost_index = VPXMIN(15, (gfu_boost / 100));
rdmult_64 = (rdmult_64 * rd_frame_type_factor[frame_type]) >> 7;
rdmult_64 += ((rdmult_64 * rd_boost_factor[boost_index]) >> 7);
}
return (int)rdmult_64;
}
int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
int rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, qindex);
if (cpi->ext_ratectrl.ready &&
(cpi->ext_ratectrl.funcs.rc_type & VPX_RC_RDMULT) != 0 &&
cpi->ext_ratectrl.ext_rdmult != VPX_DEFAULT_RDMULT) {
return cpi->ext_ratectrl.ext_rdmult;
}
return modulate_rdmult(cpi, rdmult);
}
int vp9_get_adaptive_rdmult(const VP9_COMP *cpi, double beta) {
int rdmult =
vp9_compute_rd_mult_based_on_qindex(cpi, cpi->common.base_qindex);
rdmult = (int)((double)rdmult / beta);
rdmult = rdmult > 0 ? rdmult : 1;
return modulate_rdmult(cpi, rdmult);
}
static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
double q;
#if CONFIG_VP9_HIGHBITDEPTH
switch (bit_depth) {
case VPX_BITS_8: q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break;
case VPX_BITS_10: q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break;
default:
assert(bit_depth == VPX_BITS_12);
q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0;
break;
}
#else
(void)bit_depth;
q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
#endif // CONFIG_VP9_HIGHBITDEPTH
// TODO(debargha): Adjust the function below.
return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
}
void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
#if CONFIG_VP9_HIGHBITDEPTH
switch (cpi->common.bit_depth) {
case VPX_BITS_8:
x->sadperbit16 = sad_per_bit16lut_8[qindex];
x->sadperbit4 = sad_per_bit4lut_8[qindex];
break;
case VPX_BITS_10:
x->sadperbit16 = sad_per_bit16lut_10[qindex];
x->sadperbit4 = sad_per_bit4lut_10[qindex];
break;
default:
assert(cpi->common.bit_depth == VPX_BITS_12);
x->sadperbit16 = sad_per_bit16lut_12[qindex];
x->sadperbit4 = sad_per_bit4lut_12[qindex];
break;
}
#else
(void)cpi;
x->sadperbit16 = sad_per_bit16lut_8[qindex];
x->sadperbit4 = sad_per_bit4lut_8[qindex];
#endif // CONFIG_VP9_HIGHBITDEPTH
}
static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
int i, bsize, segment_id;
for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
const int qindex =
clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
cm->y_dc_delta_q,
0, MAXQ);
const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
// Threshold here seems unnecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[].
const int t = q * rd_thresh_block_size_factor[bsize];
const int thresh_max = INT_MAX / t;
if (bsize >= BLOCK_8X8) {
for (i = 0; i < MAX_MODES; ++i)
rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
? rd->thresh_mult[i] * t / 4
: INT_MAX;
} else {
for (i = 0; i < MAX_REFS; ++i)
rd->threshes[segment_id][bsize][i] =
rd->thresh_mult_sub8x8[i] < thresh_max
? rd->thresh_mult_sub8x8[i] * t / 4
: INT_MAX;
}
}
}
}
void vp9_build_inter_mode_cost(VP9_COMP *cpi) {
const VP9_COMMON *const cm = &cpi->common;
int i;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
vp9_cost_tokens((int *)cpi->inter_mode_cost[i], cm->fc->inter_mode_probs[i],
vp9_inter_mode_tree);
}
}
void vp9_initialize_rd_consts(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
RD_OPT *const rd = &cpi->rd;
int i;
vpx_clear_system_state();
rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
set_error_per_bit(x, rd->RDMULT);
x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
cm->frame_type != KEY_FRAME)
? 0
: 1;
set_block_thresholds(cm, rd);
set_partition_probs(cm, xd);
if (cpi->oxcf.pass == 1) {
if (!frame_is_intra_only(cm))
vp9_build_nmv_cost_table(
x->nmvjointcost,
cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
&cm->fc->nmvc, cm->allow_high_precision_mv);
} else {
if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME)
fill_token_costs(x->token_costs, cm->fc->coef_probs);
if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
cm->frame_type == KEY_FRAME) {
for (i = 0; i < PARTITION_CONTEXTS; ++i)
vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(xd, i),
vp9_partition_tree);
}
if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
cm->frame_type == KEY_FRAME) {
fill_mode_costs(cpi);
if (!frame_is_intra_only(cm)) {
vp9_build_nmv_cost_table(
x->nmvjointcost,
cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
&cm->fc->nmvc, cm->allow_high_precision_mv);
vp9_build_inter_mode_cost(cpi);
}
}
}
}
// NOTE: The tables below must be of the same size.
// The functions described below are sampled at the four most significant
// bits of x^2 + 8 / 256.
// Normalized rate:
// This table models the rate for a Laplacian source with given variance
// when quantized with a uniform quantizer with given stepsize. The
// closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
static const int rate_tab_q10[] = {
65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044,
3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037,
2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179,
2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398,
1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745,
680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213,
190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21,
16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0,
};
// Normalized distortion:
// This table models the normalized distortion for a Laplacian source
// with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance).
// Note the actual distortion is Dn * variance.
static const int dist_tab_q10[] = {
0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5,
6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21,
24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69,
73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200,
215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458,
495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823,
842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001,
1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
};
static const int xsq_iq_q10[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32,
40, 48, 56, 64, 72, 80, 88, 96, 112,
128, 144, 160, 176, 192, 208, 224, 256, 288,
320, 352, 384, 416, 448, 480, 544, 608, 672,
736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
180192, 196576, 212960, 229344, 245728,
};
static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
const int tmp = (xsq_q10 >> 2) + 8;
const int k = get_msb(tmp) - 3;
const int xq = (k << 3) + ((tmp >> k) & 0x7);
const int one_q10 = 1 << 10;
const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
const int b_q10 = one_q10 - a_q10;
*r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
*d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
static const uint32_t MAX_XSQ_Q10 = 245727;
void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
unsigned int qstep, int *rate,
int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
if (var == 0) {
*rate = 0;
*dist = 0;
} else {
int d_q10, r_q10;
const uint64_t xsq_q10_64 =
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
model_rd_norm(xsq_q10, &r_q10, &d_q10);
*rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT);
*dist = (var * (int64_t)d_q10 + 512) >> 10;
}
}
// Disable gcc 12.2 false positive warning.
// warning: writing 1 byte into a region of size 0 [-Wstringop-overflow=]
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[16],
ENTROPY_CONTEXT t_left[16]) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const ENTROPY_CONTEXT *const above = pd->above_context;
const ENTROPY_CONTEXT *const left = pd->left_context;
int i;
switch (tx_size) {
case TX_4X4:
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
break;
case TX_8X8:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_16X16:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
default:
assert(tx_size == TX_32X32);
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
}
}
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
int max_mv = 0;
int near_same_nearest;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
const int num_mv_refs =
MAX_MV_REF_CANDIDATES + (block_size < x->max_partition_size);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv;
pred_mv[2] = x->pred_mv[ref_frame];
assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int ==
x->mbmi_ext->ref_mvs[ref_frame][1].as_int;
// Get the sad for each candidate reference mv.
for (i = 0; i < num_mv_refs; ++i) {
const MV *this_mv = &pred_mv[i];
int fp_row, fp_col;
if (this_mv->row == INT16_MAX || this_mv->col == INT16_MAX) continue;
if (i == 1 && near_same_nearest) continue;
fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
zero_seen |= (fp_row == 0 && fp_col == 0);
ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col];
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
ref_y_ptr, ref_y_stride);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
x->max_mv_context[ref_frame] = max_mv;
x->pred_mv_sad[ref_frame] = best_sad;
}
void vp9_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv) {
int i;
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
for (i = 0; i < MAX_MB_PLANE; ++i) {
setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
i ? scale_uv : scale, xd->plane[i].subsampling_x,
xd->plane[i].subsampling_y);
}
}
int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
int stride) {
const int bw = b_width_log2_lookup[plane_bsize];
const int y = 4 * (raster_block >> bw);
const int x = 4 * (raster_block & ((1 << bw) - 1));
return y * stride + x;
}
int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
int16_t *base) {
const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
return base + vp9_raster_block_offset(plane_bsize, raster_block, stride);
}
YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
int ref_frame) {
const VP9_COMMON *const cm = &cpi->common;
const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX)
? &cm->buffer_pool->frame_bufs[scaled_idx].buf
: NULL;
}
int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) {
const MODE_INFO *const mi = xd->mi[0];
const int ctx = get_pred_context_switchable_interp(xd);
return SWITCHABLE_INTERP_RATE_FACTOR *
cpi->switchable_interp_costs[ctx][mi->interp_filter];
}
void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
int i;
RD_OPT *const rd = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
// Set baseline threshold values.
for (i = 0; i < MAX_MODES; ++i)
rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
if (sf->adaptive_rd_thresh) {
rd->thresh_mult[THR_NEARESTMV] = 300;
rd->thresh_mult[THR_NEARESTG] = 300;
rd->thresh_mult[THR_NEARESTA] = 300;
} else {
rd->thresh_mult[THR_NEARESTMV] = 0;
rd->thresh_mult[THR_NEARESTG] = 0;
rd->thresh_mult[THR_NEARESTA] = 0;
}
rd->thresh_mult[THR_DC] += 1000;
rd->thresh_mult[THR_NEWMV] += 1000;
rd->thresh_mult[THR_NEWA] += 1000;
rd->thresh_mult[THR_NEWG] += 1000;
rd->thresh_mult[THR_NEARMV] += 1000;
rd->thresh_mult[THR_NEARA] += 1000;
rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
rd->thresh_mult[THR_TM] += 1000;
rd->thresh_mult[THR_COMP_NEARLA] += 1500;
rd->thresh_mult[THR_COMP_NEWLA] += 2000;
rd->thresh_mult[THR_NEARG] += 1000;
rd->thresh_mult[THR_COMP_NEARGA] += 1500;
rd->thresh_mult[THR_COMP_NEWGA] += 2000;
rd->thresh_mult[THR_ZEROMV] += 2000;
rd->thresh_mult[THR_ZEROG] += 2000;
rd->thresh_mult[THR_ZEROA] += 2000;
rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
rd->thresh_mult[THR_H_PRED] += 2000;
rd->thresh_mult[THR_V_PRED] += 2000;
rd->thresh_mult[THR_D45_PRED] += 2500;
rd->thresh_mult[THR_D135_PRED] += 2500;
rd->thresh_mult[THR_D117_PRED] += 2500;
rd->thresh_mult[THR_D153_PRED] += 2500;
rd->thresh_mult[THR_D207_PRED] += 2500;
rd->thresh_mult[THR_D63_PRED] += 2500;
}
void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
static const int thresh_mult[2][MAX_REFS] = {
{ 2500, 2500, 2500, 4500, 4500, 2500 },
{ 2000, 2000, 2000, 4000, 4000, 2000 }
};
RD_OPT *const rd = &cpi->rd;
const int idx = cpi->oxcf.mode == BEST;
memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
}
void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
int bsize, int best_mode_index) {
if (rd_thresh > 0) {
const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
int mode;
for (mode = 0; mode < top_mode; ++mode) {
const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
BLOCK_SIZE bs;
for (bs = min_size; bs <= max_size; ++bs) {
int *const fact = &factor_buf[bs][mode];
if (mode == best_mode_index) {
*fact -= (*fact >> 4);
} else {
*fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
}
}
}
}
}
int vp9_get_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize,
int qindex, int qdelta) {
// Reduce the intra cost penalty for small blocks (<=16x16).
int reduction_fac =
(bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh)
// Don't reduce intra cost penalty if estimated noise level is high.
reduction_fac = 0;
// Always use VPX_BITS_8 as input here because the penalty is applied
// to rate not distortion so we want a consistent penalty for all bit
// depths. If the actual bit depth were passed in here then the value
// retured by vp9_dc_quant() would scale with the bit depth and we would
// then need to apply inverse scaling to correct back to a bit depth
// independent rate penalty.
return (20 * vp9_dc_quant(qindex, qdelta, VPX_BITS_8)) >> reduction_fac;
}
|