diff options
author | yanyang1 <young.yang@amd.com> | 2015-08-18 15:28:32 +0800 |
---|---|---|
committer | Alex Deucher <alexander.deucher@amd.com> | 2015-12-21 16:42:15 -0500 |
commit | c82baa28184356a75c0157129f88af42b2e7b695 (patch) | |
tree | 7a702571d210aa8eb1ff04363ba8bcd4d5894a35 | |
parent | 1060029fae7c351351d7c2e9e345b6c57f515668 (diff) | |
download | linux-next-c82baa28184356a75c0157129f88af42b2e7b695.tar.gz |
drm/amd/powerplay: add Tonga dpm support (v3)
This implements DPM for tonga. DPM handles dynamic
clock and voltage scaling.
v2: merge all the patches related with tonga dpm
v3: merge dpm force level fix, cgs display fix, spelling fix
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com>
Signed-off-by: yanyang1 <young.yang@amd.com>
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
20 files changed, 9284 insertions, 12 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/Makefile b/drivers/gpu/drm/amd/powerplay/Makefile index 023102106124..e195bf59da86 100644 --- a/drivers/gpu/drm/amd/powerplay/Makefile +++ b/drivers/gpu/drm/amd/powerplay/Makefile @@ -2,7 +2,10 @@ subdir-ccflags-y += -Iinclude/drm \ -Idrivers/gpu/drm/amd/powerplay/inc/ \ -Idrivers/gpu/drm/amd/include/asic_reg \ - -Idrivers/gpu/drm/amd/include + -Idrivers/gpu/drm/amd/include \ + -Idrivers/gpu/drm/amd/powerplay/smumgr\ + -Idrivers/gpu/drm/amd/powerplay/hwmgr \ + -Idrivers/gpu/drm/amd/powerplay/eventmgr AMD_PP_PATH = ../powerplay diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile index 46cc49451694..fd73d3ccc78c 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile @@ -4,7 +4,9 @@ HARDWARE_MGR = hwmgr.o processpptables.o functiontables.o \ hardwaremanager.o pp_acpi.o cz_hwmgr.o \ - cz_clockpowergating.o + cz_clockpowergating.o \ + tonga_processpptables.o ppatomctrl.o \ + tonga_hwmgr.o pppcielanes.o AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR)) diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c index 5d1ba90a1409..407b2e31e1a1 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c @@ -28,6 +28,7 @@ #include "power_state.h" #include "hwmgr.h" #include "cz_hwmgr.h" +#include "tonga_hwmgr.h" int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle) { @@ -53,6 +54,15 @@ int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle) case AMD_FAMILY_CZ: cz_hwmgr_init(hwmgr); break; + case AMD_FAMILY_VI: + switch (hwmgr->chip_id) { + case CHIP_TONGA: + tonga_hwmgr_init(hwmgr); + break; + default: + return -EINVAL; + } + break; default: return -EINVAL; } diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h new file mode 100644 index 000000000000..c9e6c2d80ea6 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h @@ -0,0 +1,105 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#ifndef PP_HWMGR_PPT_H +#define PP_HWMGR_PPT_H + +#include "hardwaremanager.h" +#include "smumgr.h" +#include "atom-types.h" + +struct phm_ppt_v1_clock_voltage_dependency_record { + uint32_t clk; + uint8_t vddInd; + uint16_t vdd_offset; + uint16_t vddc; + uint16_t vddgfx; + uint16_t vddci; + uint16_t mvdd; + uint8_t phases; + uint8_t cks_enable; + uint8_t cks_voffset; +}; + +typedef struct phm_ppt_v1_clock_voltage_dependency_record phm_ppt_v1_clock_voltage_dependency_record; + +struct phm_ppt_v1_clock_voltage_dependency_table { + uint32_t count; /* Number of entries. */ + phm_ppt_v1_clock_voltage_dependency_record entries[1]; /* Dynamically allocate count entries. */ +}; + +typedef struct phm_ppt_v1_clock_voltage_dependency_table phm_ppt_v1_clock_voltage_dependency_table; + + +/* Multimedia Clock Voltage Dependency records and table */ +struct phm_ppt_v1_mm_clock_voltage_dependency_record { + uint32_t dclk; /* UVD D-clock */ + uint32_t vclk; /* UVD V-clock */ + uint32_t eclk; /* VCE clock */ + uint32_t aclk; /* ACP clock */ + uint32_t samclock; /* SAMU clock */ + uint8_t vddcInd; + uint16_t vddgfx_offset; + uint16_t vddc; + uint16_t vddgfx; + uint8_t phases; +}; +typedef struct phm_ppt_v1_mm_clock_voltage_dependency_record phm_ppt_v1_mm_clock_voltage_dependency_record; + +struct phm_ppt_v1_mm_clock_voltage_dependency_table { + uint32_t count; /* Number of entries. */ + phm_ppt_v1_mm_clock_voltage_dependency_record entries[1]; /* Dynamically allocate count entries. */ +}; +typedef struct phm_ppt_v1_mm_clock_voltage_dependency_table phm_ppt_v1_mm_clock_voltage_dependency_table; + +struct phm_ppt_v1_voltage_lookup_record { + uint16_t us_calculated; + uint16_t us_vdd; /* Base voltage */ + uint16_t us_cac_low; + uint16_t us_cac_mid; + uint16_t us_cac_high; +}; +typedef struct phm_ppt_v1_voltage_lookup_record phm_ppt_v1_voltage_lookup_record; + +struct phm_ppt_v1_voltage_lookup_table { + uint32_t count; + phm_ppt_v1_voltage_lookup_record entries[1]; /* Dynamically allocate count entries. */ +}; +typedef struct phm_ppt_v1_voltage_lookup_table phm_ppt_v1_voltage_lookup_table; + +/* PCIE records and Table */ + +struct phm_ppt_v1_pcie_record { + uint8_t gen_speed; + uint8_t lane_width; +}; +typedef struct phm_ppt_v1_pcie_record phm_ppt_v1_pcie_record; + +struct phm_ppt_v1_pcie_table { + uint32_t count; /* Number of entries. */ + phm_ppt_v1_pcie_record entries[1]; /* Dynamically allocate count entries. */ +}; +typedef struct phm_ppt_v1_pcie_table phm_ppt_v1_pcie_table; + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c new file mode 100644 index 000000000000..9af2f5953d13 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c @@ -0,0 +1,704 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/fb.h> + +#include "ppatomctrl.h" +#include "atombios.h" +#include "cgs_common.h" +#include "pp_debug.h" +#define MEM_ID_MASK 0xff000000 +#define MEM_ID_SHIFT 24 +#define CLOCK_RANGE_MASK 0x00ffffff +#define CLOCK_RANGE_SHIFT 0 +#define LOW_NIBBLE_MASK 0xf +#define DATA_EQU_PREV 0 +#define DATA_FROM_TABLE 4 + +union voltage_object_info { + struct _ATOM_VOLTAGE_OBJECT_INFO v1; + struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2; + struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3; +}; + +static int atomctrl_retrieve_ac_timing( + uint8_t index, + ATOM_INIT_REG_BLOCK *reg_block, + pp_atomctrl_mc_reg_table *table) +{ + uint32_t i, j; + uint8_t tmem_id; + ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) + ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize)); + + uint8_t num_ranges = 0; + + while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK && + num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) { + tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT); + + if (index == tmem_id) { + table->mc_reg_table_entry[num_ranges].mclk_max = + (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >> + CLOCK_RANGE_SHIFT); + + for (i = 0, j = 1; i < table->last; i++) { + if ((table->mc_reg_address[i].uc_pre_reg_data & + LOW_NIBBLE_MASK) == DATA_FROM_TABLE) { + table->mc_reg_table_entry[num_ranges].mc_data[i] = + (uint32_t)*((uint32_t *)reg_data + j); + j++; + } else if ((table->mc_reg_address[i].uc_pre_reg_data & + LOW_NIBBLE_MASK) == DATA_EQU_PREV) { + table->mc_reg_table_entry[num_ranges].mc_data[i] = + table->mc_reg_table_entry[num_ranges].mc_data[i-1]; + } + } + num_ranges++; + } + + reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) + ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ; + } + + PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK), + "Invalid VramInfo table.", return -1); + table->num_entries = num_ranges; + + return 0; +} + +/** + * Get memory clock AC timing registers index from VBIOS table + * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1 + * @param reg_block the address ATOM_INIT_REG_BLOCK + * @param table the address of MCRegTable + * @return PP_Result_OK + */ +static int atomctrl_set_mc_reg_address_table( + ATOM_INIT_REG_BLOCK *reg_block, + pp_atomctrl_mc_reg_table *table) +{ + uint8_t i = 0; + uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize)) + / sizeof(ATOM_INIT_REG_INDEX_FORMAT)); + ATOM_INIT_REG_INDEX_FORMAT *format = ®_block->asRegIndexBuf[0]; + + num_entries--; /* subtract 1 data end mark entry */ + + PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + + /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */ + while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) && + (i < num_entries)) { + table->mc_reg_address[i].s1 = + (uint16_t)(le16_to_cpu(format->usRegIndex)); + table->mc_reg_address[i].uc_pre_reg_data = + format->ucPreRegDataLength; + + i++; + format = (ATOM_INIT_REG_INDEX_FORMAT *) + ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT)); + } + + table->last = i; + return 0; +} + + +int atomctrl_initialize_mc_reg_table( + struct pp_hwmgr *hwmgr, + uint8_t module_index, + pp_atomctrl_mc_reg_table *table) +{ + ATOM_VRAM_INFO_HEADER_V2_1 *vram_info; + ATOM_INIT_REG_BLOCK *reg_block; + int result = 0; + u8 frev, crev; + u16 size; + + vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *) + cgs_atom_get_data_table(hwmgr->device, + GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev); + + if (module_index >= vram_info->ucNumOfVRAMModule) { + printk(KERN_ERR "[ powerplay ] Invalid VramInfo table."); + result = -1; + } else if (vram_info->sHeader.ucTableFormatRevision < 2) { + printk(KERN_ERR "[ powerplay ] Invalid VramInfo table."); + result = -1; + } + + if (0 == result) { + reg_block = (ATOM_INIT_REG_BLOCK *) + ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset)); + result = atomctrl_set_mc_reg_address_table(reg_block, table); + } + + if (0 == result) { + result = atomctrl_retrieve_ac_timing(module_index, + reg_block, table); + } + + return result; +} + +/** + * Set DRAM timings based on engine clock and memory clock. + */ +int atomctrl_set_engine_dram_timings_rv770( + struct pp_hwmgr *hwmgr, + uint32_t engine_clock, + uint32_t memory_clock) +{ + SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters; + + /* They are both in 10KHz Units. */ + engine_clock_parameters.ulTargetEngineClock = + (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK; + engine_clock_parameters.ulTargetEngineClock |= + (COMPUTE_ENGINE_PLL_PARAM << 24); + + /* in 10 khz units.*/ + engine_clock_parameters.sReserved.ulClock = + (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK; + return cgs_atom_exec_cmd_table(hwmgr->device, + GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings), + &engine_clock_parameters); +} + +/** + * Private Function to get the PowerPlay Table Address. + * WARNING: The tabled returned by this function is in + * dynamically allocated memory. + * The caller has to release if by calling kfree. + */ +static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device) +{ + int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); + u8 frev, crev; + u16 size; + union voltage_object_info *voltage_info; + + voltage_info = (union voltage_object_info *) + cgs_atom_get_data_table(device, index, + &size, &frev, &crev); + + if (voltage_info != NULL) + return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3); + else + return NULL; +} + +static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3( + const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table, + uint8_t voltage_type, uint8_t voltage_mode) +{ + unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize); + unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]); + uint8_t *start = (uint8_t *)voltage_object_info_table; + + while (offset < size) { + const ATOM_VOLTAGE_OBJECT_V3 *voltage_object = + (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset); + + if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType && + voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode) + return voltage_object; + + offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize); + } + + return NULL; +} + +/** atomctrl_get_memory_pll_dividers_si(). + * + * @param hwmgr input parameter: pointer to HwMgr + * @param clock_value input parameter: memory clock + * @param dividers output parameter: memory PLL dividers + * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode + */ +int atomctrl_get_memory_pll_dividers_si( + struct pp_hwmgr *hwmgr, + uint32_t clock_value, + pp_atomctrl_memory_clock_param *mpll_param, + bool strobe_mode) +{ + COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters; + int result; + + mpll_parameters.ulClock = (uint32_t) clock_value; + mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0); + + result = cgs_atom_exec_cmd_table + (hwmgr->device, + GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam), + &mpll_parameters); + + if (0 == result) { + mpll_param->mpll_fb_divider.clk_frac = + mpll_parameters.ulFbDiv.usFbDivFrac; + mpll_param->mpll_fb_divider.cl_kf = + mpll_parameters.ulFbDiv.usFbDiv; + mpll_param->mpll_post_divider = + (uint32_t)mpll_parameters.ucPostDiv; + mpll_param->vco_mode = + (uint32_t)(mpll_parameters.ucPllCntlFlag & + MPLL_CNTL_FLAG_VCO_MODE_MASK); + mpll_param->yclk_sel = + (uint32_t)((mpll_parameters.ucPllCntlFlag & + MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0); + mpll_param->qdr = + (uint32_t)((mpll_parameters.ucPllCntlFlag & + MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0); + mpll_param->half_rate = + (uint32_t)((mpll_parameters.ucPllCntlFlag & + MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0); + mpll_param->dll_speed = + (uint32_t)(mpll_parameters.ucDllSpeed); + mpll_param->bw_ctrl = + (uint32_t)(mpll_parameters.ucBWCntl); + } + + return result; +} + +int atomctrl_get_engine_pll_dividers_vi( + struct pp_hwmgr *hwmgr, + uint32_t clock_value, + pp_atomctrl_clock_dividers_vi *dividers) +{ + COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters; + int result; + + pll_patameters.ulClock.ulClock = clock_value; + pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK; + + result = cgs_atom_exec_cmd_table + (hwmgr->device, + GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), + &pll_patameters); + + if (0 == result) { + dividers->pll_post_divider = + pll_patameters.ulClock.ucPostDiv; + dividers->real_clock = + pll_patameters.ulClock.ulClock; + + dividers->ul_fb_div.ul_fb_div_frac = + pll_patameters.ulFbDiv.usFbDivFrac; + dividers->ul_fb_div.ul_fb_div = + pll_patameters.ulFbDiv.usFbDiv; + + dividers->uc_pll_ref_div = + pll_patameters.ucPllRefDiv; + dividers->uc_pll_post_div = + pll_patameters.ucPllPostDiv; + dividers->uc_pll_cntl_flag = + pll_patameters.ucPllCntlFlag; + } + + return result; +} + +int atomctrl_get_dfs_pll_dividers_vi( + struct pp_hwmgr *hwmgr, + uint32_t clock_value, + pp_atomctrl_clock_dividers_vi *dividers) +{ + COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters; + int result; + + pll_patameters.ulClock.ulClock = clock_value; + pll_patameters.ulClock.ucPostDiv = + COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK; + + result = cgs_atom_exec_cmd_table + (hwmgr->device, + GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), + &pll_patameters); + + if (0 == result) { + dividers->pll_post_divider = + pll_patameters.ulClock.ucPostDiv; + dividers->real_clock = + pll_patameters.ulClock.ulClock; + + dividers->ul_fb_div.ul_fb_div_frac = + pll_patameters.ulFbDiv.usFbDivFrac; + dividers->ul_fb_div.ul_fb_div = + pll_patameters.ulFbDiv.usFbDiv; + + dividers->uc_pll_ref_div = + pll_patameters.ucPllRefDiv; + dividers->uc_pll_post_div = + pll_patameters.ucPllPostDiv; + dividers->uc_pll_cntl_flag = + pll_patameters.ucPllCntlFlag; + } + + return result; +} + +/** + * Get the reference clock in 10KHz + */ +uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr) +{ + ATOM_FIRMWARE_INFO *fw_info; + u8 frev, crev; + u16 size; + uint32_t clock; + + fw_info = (ATOM_FIRMWARE_INFO *) + cgs_atom_get_data_table(hwmgr->device, + GetIndexIntoMasterTable(DATA, FirmwareInfo), + &size, &frev, &crev); + + if (fw_info == NULL) + clock = 2700; + else + clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock)); + + return clock; +} + +/** + * Returns 0 if the given voltage type is controlled by GPIO pins. + * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, + * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ. + * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE + */ +bool atomctrl_is_voltage_controled_by_gpio_v3( + struct pp_hwmgr *hwmgr, + uint8_t voltage_type, + uint8_t voltage_mode) +{ + ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info = + (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device); + bool ret; + + PP_ASSERT_WITH_CODE((NULL != voltage_info), + "Could not find Voltage Table in BIOS.", return -1;); + + ret = (NULL != atomctrl_lookup_voltage_type_v3 + (voltage_info, voltage_type, voltage_mode)) ? 0 : 1; + + return ret; +} + +int atomctrl_get_voltage_table_v3( + struct pp_hwmgr *hwmgr, + uint8_t voltage_type, + uint8_t voltage_mode, + pp_atomctrl_voltage_table *voltage_table) +{ + ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info = + (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device); + const ATOM_VOLTAGE_OBJECT_V3 *voltage_object; + unsigned int i; + + PP_ASSERT_WITH_CODE((NULL != voltage_info), + "Could not find Voltage Table in BIOS.", return -1;); + + voltage_object = atomctrl_lookup_voltage_type_v3 + (voltage_info, voltage_type, voltage_mode); + + if (voltage_object == NULL) + return -1; + + PP_ASSERT_WITH_CODE( + (voltage_object->asGpioVoltageObj.ucGpioEntryNum <= + PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES), + "Too many voltage entries!", + return -1; + ); + + for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) { + voltage_table->entries[i].value = + voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue; + voltage_table->entries[i].smio_low = + voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId; + } + + voltage_table->mask_low = + voltage_object->asGpioVoltageObj.ulGpioMaskVal; + voltage_table->count = + voltage_object->asGpioVoltageObj.ucGpioEntryNum; + voltage_table->phase_delay = + voltage_object->asGpioVoltageObj.ucPhaseDelay; + + return 0; +} + +static bool atomctrl_lookup_gpio_pin( + ATOM_GPIO_PIN_LUT * gpio_lookup_table, + const uint32_t pinId, + pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment) +{ + unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize); + unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]); + uint8_t *start = (uint8_t *)gpio_lookup_table; + + while (offset < size) { + const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment = + (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset); + + if (pinId == pin_assignment->ucGPIO_ID) { + gpio_pin_assignment->uc_gpio_pin_bit_shift = + pin_assignment->ucGpioPinBitShift; + gpio_pin_assignment->us_gpio_pin_aindex = + le16_to_cpu(pin_assignment->usGpioPin_AIndex); + return 0; + } + + offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1; + } + + return 1; +} + +/** + * Private Function to get the PowerPlay Table Address. + * WARNING: The tabled returned by this function is in + * dynamically allocated memory. + * The caller has to release if by calling kfree. + */ +static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device) +{ + u8 frev, crev; + u16 size; + void *table_address; + + table_address = (ATOM_GPIO_PIN_LUT *) + cgs_atom_get_data_table(device, + GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT), + &size, &frev, &crev); + + PP_ASSERT_WITH_CODE((NULL != table_address), + "Error retrieving BIOS Table Address!", return NULL;); + + return (ATOM_GPIO_PIN_LUT *)table_address; +} + +/** + * Returns 1 if the given pin id find in lookup table. + */ +bool atomctrl_get_pp_assign_pin( + struct pp_hwmgr *hwmgr, + const uint32_t pinId, + pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment) +{ + bool bRet = 0; + ATOM_GPIO_PIN_LUT *gpio_lookup_table = + get_gpio_lookup_table(hwmgr->device); + + PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table), + "Could not find GPIO lookup Table in BIOS.", return -1); + + bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId, + gpio_pin_assignment); + + return bRet; +} + +/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table. + * @param hwmgr input: pointer to hwManager + * @param voltage_type input: type of EVV voltage VDDC or VDDGFX + * @param sclk input: in 10Khz unit. DPM state SCLK frequency + * which is define in PPTable SCLK/VDDC dependence + * table associated with this virtual_voltage_Id + * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08 + * @param voltage output: real voltage level in unit of mv + */ +int atomctrl_get_voltage_evv_on_sclk( + struct pp_hwmgr *hwmgr, + uint8_t voltage_type, + uint32_t sclk, uint16_t virtual_voltage_Id, + uint16_t *voltage) +{ + int result; + GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space; + + get_voltage_info_param_space.ucVoltageType = + voltage_type; + get_voltage_info_param_space.ucVoltageMode = + ATOM_GET_VOLTAGE_EVV_VOLTAGE; + get_voltage_info_param_space.usVoltageLevel = + virtual_voltage_Id; + get_voltage_info_param_space.ulSCLKFreq = + sclk; + + result = cgs_atom_exec_cmd_table(hwmgr->device, + GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), + &get_voltage_info_param_space); + + if (0 != result) + return result; + + *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *) + (&get_voltage_info_param_space))->usVoltageLevel; + + return result; +} + +/** + * Get the mpll reference clock in 10KHz + */ +uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr) +{ + ATOM_COMMON_TABLE_HEADER *fw_info; + uint32_t clock; + u8 frev, crev; + u16 size; + + fw_info = (ATOM_COMMON_TABLE_HEADER *) + cgs_atom_get_data_table(hwmgr->device, + GetIndexIntoMasterTable(DATA, FirmwareInfo), + &size, &frev, &crev); + + if (fw_info == NULL) + clock = 2700; + else { + if ((fw_info->ucTableFormatRevision == 2) && + (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) { + ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 = + (ATOM_FIRMWARE_INFO_V2_1 *)fw_info; + clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock)); + } else { + ATOM_FIRMWARE_INFO *fwInfo_0_0 = + (ATOM_FIRMWARE_INFO *)fw_info; + clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock)); + } + } + + return clock; +} + +/** + * Get the asic internal spread spectrum table + */ +static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device) +{ + ATOM_ASIC_INTERNAL_SS_INFO *table = NULL; + u8 frev, crev; + u16 size; + + table = (ATOM_ASIC_INTERNAL_SS_INFO *) + cgs_atom_get_data_table(device, + GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info), + &size, &frev, &crev); + + return table; +} + +/** + * Get the asic internal spread spectrum assignment + */ +static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr, + const uint8_t clockSource, + const uint32_t clockSpeed, + pp_atomctrl_internal_ss_info *ssEntry) +{ + ATOM_ASIC_INTERNAL_SS_INFO *table; + ATOM_ASIC_SS_ASSIGNMENT *ssInfo; + int entry_found = 0; + + memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info)); + + table = asic_internal_ss_get_ss_table(hwmgr->device); + + if (NULL == table) + return -1; + + ssInfo = &table->asSpreadSpectrum[0]; + + while (((uint8_t *)ssInfo - (uint8_t *)table) < + le16_to_cpu(table->sHeader.usStructureSize)) { + if ((clockSource == ssInfo->ucClockIndication) && + ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) { + entry_found = 1; + break; + } + + ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo + + sizeof(ATOM_ASIC_SS_ASSIGNMENT)); + } + + if (entry_found) { + ssEntry->speed_spectrum_percentage = + ssInfo->usSpreadSpectrumPercentage; + ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz; + + if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) && + (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) || + (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) { + ssEntry->speed_spectrum_rate /= 100; + } + + switch (ssInfo->ucSpreadSpectrumMode) { + case 0: + ssEntry->speed_spectrum_mode = + pp_atomctrl_spread_spectrum_mode_down; + break; + case 1: + ssEntry->speed_spectrum_mode = + pp_atomctrl_spread_spectrum_mode_center; + break; + default: + ssEntry->speed_spectrum_mode = + pp_atomctrl_spread_spectrum_mode_down; + break; + } + } + + return entry_found ? 0 : 1; +} + +/** + * Get the memory clock spread spectrum info + */ +int atomctrl_get_memory_clock_spread_spectrum( + struct pp_hwmgr *hwmgr, + const uint32_t memory_clock, + pp_atomctrl_internal_ss_info *ssInfo) +{ + return asic_internal_ss_get_ss_asignment(hwmgr, + ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo); +} +/** + * Get the engine clock spread spectrum info + */ +int atomctrl_get_engine_clock_spread_spectrum( + struct pp_hwmgr *hwmgr, + const uint32_t engine_clock, + pp_atomctrl_internal_ss_info *ssInfo) +{ + return asic_internal_ss_get_ss_asignment(hwmgr, + ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo); +} + + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h new file mode 100644 index 000000000000..23da436e540d --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h @@ -0,0 +1,237 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#ifndef PP_ATOMVOLTAGECTRL_H +#define PP_ATOMVOLTAGECTRL_H + +#include "hwmgr.h" + +#define MEM_TYPE_GDDR5 0x50 +#define MEM_TYPE_GDDR4 0x40 +#define MEM_TYPE_GDDR3 0x30 +#define MEM_TYPE_DDR2 0x20 +#define MEM_TYPE_GDDR1 0x10 +#define MEM_TYPE_DDR3 0xb0 +#define MEM_TYPE_MASK 0xF0 + + +/* As returned from PowerConnectorDetectionTable. */ +#define PP_ATOM_POWER_BUDGET_DISABLE_OVERDRIVE 0x80 +#define PP_ATOM_POWER_BUDGET_SHOW_WARNING 0x40 +#define PP_ATOM_POWER_BUDGET_SHOW_WAIVER 0x20 +#define PP_ATOM_POWER_POWER_BUDGET_BEHAVIOUR 0x0F + +/* New functions for Evergreen and beyond. */ +#define PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES 32 + +struct pp_atomctrl_clock_dividers { + uint32_t pll_post_divider; + uint32_t pll_feedback_divider; + uint32_t pll_ref_divider; + bool enable_post_divider; +}; + +typedef struct pp_atomctrl_clock_dividers pp_atomctrl_clock_dividers; + +union pp_atomctrl_tcipll_fb_divider { + struct { + uint32_t ul_fb_div_frac : 14; + uint32_t ul_fb_div : 12; + uint32_t un_used : 6; + }; + uint32_t ul_fb_divider; +}; + +typedef union pp_atomctrl_tcipll_fb_divider pp_atomctrl_tcipll_fb_divider; + +struct pp_atomctrl_clock_dividers_rv730 { + uint32_t pll_post_divider; + pp_atomctrl_tcipll_fb_divider mpll_feedback_divider; + uint32_t pll_ref_divider; + bool enable_post_divider; + bool enable_dithen; + uint32_t vco_mode; +}; +typedef struct pp_atomctrl_clock_dividers_rv730 pp_atomctrl_clock_dividers_rv730; + + +struct pp_atomctrl_clock_dividers_kong { + uint32_t pll_post_divider; + uint32_t real_clock; +}; +typedef struct pp_atomctrl_clock_dividers_kong pp_atomctrl_clock_dividers_kong; + +struct pp_atomctrl_clock_dividers_ci { + uint32_t pll_post_divider; /* post divider value */ + uint32_t real_clock; + pp_atomctrl_tcipll_fb_divider ul_fb_div; /* Output Parameter: PLL FB divider */ + uint8_t uc_pll_ref_div; /* Output Parameter: PLL ref divider */ + uint8_t uc_pll_post_div; /* Output Parameter: PLL post divider */ + uint8_t uc_pll_cntl_flag; /*Output Flags: control flag */ +}; +typedef struct pp_atomctrl_clock_dividers_ci pp_atomctrl_clock_dividers_ci; + +struct pp_atomctrl_clock_dividers_vi { + uint32_t pll_post_divider; /* post divider value */ + uint32_t real_clock; + pp_atomctrl_tcipll_fb_divider ul_fb_div; /*Output Parameter: PLL FB divider */ + uint8_t uc_pll_ref_div; /*Output Parameter: PLL ref divider */ + uint8_t uc_pll_post_div; /*Output Parameter: PLL post divider */ + uint8_t uc_pll_cntl_flag; /*Output Flags: control flag */ +}; +typedef struct pp_atomctrl_clock_dividers_vi pp_atomctrl_clock_dividers_vi; + +union pp_atomctrl_s_mpll_fb_divider { + struct { + uint32_t cl_kf : 12; + uint32_t clk_frac : 12; + uint32_t un_used : 8; + }; + uint32_t ul_fb_divider; +}; +typedef union pp_atomctrl_s_mpll_fb_divider pp_atomctrl_s_mpll_fb_divider; + +enum pp_atomctrl_spread_spectrum_mode { + pp_atomctrl_spread_spectrum_mode_down = 0, + pp_atomctrl_spread_spectrum_mode_center +}; +typedef enum pp_atomctrl_spread_spectrum_mode pp_atomctrl_spread_spectrum_mode; + +struct pp_atomctrl_memory_clock_param { + pp_atomctrl_s_mpll_fb_divider mpll_fb_divider; + uint32_t mpll_post_divider; + uint32_t bw_ctrl; + uint32_t dll_speed; + uint32_t vco_mode; + uint32_t yclk_sel; + uint32_t qdr; + uint32_t half_rate; +}; +typedef struct pp_atomctrl_memory_clock_param pp_atomctrl_memory_clock_param; + +struct pp_atomctrl_internal_ss_info { + uint32_t speed_spectrum_percentage; /* in 1/100 percentage */ + uint32_t speed_spectrum_rate; /* in KHz */ + pp_atomctrl_spread_spectrum_mode speed_spectrum_mode; +}; +typedef struct pp_atomctrl_internal_ss_info pp_atomctrl_internal_ss_info; + +#ifndef NUMBER_OF_M3ARB_PARAMS +#define NUMBER_OF_M3ARB_PARAMS 3 +#endif + +#ifndef NUMBER_OF_M3ARB_PARAM_SETS +#define NUMBER_OF_M3ARB_PARAM_SETS 10 +#endif + +struct pp_atomctrl_kong_system_info { + uint32_t ul_bootup_uma_clock; /* in 10kHz unit */ + uint16_t us_max_nb_voltage; /* high NB voltage, calculated using current VDDNB (D24F2xDC) and VDDNB offset fuse; */ + uint16_t us_min_nb_voltage; /* low NB voltage, calculated using current VDDNB (D24F2xDC) and VDDNB offset fuse; */ + uint16_t us_bootup_nb_voltage; /* boot up NB voltage */ + uint8_t uc_htc_tmp_lmt; /* bit [22:16] of D24F3x64 Hardware Thermal Control (HTC) Register, may not be needed, TBD */ + uint8_t uc_tj_offset; /* bit [28:22] of D24F3xE4 Thermtrip Status Register,may not be needed, TBD */ + /* 0: default 1: uvd 2: fs-3d */ + uint32_t ul_csr_m3_srb_cntl[NUMBER_OF_M3ARB_PARAM_SETS][NUMBER_OF_M3ARB_PARAMS];/* arrays with values for CSR M3 arbiter for default */ +}; +typedef struct pp_atomctrl_kong_system_info pp_atomctrl_kong_system_info; + +struct pp_atomctrl_memory_info { + uint8_t memory_vendor; + uint8_t memory_type; +}; +typedef struct pp_atomctrl_memory_info pp_atomctrl_memory_info; + +#define MAX_AC_TIMING_ENTRIES 16 + +struct pp_atomctrl_memory_clock_range_table { + uint8_t num_entries; + uint8_t rsv[3]; + + uint32_t mclk[MAX_AC_TIMING_ENTRIES]; +}; +typedef struct pp_atomctrl_memory_clock_range_table pp_atomctrl_memory_clock_range_table; + +struct pp_atomctrl_voltage_table_entry { + uint16_t value; + uint32_t smio_low; +}; + +typedef struct pp_atomctrl_voltage_table_entry pp_atomctrl_voltage_table_entry; + +struct pp_atomctrl_voltage_table { + uint32_t count; + uint32_t mask_low; + uint32_t phase_delay; /* Used for ATOM_GPIO_VOLTAGE_OBJECT_V3 and later */ + pp_atomctrl_voltage_table_entry entries[PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES]; +}; + +typedef struct pp_atomctrl_voltage_table pp_atomctrl_voltage_table; + +#define VBIOS_MC_REGISTER_ARRAY_SIZE 32 +#define VBIOS_MAX_AC_TIMING_ENTRIES 20 + +struct pp_atomctrl_mc_reg_entry { + uint32_t mclk_max; + uint32_t mc_data[VBIOS_MC_REGISTER_ARRAY_SIZE]; +}; +typedef struct pp_atomctrl_mc_reg_entry pp_atomctrl_mc_reg_entry; + +struct pp_atomctrl_mc_register_address { + uint16_t s1; + uint8_t uc_pre_reg_data; +}; + +typedef struct pp_atomctrl_mc_register_address pp_atomctrl_mc_register_address; + +struct pp_atomctrl_mc_reg_table { + uint8_t last; /* number of registers */ + uint8_t num_entries; /* number of AC timing entries */ + pp_atomctrl_mc_reg_entry mc_reg_table_entry[VBIOS_MAX_AC_TIMING_ENTRIES]; + pp_atomctrl_mc_register_address mc_reg_address[VBIOS_MC_REGISTER_ARRAY_SIZE]; +}; +typedef struct pp_atomctrl_mc_reg_table pp_atomctrl_mc_reg_table; + +struct pp_atomctrl_gpio_pin_assignment { + uint16_t us_gpio_pin_aindex; + uint8_t uc_gpio_pin_bit_shift; +}; +typedef struct pp_atomctrl_gpio_pin_assignment pp_atomctrl_gpio_pin_assignment; + +extern bool atomctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr, const uint32_t pinId, pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment); +extern int atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage); +extern uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr); +extern int atomctrl_get_memory_clock_spread_spectrum(struct pp_hwmgr *hwmgr, const uint32_t memory_clock, pp_atomctrl_internal_ss_info *ssInfo); +extern int atomctrl_get_engine_clock_spread_spectrum(struct pp_hwmgr *hwmgr, const uint32_t engine_clock, pp_atomctrl_internal_ss_info *ssInfo); +extern int atomctrl_initialize_mc_reg_table(struct pp_hwmgr *hwmgr, uint8_t module_index, pp_atomctrl_mc_reg_table *table); +extern int atomctrl_set_engine_dram_timings_rv770(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock); +extern uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr); +extern int atomctrl_get_memory_pll_dividers_si(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param, bool strobe_mode); +extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers); +extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers); +extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode); +extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table); + + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h new file mode 100644 index 000000000000..7269ac1cd8b4 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h @@ -0,0 +1,42 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#ifndef PP_INTERRUPT_H +#define PP_INTERRUPT_H + +/** + * The type of the interrupt callback functions in PowerPlay + */ +typedef void (*pp_interrupt_callback) (void *context, uint32_t ul_context_data); + +/** + * Event Manager action chain list information + */ +struct pp_interrupt_registration_info { + pp_interrupt_callback callback; /* Pointer to callback function */ + void *context; /* Pointer to callback function context */ + uint32_t *interrupt_enable_id; /* Registered interrupt id */ +}; + +typedef struct pp_interrupt_registration_info pp_interrupt_registration_info; + +#endif diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c new file mode 100644 index 000000000000..186496a34cbe --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c @@ -0,0 +1,64 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#include <linux/types.h> +#include "atom-types.h" +#include "atombios.h" +#include "pppcielanes.h" + +/** \file + * Functions related to PCIe lane changes. + */ + +/* For converting from number of lanes to lane bits. */ +static const unsigned char pp_r600_encode_lanes[] = { + 0, /* 0 Not Supported */ + 1, /* 1 Lane */ + 2, /* 2 Lanes */ + 0, /* 3 Not Supported */ + 3, /* 4 Lanes */ + 0, /* 5 Not Supported */ + 0, /* 6 Not Supported */ + 0, /* 7 Not Supported */ + 4, /* 8 Lanes */ + 0, /* 9 Not Supported */ + 0, /* 10 Not Supported */ + 0, /* 11 Not Supported */ + 5, /* 12 Lanes (Not actually supported) */ + 0, /* 13 Not Supported */ + 0, /* 14 Not Supported */ + 0, /* 15 Not Supported */ + 6 /* 16 Lanes */ +}; + +static const unsigned char pp_r600_decoded_lanes[8] = { 16, 1, 2, 4, 8, 12, 16, }; + +uint8_t encode_pcie_lane_width(uint32_t num_lanes) +{ + return pp_r600_encode_lanes[num_lanes]; +} + +uint8_t decode_pcie_lane_width(uint32_t num_lanes) +{ + return pp_r600_decoded_lanes[num_lanes]; +} diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h new file mode 100644 index 000000000000..70b163b35570 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h @@ -0,0 +1,31 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#ifndef PP_PCIELANES_H +#define PP_PCIELANES_H + +extern uint8_t encode_pcie_lane_width(uint32_t num_lanes); +extern uint8_t decode_pcie_lane_width(uint32_t num_lanes); + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h new file mode 100644 index 000000000000..080d69d77f04 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h @@ -0,0 +1,107 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#ifndef TONGA_DYN_DEFAULTS_H +#define TONGA_DYN_DEFAULTS_H + + +/** \file + * Volcanic Islands Dynamic default parameters. + */ + +enum TONGAdpm_TrendDetection { + TONGAdpm_TrendDetection_AUTO, + TONGAdpm_TrendDetection_UP, + TONGAdpm_TrendDetection_DOWN +}; +typedef enum TONGAdpm_TrendDetection TONGAdpm_TrendDetection; + +/* Bit vector representing same fields as hardware register. */ +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0 0x3FFFC102 /* CP_Gfx_busy */ +/* HDP_busy */ +/* IH_busy */ +/* DRM_busy */ +/* DRMDMA_busy */ +/* UVD_busy */ +/* VCE_busy */ +/* ACP_busy */ +/* SAMU_busy */ +/* AVP_busy */ +/* SDMA enabled */ +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1 0x000400 /* FE_Gfx_busy - Intended for primary usage. Rest are for flexibility. */ +/* SH_Gfx_busy */ +/* RB_Gfx_busy */ +/* VCE_busy */ + +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2 0xC00080 /* SH_Gfx_busy - Intended for primary usage. Rest are for flexibility. */ +/* FE_Gfx_busy */ +/* RB_Gfx_busy */ +/* ACP_busy */ + +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3 0xC00200 /* RB_Gfx_busy - Intended for primary usage. Rest are for flexibility. */ +/* FE_Gfx_busy */ +/* SH_Gfx_busy */ +/* UVD_busy */ + +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4 0xC01680 /* UVD_busy */ +/* VCE_busy */ +/* ACP_busy */ +/* SAMU_busy */ + +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5 0xC00033 /* GFX, HDP, DRMDMA */ +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6 0xC00033 /* GFX, HDP, DRMDMA */ +#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7 0x3FFFC000 /* GFX, HDP, DRMDMA */ + + +/* thermal protection counter (units).*/ +#define PPTONGA_THERMALPROTECTCOUNTER_DFLT 0x200 /* ~19us */ + +/* static screen threshold unit */ +#define PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT 0 + +/* static screen threshold */ +#define PPTONGA_STATICSCREENTHRESHOLD_DFLT 0x00C8 + +/* gfx idle clock stop threshold */ +#define PPTONGA_GFXIDLECLOCKSTOPTHRESHOLD_DFLT 0x200 /* ~19us with static screen threshold unit of 0 */ + +/* Fixed reference divider to use when building baby stepping tables. */ +#define PPTONGA_REFERENCEDIVIDER_DFLT 4 + +/* + * ULV voltage change delay time + * Used to be delay_vreg in N.I. split for S.I. + * Using N.I. delay_vreg value as default + * ReferenceClock = 2700 + * VoltageResponseTime = 1000 + * VDDCDelayTime = (VoltageResponseTime * ReferenceClock) / 1600 = 1687 + */ + +#define PPTONGA_ULVVOLTAGECHANGEDELAY_DFLT 1687 + +#define PPTONGA_CGULVPARAMETER_DFLT 0x00040035 +#define PPTONGA_CGULVCONTROL_DFLT 0x00007450 +#define PPTONGA_TARGETACTIVITY_DFLT 30 /*30% */ +#define PPTONGA_MCLK_TARGETACTIVITY_DFLT 10 /*10% */ + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c new file mode 100644 index 000000000000..0feb1a8c105e --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c @@ -0,0 +1,5714 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/fb.h> +#include "linux/delay.h" +#include "pp_acpi.h" +#include "hwmgr.h" +#include <atombios.h> +#include "tonga_hwmgr.h" +#include "pptable.h" +#include "processpptables.h" +#include "tonga_processpptables.h" +#include "tonga_pptable.h" +#include "pp_debug.h" +#include "tonga_ppsmc.h" +#include "cgs_common.h" +#include "pppcielanes.h" +#include "tonga_dyn_defaults.h" +#include "smumgr.h" +#include "tonga_smumgr.h" + +#include "smu/smu_7_1_2_d.h" +#include "smu/smu_7_1_2_sh_mask.h" + +#include "gmc/gmc_8_1_d.h" +#include "gmc/gmc_8_1_sh_mask.h" + +#include "bif/bif_5_0_d.h" +#include "bif/bif_5_0_sh_mask.h" + +#define MC_CG_ARB_FREQ_F0 0x0a +#define MC_CG_ARB_FREQ_F1 0x0b +#define MC_CG_ARB_FREQ_F2 0x0c +#define MC_CG_ARB_FREQ_F3 0x0d + +#define MC_CG_SEQ_DRAMCONF_S0 0x05 +#define MC_CG_SEQ_DRAMCONF_S1 0x06 +#define MC_CG_SEQ_YCLK_SUSPEND 0x04 +#define MC_CG_SEQ_YCLK_RESUME 0x0a + +#define PCIE_BUS_CLK 10000 +#define TCLK (PCIE_BUS_CLK / 10) + +#define SMC_RAM_END 0x40000 +#define SMC_CG_IND_START 0xc0030000 +#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/ + +#define VOLTAGE_SCALE 4 +#define VOLTAGE_VID_OFFSET_SCALE1 625 +#define VOLTAGE_VID_OFFSET_SCALE2 100 + +#define VDDC_VDDCI_DELTA 200 +#define VDDC_VDDGFX_DELTA 300 + +#define MC_SEQ_MISC0_GDDR5_SHIFT 28 +#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 +#define MC_SEQ_MISC0_GDDR5_VALUE 5 + +typedef uint32_t PECI_RegistryValue; + +/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ +uint16_t PP_ClockStretcherLookupTable[2][4] = { + {600, 1050, 3, 0}, + {600, 1050, 6, 1} }; + +/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */ +uint32_t PP_ClockStretcherDDTTable[2][4][4] = { + { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, + { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; + +/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */ +uint8_t PP_ClockStretchAmountConversion[2][6] = { + {0, 1, 3, 2, 4, 5}, + {0, 2, 4, 5, 6, 5} }; + +/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ +enum DPM_EVENT_SRC { + DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */ + DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */ + DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */ + DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */ + DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */ +}; +typedef enum DPM_EVENT_SRC DPM_EVENT_SRC; + +enum DISPLAY_GAP { + DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */ + DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */ + DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. (Note that HW may deassert WM in VBI depending on DC_STUTTER_CNTL.) */ + DISPLAY_GAP_IGNORE = 3 /* Do not wait. */ +}; +typedef enum DISPLAY_GAP DISPLAY_GAP; + +const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic); + +struct tonga_power_state *cast_phw_tonga_power_state( + struct pp_hw_power_state *hw_ps) +{ + PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic), + "Invalid Powerstate Type!", + return NULL;); + + return (struct tonga_power_state *)hw_ps; +} + +const struct tonga_power_state *cast_const_phw_tonga_power_state( + const struct pp_hw_power_state *hw_ps) +{ + PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic), + "Invalid Powerstate Type!", + return NULL;); + + return (const struct tonga_power_state *)hw_ps; +} + +int tonga_add_voltage(struct pp_hwmgr *hwmgr, + phm_ppt_v1_voltage_lookup_table *look_up_table, + phm_ppt_v1_voltage_lookup_record *record) +{ + uint32_t i; + PP_ASSERT_WITH_CODE((NULL != look_up_table), + "Lookup Table empty.", return -1;); + PP_ASSERT_WITH_CODE((0 != look_up_table->count), + "Lookup Table empty.", return -1;); + PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count), + "Lookup Table is full.", return -1;); + + /* This is to avoid entering duplicate calculated records. */ + for (i = 0; i < look_up_table->count; i++) { + if (look_up_table->entries[i].us_vdd == record->us_vdd) { + if (look_up_table->entries[i].us_calculated == 1) + return 0; + else + break; + } + } + + look_up_table->entries[i].us_calculated = 1; + look_up_table->entries[i].us_vdd = record->us_vdd; + look_up_table->entries[i].us_cac_low = record->us_cac_low; + look_up_table->entries[i].us_cac_mid = record->us_cac_mid; + look_up_table->entries[i].us_cac_high = record->us_cac_high; + /* Only increment the count when we're appending, not replacing duplicate entry. */ + if (i == look_up_table->count) + look_up_table->count++; + + return 0; +} + +uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table, + uint32_t voltage) +{ + uint8_t count = (uint8_t) (voltage_table->count); + uint8_t i = 0; + + PP_ASSERT_WITH_CODE((NULL != voltage_table), + "Voltage Table empty.", return 0;); + PP_ASSERT_WITH_CODE((0 != count), + "Voltage Table empty.", return 0;); + + for (i = 0; i < count; i++) { + /* find first voltage bigger than requested */ + if (voltage_table->entries[i].value >= voltage) + return i; + } + + /* voltage is bigger than max voltage in the table */ + return i - 1; +} + +/** + * @brief PhwTonga_GetVoltageOrder + * Returns index of requested voltage record in lookup(table) + * @param hwmgr - pointer to hardware manager + * @param lookupTable - lookup list to search in + * @param voltage - voltage to look for + * @return 0 on success + */ +uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table, + uint16_t voltage) +{ + uint8_t count = (uint8_t) (look_up_table->count); + uint8_t i; + + PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;); + PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;); + + for (i = 0; i < count; i++) { + /* find first voltage equal or bigger than requested */ + if (look_up_table->entries[i].us_vdd >= voltage) + return i; + } + + /* voltage is bigger than max voltage in the table */ + return i-1; +} + +bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) +{ + /* + * We return the status of Voltage Control instead of checking SCLK/MCLK DPM + * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM, + * whereas voltage control is a fundemental change that will not be disabled + */ + + return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, + FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0); +} + +/** + * Re-generate the DPM level mask value + * @param hwmgr the address of the hardware manager + */ +static uint32_t tonga_get_dpm_level_enable_mask_value( + struct tonga_single_dpm_table * dpm_table) +{ + uint32_t i; + uint32_t mask_value = 0; + + for (i = dpm_table->count; i > 0; i--) { + mask_value = mask_value << 1; + + if (dpm_table->dpm_levels[i-1].enabled) + mask_value |= 0x1; + else + mask_value &= 0xFFFFFFFE; + } + return mask_value; +} + +/** + * Retrieve DPM default values from registry (if available) + * + * @param hwmgr the address of the powerplay hardware manager. + */ +void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + phw_tonga_ulv_parm *ulv = &(data->ulv); + uint32_t tmp; + + ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT; + data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0; + data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1; + data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2; + data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3; + data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4; + data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5; + data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6; + data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7; + + data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT; + data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT; + + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ABM); + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_NonABMSupportInPPLib); + + tmp = 0; + if (tmp == 0) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DynamicACTiming); + + tmp = 0; + if (0 != tmp) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DisableMemoryTransition); + + data->mclk_strobe_mode_threshold = 40000; + data->mclk_stutter_mode_threshold = 30000; + data->mclk_edc_enable_threshold = 40000; + data->mclk_edc_wr_enable_threshold = 40000; + + tmp = 0; + if (tmp != 0) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DisableMCLS); + + data->pcie_gen_performance.max = PP_PCIEGen1; + data->pcie_gen_performance.min = PP_PCIEGen3; + data->pcie_gen_power_saving.max = PP_PCIEGen1; + data->pcie_gen_power_saving.min = PP_PCIEGen3; + + data->pcie_lane_performance.max = 0; + data->pcie_lane_performance.min = 16; + data->pcie_lane_power_saving.max = 0; + data->pcie_lane_power_saving.min = 16; + + tmp = 0; + + if (tmp) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_SclkThrottleLowNotification); + + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DynamicUVDState); + +} + +int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + int result = 0; + uint32_t low_sclk_interrupt_threshold = 0; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_SclkThrottleLowNotification) + && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) { + data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold; + low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; + + CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); + + result = tonga_copy_bytes_to_smc( + hwmgr->smumgr, + data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, + LowSclkInterruptThreshold), + (uint8_t *)&low_sclk_interrupt_threshold, + sizeof(uint32_t), + data->sram_end + ); + } + + return result; +} + +/** + * Find SCLK value that is associated with specified virtual_voltage_Id. + * + * @param hwmgr the address of the powerplay hardware manager. + * @param virtual_voltage_Id voltageId to look for. + * @param sclk output value . + * @return always 0 if success and 2 if association not found + */ +static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, + phm_ppt_v1_voltage_lookup_table *lookup_table, + uint16_t virtual_voltage_id, uint32_t *sclk) +{ + uint8_t entryId; + uint8_t voltageId; + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1); + + /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ + for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) { + voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd; + if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id) + break; + } + + PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count, + "Can't find requested voltage id in vdd_dep_on_sclk table!", + return -1; + ); + + *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk; + + return 0; +} + +/** + * Get Leakage VDDC based on leakage ID. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return 2 if vddgfx returned is greater than 2V or if BIOS + */ +int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; + uint16_t virtual_voltage_id; + uint16_t vddc = 0; + uint16_t vddgfx = 0; + uint16_t i, j; + uint32_t sclk = 0; + + /* retrieve voltage for leakage ID (0xff01 + i) */ + for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) { + virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; + + /* in split mode we should have only vddgfx EVV leakages */ + if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { + if (0 == tonga_get_sclk_for_voltage_evv(hwmgr, + pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) { + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ClockStretcher)) { + for (j = 1; j < sclk_table->count; j++) { + if (sclk_table->entries[j].clk == sclk && + sclk_table->entries[j].cks_enable == 0) { + sclk += 5000; + break; + } + } + } + PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk + (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, + virtual_voltage_id, &vddgfx), + "Error retrieving EVV voltage value!", continue); + + /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ + PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1); + + /* the voltage should not be zero nor equal to leakage ID */ + if (vddgfx != 0 && vddgfx != virtual_voltage_id) { + data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; + data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id; + data->vddcgfx_leakage.count++; + } + } + } else { + /* in merged mode we have only vddc EVV leakages */ + if (0 == tonga_get_sclk_for_voltage_evv(hwmgr, + pptable_info->vddc_lookup_table, + virtual_voltage_id, &sclk)) { + PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk + (hwmgr, VOLTAGE_TYPE_VDDC, sclk, + virtual_voltage_id, &vddc), + "Error retrieving EVV voltage value!", continue); + + /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ + if (vddc > 2000) + printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n"); + + /* the voltage should not be zero nor equal to leakage ID */ + if (vddc != 0 && vddc != virtual_voltage_id) { + data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; + data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; + data->vddc_leakage.count++; + } + } + } + } + + return 0; +} + +int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* enable SCLK dpm */ + if (0 == data->sclk_dpm_key_disabled) { + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_DPM_Enable)), + "Failed to enable SCLK DPM during DPM Start Function!", + return -1); + } + + /* enable MCLK dpm */ + if (0 == data->mclk_dpm_key_disabled) { + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_MCLKDPM_Enable)), + "Failed to enable MCLK DPM during DPM Start Function!", + return -1); + + PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */ + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */ + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixLCAC_CPL_CNTL, 0x100005);/*Read */ + + udelay(10); + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */ + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */ + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixLCAC_CPL_CNTL, 0x500005);/* write */ + + } + + return 0; +} + +int tonga_start_dpm(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* enable general power management */ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1); + /* enable sclk deep sleep */ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1); + + /* prepare for PCIE DPM */ + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + + offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000); + + PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0); + + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_Voltage_Cntl_Enable)), + "Failed to enable voltage DPM during DPM Start Function!", + return -1); + + if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) { + PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1); + } + + /* enable PCIE dpm */ + if (0 == data->pcie_dpm_key_disabled) { + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_PCIeDPM_Enable)), + "Failed to enable pcie DPM during DPM Start Function!", + return -1 + ); + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_Falcon_QuickTransition)) { + smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_EnableACDCGPIOInterrupt); + } + + return 0; +} + +int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* disable SCLK dpm */ + if (0 == data->sclk_dpm_key_disabled) { + /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ + PP_ASSERT_WITH_CODE( + (0 == tonga_is_dpm_running(hwmgr)), + "Trying to Disable SCLK DPM when DPM is disabled", + return -1 + ); + + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_DPM_Disable)), + "Failed to disable SCLK DPM during DPM stop Function!", + return -1); + } + + /* disable MCLK dpm */ + if (0 == data->mclk_dpm_key_disabled) { + /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ + PP_ASSERT_WITH_CODE( + (0 == tonga_is_dpm_running(hwmgr)), + "Trying to Disable MCLK DPM when DPM is disabled", + return -1 + ); + + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_MCLKDPM_Disable)), + "Failed to Disable MCLK DPM during DPM stop Function!", + return -1); + } + + return 0; +} + +int tonga_stop_dpm(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0); + /* disable sclk deep sleep*/ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0); + + /* disable PCIE dpm */ + if (0 == data->pcie_dpm_key_disabled) { + /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ + PP_ASSERT_WITH_CODE( + (0 == tonga_is_dpm_running(hwmgr)), + "Trying to Disable PCIE DPM when DPM is disabled", + return -1 + ); + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_PCIeDPM_Disable)), + "Failed to disable pcie DPM during DPM stop Function!", + return -1); + } + + if (0 != tonga_disable_sclk_mclk_dpm(hwmgr)) + PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1); + + /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ + PP_ASSERT_WITH_CODE( + (0 == tonga_is_dpm_running(hwmgr)), + "Trying to Disable Voltage CNTL when DPM is disabled", + return -1 + ); + + PP_ASSERT_WITH_CODE( + (0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_Voltage_Cntl_Disable)), + "Failed to disable voltage DPM during DPM stop Function!", + return -1); + + return 0; +} + +int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr) +{ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0); + + return 0; +} + +/** + * Send a message to the SMC and return a parameter + * + * @param hwmgr: the address of the powerplay hardware manager. + * @param msg: the message to send. + * @param parameter: pointer to the received parameter + * @return The response that came from the SMC. + */ +PPSMC_Result tonga_send_msg_to_smc_return_parameter( + struct pp_hwmgr *hwmgr, + PPSMC_Msg msg, + uint32_t *parameter) +{ + int result; + + result = smum_send_msg_to_smc(hwmgr->smumgr, msg); + + if ((0 == result) && parameter) { + *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); + } + + return result; +} + +/** + * force DPM power State + * + * @param hwmgr: the address of the powerplay hardware manager. + * @param n : DPM level + * @return The response that came from the SMC. + */ +int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint32_t level_mask = 1 << n; + + /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ + PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr), + "Trying to force SCLK when DPM is disabled", return -1;); + if (0 == data->sclk_dpm_key_disabled) + return (0 == smum_send_msg_to_smc_with_parameter( + hwmgr->smumgr, + (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask), + level_mask) ? 0 : 1); + + return 0; +} + +/** + * force DPM power State + * + * @param hwmgr: the address of the powerplay hardware manager. + * @param n : DPM level + * @return The response that came from the SMC. + */ +int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint32_t level_mask = 1 << n; + + /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ + PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr), + "Trying to Force MCLK when DPM is disabled", return -1;); + if (0 == data->mclk_dpm_key_disabled) + return (0 == smum_send_msg_to_smc_with_parameter( + hwmgr->smumgr, + (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask), + level_mask) ? 0 : 1); + + return 0; +} + +/** + * force DPM power State + * + * @param hwmgr: the address of the powerplay hardware manager. + * @param n : DPM level + * @return The response that came from the SMC. + */ +int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ + PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr), + "Trying to Force PCIE level when DPM is disabled", return -1;); + if (0 == data->pcie_dpm_key_disabled) + return (0 == smum_send_msg_to_smc_with_parameter( + hwmgr->smumgr, + (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel), + n) ? 0 : 1); + + return 0; +} + +/** + * Set the initial state by calling SMC to switch to this state directly + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_set_boot_state(struct pp_hwmgr *hwmgr) +{ + /* + * SMC only stores one state that SW will ask to switch too, + * so we switch the the just uploaded one + */ + return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1; +} + +/** + * Get the location of various tables inside the FW image. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + + uint32_t tmp; + int result; + bool error = 0; + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, DpmTable), + &tmp, data->sram_end); + + if (0 == result) { + data->dpm_table_start = tmp; + } + + error |= (0 != result); + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, SoftRegisters), + &tmp, data->sram_end); + + if (0 == result) { + data->soft_regs_start = tmp; + tonga_smu->ulSoftRegsStart = tmp; + } + + error |= (0 != result); + + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, mcRegisterTable), + &tmp, data->sram_end); + + if (0 == result) { + data->mc_reg_table_start = tmp; + } + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, FanTable), + &tmp, data->sram_end); + + if (0 == result) { + data->fan_table_start = tmp; + } + + error |= (0 != result); + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), + &tmp, data->sram_end); + + if (0 == result) { + data->arb_table_start = tmp; + } + + error |= (0 != result); + + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, Version), + &tmp, data->sram_end); + + if (0 == result) { + hwmgr->microcode_version_info.SMC = tmp; + } + + error |= (0 != result); + + return error ? 1 : 0; +} + +/** + * Read clock related registers. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_read_clock_registers(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + data->clock_registers.vCG_SPLL_FUNC_CNTL = + cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); + data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = + cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); + data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = + cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); + data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = + cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); + data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = + cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); + data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = + cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); + data->clock_registers.vDLL_CNTL = + cgs_read_register(hwmgr->device, mmDLL_CNTL); + data->clock_registers.vMCLK_PWRMGT_CNTL = + cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); + data->clock_registers.vMPLL_AD_FUNC_CNTL = + cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); + data->clock_registers.vMPLL_DQ_FUNC_CNTL = + cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); + data->clock_registers.vMPLL_FUNC_CNTL = + cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); + data->clock_registers.vMPLL_FUNC_CNTL_1 = + cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); + data->clock_registers.vMPLL_FUNC_CNTL_2 = + cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); + data->clock_registers.vMPLL_SS1 = + cgs_read_register(hwmgr->device, mmMPLL_SS1); + data->clock_registers.vMPLL_SS2 = + cgs_read_register(hwmgr->device, mmMPLL_SS2); + + return 0; +} + +/** + * Find out if memory is GDDR5. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_get_memory_type(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint32_t temp; + + temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); + + data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE == + ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> + MC_SEQ_MISC0_GDDR5_SHIFT)); + + return 0; +} + +/** + * Enables Dynamic Power Management by SMC + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr) +{ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1); + + return 0; +} + +/** + * Initialize PowerGating States for different engines + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + data->uvd_power_gated = 0; + data->vce_power_gated = 0; + data->samu_power_gated = 0; + data->acp_power_gated = 0; + data->pg_acp_init = 1; + + return 0; +} + +/** + * Checks if DPM is enabled + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr) +{ + /* + * We return the status of Voltage Control instead of checking SCLK/MCLK DPM + * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM, + * whereas voltage control is a fundemental change that will not be disabled + */ + return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1); +} + +/** + * Checks if DPM is stopped + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + if (0 != tonga_is_dpm_running(hwmgr)) { + /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */ + if (!data->dpm_table_start) { + return 1; + } + } + + return 0; +} + +/** + * Remove repeated voltage values and create table with unique values. + * + * @param hwmgr the address of the powerplay hardware manager. + * @param voltage_table the pointer to changing voltage table + * @return 1 in success + */ + +static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr, + pp_atomctrl_voltage_table *voltage_table) +{ + uint32_t table_size, i, j; + uint16_t vvalue; + bool bVoltageFound = 0; + pp_atomctrl_voltage_table *table; + + PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;); + table_size = sizeof(pp_atomctrl_voltage_table); + table = kzalloc(table_size, GFP_KERNEL); + + if (NULL == table) + return -ENOMEM; + + memset(table, 0x00, table_size); + table->mask_low = voltage_table->mask_low; + table->phase_delay = voltage_table->phase_delay; + + for (i = 0; i < voltage_table->count; i++) { + vvalue = voltage_table->entries[i].value; + bVoltageFound = 0; + + for (j = 0; j < table->count; j++) { + if (vvalue == table->entries[j].value) { + bVoltageFound = 1; + break; + } + } + + if (!bVoltageFound) { + table->entries[table->count].value = vvalue; + table->entries[table->count].smio_low = + voltage_table->entries[i].smio_low; + table->count++; + } + } + + memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table)); + + kfree(table); + + return 0; +} + +static int tonga_get_svi2_vdd_ci_voltage_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table) +{ + uint32_t i; + int result; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table); + + PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count), + "Voltage Dependency Table empty.", return -1;); + + vddci_voltage_table->mask_low = 0; + vddci_voltage_table->phase_delay = 0; + vddci_voltage_table->count = voltage_dependency_table->count; + + for (i = 0; i < voltage_dependency_table->count; i++) { + vddci_voltage_table->entries[i].value = + voltage_dependency_table->entries[i].vddci; + vddci_voltage_table->entries[i].smio_low = 0; + } + + result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to trim VDDCI table.", return result;); + + return 0; +} + + + +static int tonga_get_svi2_vdd_voltage_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_voltage_lookup_table *look_up_table, + pp_atomctrl_voltage_table *voltage_table) +{ + uint8_t i = 0; + + PP_ASSERT_WITH_CODE((0 != look_up_table->count), + "Voltage Lookup Table empty.", return -1;); + + voltage_table->mask_low = 0; + voltage_table->phase_delay = 0; + + voltage_table->count = look_up_table->count; + + for (i = 0; i < voltage_table->count; i++) { + voltage_table->entries[i].value = look_up_table->entries[i].us_vdd; + voltage_table->entries[i].smio_low = 0; + } + + return 0; +} + +/* + * -------------------------------------------------------- Voltage Tables -------------------------------------------------------------------------- + * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries. + */ + +static void tonga_trim_voltage_table_to_fit_state_table( + struct pp_hwmgr *hwmgr, + uint32_t max_voltage_steps, + pp_atomctrl_voltage_table *voltage_table) +{ + unsigned int i, diff; + + if (voltage_table->count <= max_voltage_steps) { + return; + } + + diff = voltage_table->count - max_voltage_steps; + + for (i = 0; i < max_voltage_steps; i++) { + voltage_table->entries[i] = voltage_table->entries[i + diff]; + } + + voltage_table->count = max_voltage_steps; + + return; +} + +/** + * Create Voltage Tables. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + int result; + + /* MVDD has only GPIO voltage control */ + if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { + result = atomctrl_get_voltage_table_v3(hwmgr, + VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table)); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to retrieve MVDD table.", return result;); + } + + if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { + /* GPIO voltage */ + result = atomctrl_get_voltage_table_v3(hwmgr, + VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table)); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to retrieve VDDCI table.", return result;); + } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { + /* SVI2 voltage */ + result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr, + pptable_info->vdd_dep_on_mclk); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;); + } + + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { + /* VDDGFX has only SVI2 voltage control */ + result = tonga_get_svi2_vdd_voltage_table(hwmgr, + pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table)); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); + } + + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + /* VDDC has only SVI2 voltage control */ + result = tonga_get_svi2_vdd_voltage_table(hwmgr, + pptable_info->vddc_lookup_table, &(data->vddc_voltage_table)); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to retrieve SVI2 VDDC table from lookup table.", return result;); + } + + PP_ASSERT_WITH_CODE( + (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)), + "Too many voltage values for VDDC. Trimming to fit state table.", + tonga_trim_voltage_table_to_fit_state_table(hwmgr, + SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)); + ); + + PP_ASSERT_WITH_CODE( + (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)), + "Too many voltage values for VDDGFX. Trimming to fit state table.", + tonga_trim_voltage_table_to_fit_state_table(hwmgr, + SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table)); + ); + + PP_ASSERT_WITH_CODE( + (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)), + "Too many voltage values for VDDCI. Trimming to fit state table.", + tonga_trim_voltage_table_to_fit_state_table(hwmgr, + SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)); + ); + + PP_ASSERT_WITH_CODE( + (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)), + "Too many voltage values for MVDD. Trimming to fit state table.", + tonga_trim_voltage_table_to_fit_state_table(hwmgr, + SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)); + ); + + return 0; +} + +/** + * Vddc table preparation for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + unsigned int count; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + table->VddcLevelCount = data->vddc_voltage_table.count; + for (count = 0; count < table->VddcLevelCount; count++) { + table->VddcTable[count] = + PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); + } + CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); + } + return 0; +} + +/** + * VddGfx table preparation for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + unsigned int count; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { + table->VddGfxLevelCount = data->vddgfx_voltage_table.count; + for (count = 0; count < data->vddgfx_voltage_table.count; count++) { + table->VddGfxTable[count] = + PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); + } + CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); + } + return 0; +} + +/** + * Vddci table preparation for SMC. + * + * @param *hwmgr The address of the hardware manager. + * @param *table The SMC DPM table structure to be populated. + * @return 0 + */ +static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint32_t count; + + table->VddciLevelCount = data->vddci_voltage_table.count; + for (count = 0; count < table->VddciLevelCount; count++) { + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { + table->VddciTable[count] = + PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); + } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { + table->SmioTable1.Pattern[count].Voltage = + PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); + /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ + table->SmioTable1.Pattern[count].Smio = + (uint8_t) count; + table->Smio[count] |= + data->vddci_voltage_table.entries[count].smio_low; + table->VddciTable[count] = + PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); + } + } + + table->SmioMask1 = data->vddci_voltage_table.mask_low; + CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); + + return 0; +} + +/** + * Mvdd table preparation for SMC. + * + * @param *hwmgr The address of the hardware manager. + * @param *table The SMC DPM table structure to be populated. + * @return 0 + */ +static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint32_t count; + + if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { + table->MvddLevelCount = data->mvdd_voltage_table.count; + for (count = 0; count < table->MvddLevelCount; count++) { + table->SmioTable2.Pattern[count].Voltage = + PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); + /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ + table->SmioTable2.Pattern[count].Smio = + (uint8_t) count; + table->Smio[count] |= + data->mvdd_voltage_table.entries[count].smio_low; + } + table->SmioMask2 = data->vddci_voltage_table.mask_low; + + CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); + } + + return 0; +} + +/** + * Convert a voltage value in mv unit to VID number required by SMU firmware + */ +static uint8_t convert_to_vid(uint16_t vddc) +{ + return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25); +} + + +/** + * Preparation of vddc and vddgfx CAC tables for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + uint32_t count; + uint8_t index; + int result = 0; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table; + struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table; + + /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */ + uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount); + uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); + + for (count = 0; count < vddcLevelCount; count++) { + /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ + index = tonga_get_voltage_index(vddc_lookup_table, + data->vddc_voltage_table.entries[count].value); + table->BapmVddcVidLoSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); + table->BapmVddcVidHiSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); + table->BapmVddcVidHiSidd2[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); + } + + if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) { + /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ + for (count = 0; count < vddgfxLevelCount; count++) { + index = tonga_get_voltage_index(vddgfx_lookup_table, + data->vddgfx_voltage_table.entries[count].value); + table->BapmVddGfxVidLoSidd[count] = + convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low); + table->BapmVddGfxVidHiSidd[count] = + convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid); + table->BapmVddGfxVidHiSidd2[count] = + convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); + } + } else { + for (count = 0; count < vddcLevelCount; count++) { + index = tonga_get_voltage_index(vddc_lookup_table, + data->vddc_voltage_table.entries[count].value); + table->BapmVddGfxVidLoSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); + table->BapmVddGfxVidHiSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); + table->BapmVddGfxVidHiSidd2[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); + } + } + + return result; +} + + +/** + * Preparation of voltage tables for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ + +int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result; + + result = tonga_populate_smc_vddc_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate VDDC voltage table to SMC", return -1); + + result = tonga_populate_smc_vdd_ci_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate VDDCI voltage table to SMC", return -1); + + result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate VDDGFX voltage table to SMC", return -1); + + result = tonga_populate_smc_mvdd_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate MVDD voltage table to SMC", return -1); + + result = tonga_populate_cac_tables(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate CAC voltage tables to SMC", return -1); + + return 0; +} + +/** + * Populates the SMC VRConfig field in DPM table. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint16_t config; + + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { + /* Splitted mode */ + config = VR_SVI2_PLANE_1; + table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); + + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + config = VR_SVI2_PLANE_2; + table->VRConfig |= config; + } else { + printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n"); + } + } else { + /* Merged mode */ + config = VR_MERGED_WITH_VDDC; + table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); + + /* Set Vddc Voltage Controller */ + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + config = VR_SVI2_PLANE_1; + table->VRConfig |= config; + } else { + printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n"); + } + } + + /* Set Vddci Voltage Controller */ + if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { + config = VR_SVI2_PLANE_2; /* only in merged mode */ + table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); + } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { + config = VR_SMIO_PATTERN_1; + table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); + } + + /* Set Mvdd Voltage Controller */ + if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { + config = VR_SMIO_PATTERN_2; + table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); + } + + return 0; +} + +static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, + phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, + uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) +{ + uint32_t i = 0; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + /* clock - voltage dependency table is empty table */ + if (allowed_clock_voltage_table->count == 0) + return -1; + + for (i = 0; i < allowed_clock_voltage_table->count; i++) { + /* find first sclk bigger than request */ + if (allowed_clock_voltage_table->entries[i].clk >= clock) { + voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, + allowed_clock_voltage_table->entries[i].vddgfx); + + voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table, + allowed_clock_voltage_table->entries[i].vddc); + + if (allowed_clock_voltage_table->entries[i].vddci) { + voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table, + allowed_clock_voltage_table->entries[i].vddci); + } else { + voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table, + allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta); + } + + if (allowed_clock_voltage_table->entries[i].mvdd) { + *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; + } + + voltage->Phases = 1; + return 0; + } + } + + /* sclk is bigger than max sclk in the dependence table */ + voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, + allowed_clock_voltage_table->entries[i-1].vddgfx); + voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table, + allowed_clock_voltage_table->entries[i-1].vddc); + + if (allowed_clock_voltage_table->entries[i-1].vddci) { + voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table, + allowed_clock_voltage_table->entries[i-1].vddci); + } + if (allowed_clock_voltage_table->entries[i-1].mvdd) { + *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; + } + + return 0; +} + +/** + * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_reset_to_default(struct pp_hwmgr *hwmgr) +{ + return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1; +} + +int tonga_populate_memory_timing_parameters( + struct pp_hwmgr *hwmgr, + uint32_t engine_clock, + uint32_t memory_clock, + struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs + ) +{ + uint32_t dramTiming; + uint32_t dramTiming2; + uint32_t burstTime; + int result; + + result = atomctrl_set_engine_dram_timings_rv770(hwmgr, + engine_clock, memory_clock); + + PP_ASSERT_WITH_CODE(result == 0, + "Error calling VBIOS to set DRAM_TIMING.", return result); + + dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); + dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); + burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); + + arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); + arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); + arb_regs->McArbBurstTime = (uint8_t)burstTime; + + return 0; +} + +/** + * Setup parameters for the MC ARB. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + * This function is to be called from the SetPowerState table. + */ +int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + int result = 0; + SMU72_Discrete_MCArbDramTimingTable arb_regs; + uint32_t i, j; + + memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); + + for (i = 0; i < data->dpm_table.sclk_table.count; i++) { + for (j = 0; j < data->dpm_table.mclk_table.count; j++) { + result = tonga_populate_memory_timing_parameters + (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, + data->dpm_table.mclk_table.dpm_levels[j].value, + &arb_regs.entries[i][j]); + + if (0 != result) { + break; + } + } + } + + if (0 == result) { + result = tonga_copy_bytes_to_smc( + hwmgr->smumgr, + data->arb_table_start, + (uint8_t *)&arb_regs, + sizeof(SMU72_Discrete_MCArbDramTimingTable), + data->sram_end + ); + } + + return result; +} + +static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct tonga_dpm_table *dpm_table = &data->dpm_table; + uint32_t i; + + /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ + for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { + table->LinkLevel[i].PcieGenSpeed = + (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; + table->LinkLevel[i].PcieLaneCount = + (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); + table->LinkLevel[i].EnabledForActivity = + 1; + table->LinkLevel[i].SPC = + (uint8_t)(data->pcie_spc_cap & 0xff); + table->LinkLevel[i].DownThreshold = + PP_HOST_TO_SMC_UL(5); + table->LinkLevel[i].UpThreshold = + PP_HOST_TO_SMC_UL(30); + } + + data->smc_state_table.LinkLevelCount = + (uint8_t)dpm_table->pcie_speed_table.count; + data->dpm_level_enable_mask.pcie_dpm_enable_mask = + tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); + + return 0; +} + + +static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; + + table->VceLevelCount = (uint8_t) (mm_table->count); + table->VceBootLevel = 0; + + for (count = 0; count < table->VceLevelCount; count++) { + table->VceLevel[count].Frequency = + mm_table->entries[count].eclk; + table->VceLevel[count].MinVoltage.Vddc = + tonga_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->VceLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? + tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->VceLevel[count].MinVoltage.Vddci = + tonga_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - data->vddc_vddci_delta); + table->VceLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->VceLevel[count].Frequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for VCE engine clock", return result); + + table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); + } + + return result; +} + +static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; + + table->AcpLevelCount = (uint8_t) (mm_table->count); + table->AcpBootLevel = 0; + + for (count = 0; count < table->AcpLevelCount; count++) { + table->AcpLevel[count].Frequency = + pptable_info->mm_dep_table->entries[count].aclk; + table->AcpLevel[count].MinVoltage.Vddc = + tonga_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->AcpLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? + tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->AcpLevel[count].MinVoltage.Vddci = + tonga_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - data->vddc_vddci_delta); + table->AcpLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->AcpLevel[count].Frequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for engine clock", return result); + + table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); + } + + return result; +} + +static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; + + table->SamuBootLevel = 0; + table->SamuLevelCount = (uint8_t) (mm_table->count); + + for (count = 0; count < table->SamuLevelCount; count++) { + /* not sure whether we need evclk or not */ + table->SamuLevel[count].Frequency = + pptable_info->mm_dep_table->entries[count].samclock; + table->SamuLevel[count].MinVoltage.Vddc = + tonga_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->SamuLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ? + tonga_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->SamuLevel[count].MinVoltage.Vddci = + tonga_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - data->vddc_vddci_delta); + table->SamuLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->SamuLevel[count].Frequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for samu clock", return result); + + table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); + } + + return result; +} + +/** + * Populates the SMC MCLK structure using the provided memory clock + * + * @param hwmgr the address of the hardware manager + * @param memory_clock the memory clock to use to populate the structure + * @param sclk the SMC SCLK structure to be populated + */ +static int tonga_calculate_mclk_params( + struct pp_hwmgr *hwmgr, + uint32_t memory_clock, + SMU72_Discrete_MemoryLevel *mclk, + bool strobe_mode, + bool dllStateOn + ) +{ + const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; + uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; + uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; + uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; + uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; + uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; + uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; + uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; + uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; + + pp_atomctrl_memory_clock_param mpll_param; + int result; + + result = atomctrl_get_memory_pll_dividers_si(hwmgr, + memory_clock, &mpll_param, strobe_mode); + PP_ASSERT_WITH_CODE(0 == result, + "Error retrieving Memory Clock Parameters from VBIOS.", return result); + + /* MPLL_FUNC_CNTL setup*/ + mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); + + /* MPLL_FUNC_CNTL_1 setup*/ + mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, + MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); + mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, + MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); + mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, + MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); + + /* MPLL_AD_FUNC_CNTL setup*/ + mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, + MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); + + if (data->is_memory_GDDR5) { + /* MPLL_DQ_FUNC_CNTL setup*/ + mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, + MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); + mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, + MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { + /* + ************************************ + Fref = Reference Frequency + NF = Feedback divider ratio + NR = Reference divider ratio + Fnom = Nominal VCO output frequency = Fref * NF / NR + Fs = Spreading Rate + D = Percentage down-spread / 2 + Fint = Reference input frequency to PFD = Fref / NR + NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) + CLKS = NS - 1 = ISS_STEP_NUM[11:0] + NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) + CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] + ************************************* + */ + pp_atomctrl_internal_ss_info ss_info; + uint32_t freq_nom; + uint32_t tmp; + uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); + + /* for GDDR5 for all modes and DDR3 */ + if (1 == mpll_param.qdr) + freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); + else + freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); + + /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ + tmp = (freq_nom / reference_clock); + tmp = tmp * tmp; + + if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { + /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ + /* ss.Info.speed_spectrum_rate -- in unit of khz */ + /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ + /* = reference_clock * 5 / speed_spectrum_rate */ + uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; + + /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ + /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ + uint32_t clkv = + (uint32_t)((((131 * ss_info.speed_spectrum_percentage * + ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); + + mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); + mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); + } + } + + /* MCLK_PWRMGT_CNTL setup */ + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); + + + /* Save the result data to outpupt memory level structure */ + mclk->MclkFrequency = memory_clock; + mclk->MpllFuncCntl = mpll_func_cntl; + mclk->MpllFuncCntl_1 = mpll_func_cntl_1; + mclk->MpllFuncCntl_2 = mpll_func_cntl_2; + mclk->MpllAdFuncCntl = mpll_ad_func_cntl; + mclk->MpllDqFuncCntl = mpll_dq_func_cntl; + mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; + mclk->DllCntl = dll_cntl; + mclk->MpllSs1 = mpll_ss1; + mclk->MpllSs2 = mpll_ss2; + + return 0; +} + +static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, + bool strobe_mode) +{ + uint8_t mc_para_index; + + if (strobe_mode) { + if (memory_clock < 12500) { + mc_para_index = 0x00; + } else if (memory_clock > 47500) { + mc_para_index = 0x0f; + } else { + mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); + } + } else { + if (memory_clock < 65000) { + mc_para_index = 0x00; + } else if (memory_clock > 135000) { + mc_para_index = 0x0f; + } else { + mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); + } + } + + return mc_para_index; +} + +static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) +{ + uint8_t mc_para_index; + + if (memory_clock < 10000) { + mc_para_index = 0; + } else if (memory_clock >= 80000) { + mc_para_index = 0x0f; + } else { + mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); + } + + return mc_para_index; +} + +static int tonga_populate_single_memory_level( + struct pp_hwmgr *hwmgr, + uint32_t memory_clock, + SMU72_Discrete_MemoryLevel *memory_level + ) +{ + uint32_t minMvdd = 0; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + int result = 0; + bool dllStateOn; + struct cgs_display_info info = {0}; + + + if (NULL != pptable_info->vdd_dep_on_mclk) { + result = tonga_get_dependecy_volt_by_clk(hwmgr, + pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd); + PP_ASSERT_WITH_CODE((0 == result), + "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); + } + + if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) { + memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; + } else { + memory_level->MinMvdd = minMvdd; + } + memory_level->EnabledForThrottle = 1; + memory_level->EnabledForActivity = 0; + memory_level->UpHyst = 0; + memory_level->DownHyst = 100; + memory_level->VoltageDownHyst = 0; + + /* Indicates maximum activity level for this performance level.*/ + memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; + memory_level->StutterEnable = 0; + memory_level->StrobeEnable = 0; + memory_level->EdcReadEnable = 0; + memory_level->EdcWriteEnable = 0; + memory_level->RttEnable = 0; + + /* default set to low watermark. Highest level will be set to high later.*/ + memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; + + cgs_get_active_displays_info(hwmgr->device, &info); + data->display_timing.num_existing_displays = info.display_count; + + if ((data->mclk_stutter_mode_threshold != 0) && + (memory_clock <= data->mclk_stutter_mode_threshold) && + (data->is_uvd_enabled == 0) +#if defined(LINUX) + && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) + && (data->display_timing.num_existing_displays <= 2) + && (data->display_timing.num_existing_displays != 0) +#endif + ) + memory_level->StutterEnable = 1; + + /* decide strobe mode*/ + memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) && + (memory_clock <= data->mclk_strobe_mode_threshold); + + /* decide EDC mode and memory clock ratio*/ + if (data->is_memory_GDDR5) { + memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, + memory_level->StrobeEnable); + + if ((data->mclk_edc_enable_threshold != 0) && + (memory_clock > data->mclk_edc_enable_threshold)) { + memory_level->EdcReadEnable = 1; + } + + if ((data->mclk_edc_wr_enable_threshold != 0) && + (memory_clock > data->mclk_edc_wr_enable_threshold)) { + memory_level->EdcWriteEnable = 1; + } + + if (memory_level->StrobeEnable) { + if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= + ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { + dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; + } else { + dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; + } + + } else { + dllStateOn = data->dll_defaule_on; + } + } else { + memory_level->StrobeRatio = + tonga_get_ddr3_mclk_frequency_ratio(memory_clock); + dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; + } + + result = tonga_calculate_mclk_params(hwmgr, + memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn); + + if (0 == result) { + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); + /* MCLK frequency in units of 10KHz*/ + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); + /* Indicates maximum activity level for this performance level.*/ + CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); + } + + return result; +} + +/** + * Populates the SMC MVDD structure using the provided memory clock. + * + * @param hwmgr the address of the hardware manager + * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. + * @param voltage the SMC VOLTAGE structure to be populated + */ +int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern) +{ + const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + uint32_t i = 0; + + if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) { + /* find mvdd value which clock is more than request */ + for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) { + if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) { + /* Always round to higher voltage. */ + smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value; + break; + } + } + + PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count, + "MVDD Voltage is outside the supported range.", return -1); + + } else { + return -1; + } + + return 0; +} + + +static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + pp_atomctrl_clock_dividers_vi dividers; + SMIO_Pattern voltage_level; + uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; + uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; + uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; + uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; + + /* The ACPI state should not do DPM on DC (or ever).*/ + table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; + + table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage; + + /* assign zero for now*/ + table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); + + /* get the engine clock dividers for this clock value*/ + result = atomctrl_get_engine_pll_dividers_vi(hwmgr, + table->ACPILevel.SclkFrequency, ÷rs); + + PP_ASSERT_WITH_CODE(result == 0, + "Error retrieving Engine Clock dividers from VBIOS.", return result); + + /* divider ID for required SCLK*/ + table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; + table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; + table->ACPILevel.DeepSleepDivId = 0; + + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, + CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, + CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); + spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, + CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); + + table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; + table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; + table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; + table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; + table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; + table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; + table->ACPILevel.CcPwrDynRm = 0; + table->ACPILevel.CcPwrDynRm1 = 0; + + + /* For various features to be enabled/disabled while this level is active.*/ + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); + /* SCLK frequency in units of 10KHz*/ + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); + + /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ + table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage; + + /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ + + if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) + table->MemoryACPILevel.MinMvdd = + PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); + else + table->MemoryACPILevel.MinMvdd = 0; + + /* Force reset on DLL*/ + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); + + /* Disable DLL in ACPIState*/ + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); + + /* Enable DLL bypass signal*/ + dll_cntl = PHM_SET_FIELD(dll_cntl, + DLL_CNTL, MRDCK0_BYPASS, 0); + dll_cntl = PHM_SET_FIELD(dll_cntl, + DLL_CNTL, MRDCK1_BYPASS, 0); + + table->MemoryACPILevel.DllCntl = + PP_HOST_TO_SMC_UL(dll_cntl); + table->MemoryACPILevel.MclkPwrmgtCntl = + PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); + table->MemoryACPILevel.MpllAdFuncCntl = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); + table->MemoryACPILevel.MpllDqFuncCntl = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); + table->MemoryACPILevel.MpllFuncCntl = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); + table->MemoryACPILevel.MpllFuncCntl_1 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); + table->MemoryACPILevel.MpllFuncCntl_2 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); + table->MemoryACPILevel.MpllSs1 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); + table->MemoryACPILevel.MpllSs2 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); + + table->MemoryACPILevel.EnabledForThrottle = 0; + table->MemoryACPILevel.EnabledForActivity = 0; + table->MemoryACPILevel.UpHyst = 0; + table->MemoryACPILevel.DownHyst = 100; + table->MemoryACPILevel.VoltageDownHyst = 0; + /* Indicates maximum activity level for this performance level.*/ + table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); + + table->MemoryACPILevel.StutterEnable = 0; + table->MemoryACPILevel.StrobeEnable = 0; + table->MemoryACPILevel.EdcReadEnable = 0; + table->MemoryACPILevel.EdcWriteEnable = 0; + table->MemoryACPILevel.RttEnable = 0; + + return result; +} + +static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level) +{ + int result = 0; + uint32_t i; + + for (i = 0; i < table->count; i++) { + if (value == table->dpm_levels[i].value) { + *boot_level = i; + result = 0; + } + } + return result; +} + +static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */ + table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */ + + /* find boot level from dpm table*/ + result = tonga_find_boot_level(&(data->dpm_table.sclk_table), + data->vbios_boot_state.sclk_bootup_value, + (uint32_t *)&(data->smc_state_table.GraphicsBootLevel)); + + if (0 != result) { + data->smc_state_table.GraphicsBootLevel = 0; + printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \ + in dependency table. Using Graphics DPM level 0!"); + result = 0; + } + + result = tonga_find_boot_level(&(data->dpm_table.mclk_table), + data->vbios_boot_state.mclk_bootup_value, + (uint32_t *)&(data->smc_state_table.MemoryBootLevel)); + + if (0 != result) { + data->smc_state_table.MemoryBootLevel = 0; + printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \ + in dependency table. Using Memory DPM level 0!"); + result = 0; + } + + table->BootVoltage.Vddc = + tonga_get_voltage_id(&(data->vddc_voltage_table), + data->vbios_boot_state.vddc_bootup_value); + table->BootVoltage.VddGfx = + tonga_get_voltage_id(&(data->vddgfx_voltage_table), + data->vbios_boot_state.vddgfx_bootup_value); + table->BootVoltage.Vddci = + tonga_get_voltage_id(&(data->vddci_voltage_table), + data->vbios_boot_state.vddci_bootup_value); + table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; + + CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); + + return result; +} + + +/** + * Calculates the SCLK dividers using the provided engine clock + * + * @param hwmgr the address of the hardware manager + * @param engine_clock the engine clock to use to populate the structure + * @param sclk the SMC SCLK structure to be populated + */ +int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, + uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) +{ + const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + pp_atomctrl_clock_dividers_vi dividers; + uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; + uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; + uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; + uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; + uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; + uint32_t reference_clock; + uint32_t reference_divider; + uint32_t fbdiv; + int result; + + /* get the engine clock dividers for this clock value*/ + result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); + + PP_ASSERT_WITH_CODE(result == 0, + "Error retrieving Engine Clock dividers from VBIOS.", return result); + + /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ + reference_clock = atomctrl_get_reference_clock(hwmgr); + + reference_divider = 1 + dividers.uc_pll_ref_div; + + /* low 14 bits is fraction and high 12 bits is divider*/ + fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; + + /* SPLL_FUNC_CNTL setup*/ + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, + CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, + CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); + + /* SPLL_FUNC_CNTL_3 setup*/ + spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, + CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); + + /* set to use fractional accumulation*/ + spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, + CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { + pp_atomctrl_internal_ss_info ss_info; + + uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; + if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { + /* + * ss_info.speed_spectrum_percentage -- in unit of 0.01% + * ss_info.speed_spectrum_rate -- in unit of khz + */ + /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ + uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); + + /* clkv = 2 * D * fbdiv / NS */ + uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); + + cg_spll_spread_spectrum = + PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); + cg_spll_spread_spectrum = + PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); + cg_spll_spread_spectrum_2 = + PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); + } + } + + sclk->SclkFrequency = engine_clock; + sclk->CgSpllFuncCntl3 = spll_func_cntl_3; + sclk->CgSpllFuncCntl4 = spll_func_cntl_4; + sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; + sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; + sclk->SclkDid = (uint8_t)dividers.pll_post_divider; + + return 0; +} + +/** + * Populates single SMC SCLK structure using the provided engine clock + * + * @param hwmgr the address of the hardware manager + * @param engine_clock the engine clock to use to populate the structure + * @param sclk the SMC SCLK structure to be populated + */ +static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level) +{ + int result; + uint32_t threshold; + uint32_t mvdd; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); + + + /* populate graphics levels*/ + result = tonga_get_dependecy_volt_by_clk(hwmgr, + pptable_info->vdd_dep_on_sclk, engine_clock, + &graphic_level->MinVoltage, &mvdd); + PP_ASSERT_WITH_CODE((0 == result), + "can not find VDDC voltage value for VDDC \ + engine clock dependency table", return result); + + /* SCLK frequency in units of 10KHz*/ + graphic_level->SclkFrequency = engine_clock; + + /* Indicates maximum activity level for this performance level. 50% for now*/ + graphic_level->ActivityLevel = sclk_activity_level_threshold; + + graphic_level->CcPwrDynRm = 0; + graphic_level->CcPwrDynRm1 = 0; + /* this level can be used if activity is high enough.*/ + graphic_level->EnabledForActivity = 0; + /* this level can be used for throttling.*/ + graphic_level->EnabledForThrottle = 1; + graphic_level->UpHyst = 0; + graphic_level->DownHyst = 0; + graphic_level->VoltageDownHyst = 0; + graphic_level->PowerThrottle = 0; + + threshold = engine_clock * data->fast_watemark_threshold / 100; +/* + *get the DAL clock. do it in funture. + PECI_GetMinClockSettings(hwmgr->peci, &minClocks); + data->display_timing.min_clock_insr = minClocks.engineClockInSR; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) + { + graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR); + } +*/ + + /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ + graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; + + if (0 == result) { + /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ + /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); + CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); + } + + return result; +} + +/** + * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states + * + * @param hwmgr the address of the hardware manager + */ +static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + struct tonga_dpm_table *dpm_table = &data->dpm_table; + phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; + uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; + int result = 0; + uint32_t level_array_adress = data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); + uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * + SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/ + SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel; + uint32_t i, maxEntry; + uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; + PECI_RegistryValue reg_value; + memset(levels, 0x00, level_array_size); + + for (i = 0; i < dpm_table->sclk_table.count; i++) { + result = tonga_populate_single_graphic_level(hwmgr, + dpm_table->sclk_table.dpm_levels[i].value, + (uint16_t)data->activity_target[i], + &(data->smc_state_table.GraphicsLevel[i])); + + if (0 != result) + return result; + + /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ + if (i > 1) + data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; + + if (0 == i) { + reg_value = 0; + if (reg_value != 0) + data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value; + } + + if (1 == i) { + reg_value = 0; + if (reg_value != 0) + data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value; + } + } + + /* Only enable level 0 for now. */ + data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; + + /* set highest level watermark to high */ + if (dpm_table->sclk_table.count > 1) + data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = + PPSMC_DISPLAY_WATERMARK_HIGH; + + data->smc_state_table.GraphicsDpmLevelCount = + (uint8_t)dpm_table->sclk_table.count; + data->dpm_level_enable_mask.sclk_dpm_enable_mask = + tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); + + if (pcie_table != NULL) { + PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), + "There must be 1 or more PCIE levels defined in PPTable.", return -1); + maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ + for (i = 0; i < dpm_table->sclk_table.count; i++) { + data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = + (uint8_t) ((i < maxEntry) ? i : maxEntry); + } + } else { + if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) + printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!"); + + while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && + ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & + (1<<(highest_pcie_level_enabled+1))) != 0)) { + highest_pcie_level_enabled++; + } + + while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && + ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & + (1<<lowest_pcie_level_enabled)) == 0)) { + lowest_pcie_level_enabled++; + } + + while ((count < highest_pcie_level_enabled) && + ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & + (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { + count++; + } + mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? + (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; + + + /* set pcieDpmLevel to highest_pcie_level_enabled*/ + for (i = 2; i < dpm_table->sclk_table.count; i++) { + data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; + } + + /* set pcieDpmLevel to lowest_pcie_level_enabled*/ + data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; + + /* set pcieDpmLevel to mid_pcie_level_enabled*/ + data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; + } + /* level count will send to smc once at init smc table and never change*/ + result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end); + + if (0 != result) + return result; + + return 0; +} + +/** + * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states + * + * @param hwmgr the address of the hardware manager + */ + +static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct tonga_dpm_table *dpm_table = &data->dpm_table; + int result; + /* populate MCLK dpm table to SMU7 */ + uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel); + uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY; + SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel; + uint32_t i; + + memset(levels, 0x00, level_array_size); + + for (i = 0; i < dpm_table->mclk_table.count; i++) { + PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), + "can not populate memory level as memory clock is zero", return -1); + result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, + &(data->smc_state_table.MemoryLevel[i])); + if (0 != result) { + return result; + } + } + + /* Only enable level 0 for now.*/ + data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; + + /* + * in order to prevent MC activity from stutter mode to push DPM up. + * the UVD change complements this by putting the MCLK in a higher state + * by default such that we are not effected by up threshold or and MCLK DPM latency. + */ + data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; + CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel); + + data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; + data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); + /* set highest level watermark to high*/ + data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; + + /* level count will send to smc once at init smc table and never change*/ + result = tonga_copy_bytes_to_smc(hwmgr->smumgr, + level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end); + + if (0 != result) { + return result; + } + + return 0; +} + +struct TONGA_DLL_SPEED_SETTING { + uint16_t Min; /* Minimum Data Rate*/ + uint16_t Max; /* Maximum Data Rate*/ + uint32_t dll_speed; /* The desired DLL_SPEED setting*/ +}; + +static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) +{ + return 0; +} + +/* ---------------------------------------- ULV related functions ----------------------------------------------------*/ + + +static int tonga_reset_single_dpm_table( + struct pp_hwmgr *hwmgr, + struct tonga_single_dpm_table *dpm_table, + uint32_t count) +{ + uint32_t i; + if (!(count <= MAX_REGULAR_DPM_NUMBER)) + printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \ + table entries to exceed max number! \n"); + + dpm_table->count = count; + for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) { + dpm_table->dpm_levels[i].enabled = 0; + } + + return 0; +} + +static void tonga_setup_pcie_table_entry( + struct tonga_single_dpm_table *dpm_table, + uint32_t index, uint32_t pcie_gen, + uint32_t pcie_lanes) +{ + dpm_table->dpm_levels[index].value = pcie_gen; + dpm_table->dpm_levels[index].param1 = pcie_lanes; + dpm_table->dpm_levels[index].enabled = 1; +} + +bool is_pcie_gen3_supported(uint32_t pcie_link_speed_cap) +{ + if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) + return 1; + + return 0; +} + +bool is_pcie_gen2_supported(uint32_t pcie_link_speed_cap) +{ + if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) + return 1; + + return 0; +} + +/* Get the new PCIE speed given the ASIC PCIE Cap and the NewState's requested PCIE speed*/ +uint16_t get_pcie_gen_support(uint32_t pcie_link_speed_cap, uint16_t ns_pcie_gen) +{ + uint32_t asic_pcie_link_speed_cap = (pcie_link_speed_cap & + CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK); + uint32_t sys_pcie_link_speed_cap = (pcie_link_speed_cap & + CAIL_PCIE_LINK_SPEED_SUPPORT_MASK); + + switch (asic_pcie_link_speed_cap) { + case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1: + return PP_PCIEGen1; + + case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2: + return PP_PCIEGen2; + + case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3: + return PP_PCIEGen3; + + default: + if (is_pcie_gen3_supported(sys_pcie_link_speed_cap) && + (ns_pcie_gen == PP_PCIEGen3)) { + return PP_PCIEGen3; + } else if (is_pcie_gen2_supported(sys_pcie_link_speed_cap) && + ((ns_pcie_gen == PP_PCIEGen3) || (ns_pcie_gen == PP_PCIEGen2))) { + return PP_PCIEGen2; + } + } + + return PP_PCIEGen1; +} + +uint16_t get_pcie_lane_support(uint32_t pcie_lane_width_cap, uint16_t ns_pcie_lanes) +{ + int i, j; + uint16_t new_pcie_lanes = ns_pcie_lanes; + uint16_t pcie_lanes[7] = {1, 2, 4, 8, 12, 16, 32}; + + switch (pcie_lane_width_cap) { + case 0: + printk(KERN_ERR "[ powerplay ] No valid PCIE lane width reported by CAIL!"); + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X1: + new_pcie_lanes = 1; + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X2: + new_pcie_lanes = 2; + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X4: + new_pcie_lanes = 4; + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X8: + new_pcie_lanes = 8; + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X12: + new_pcie_lanes = 12; + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X16: + new_pcie_lanes = 16; + break; + case CAIL_PCIE_LINK_WIDTH_SUPPORT_X32: + new_pcie_lanes = 32; + break; + default: + for (i = 0; i < 7; i++) { + if (ns_pcie_lanes == pcie_lanes[i]) { + if (pcie_lane_width_cap & (0x10000 << i)) { + break; + } else { + for (j = i - 1; j >= 0; j--) { + if (pcie_lane_width_cap & (0x10000 << j)) { + new_pcie_lanes = pcie_lanes[j]; + break; + } + } + + if (j < 0) { + for (j = i + 1; j < 7; j++) { + if (pcie_lane_width_cap & (0x10000 << j)) { + new_pcie_lanes = pcie_lanes[j]; + break; + } + } + if (j > 7) + printk(KERN_ERR "[ powerplay ] Cannot find a valid PCIE lane width!"); + } + } + break; + } + } + break; + } + + return new_pcie_lanes; +} + +static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; + uint32_t i, maxEntry; + + if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) { + data->pcie_gen_power_saving = data->pcie_gen_performance; + data->pcie_lane_power_saving = data->pcie_lane_performance; + } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) { + data->pcie_gen_performance = data->pcie_gen_power_saving; + data->pcie_lane_performance = data->pcie_lane_power_saving; + } + + tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK); + + if (pcie_table != NULL) { + /* + * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue). + * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry. + */ + maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ? + SMU72_MAX_LEVELS_LINK : pcie_table->count; + for (i = 1; i < maxEntry; i++) { + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1, + get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + } + data->dpm_table.pcie_speed_table.count = maxEntry - 1; + } else { + /* Hardcode Pcie Table */ + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, + get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, + get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, + get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, + get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, + get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, + get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + data->dpm_table.pcie_speed_table.count = 6; + } + /* Populate last level for boot PCIE level, but do not increment count. */ + tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, + data->dpm_table.pcie_speed_table.count, + get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), + get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); + + return 0; + +} + +/* + * This function is to initalize all DPM state tables for SMU7 based on the dependency table. + * Dynamic state patching function will then trim these state tables to the allowed range based + * on the power policy or external client requests, such as UVD request, etc. + */ +static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + uint32_t i; + + phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table = + pptable_info->vdd_dep_on_sclk; + phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table = + pptable_info->vdd_dep_on_mclk; + + PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, + "SCLK dependency table is missing. This table is mandatory", return -1); + PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, + "SCLK dependency table has to have is missing. This table is mandatory", return -1); + + PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, + "MCLK dependency table is missing. This table is mandatory", return -1); + PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, + "VMCLK dependency table has to have is missing. This table is mandatory", return -1); + + /* clear the state table to reset everything to default */ + memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); + tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS); + tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY); + /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */ + /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/ + /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/ + /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/ + + PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, + "SCLK dependency table is missing. This table is mandatory", return -1); + /* Initialize Sclk DPM table based on allow Sclk values*/ + data->dpm_table.sclk_table.count = 0; + + for (i = 0; i < allowed_vdd_sclk_table->count; i++) { + if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != + allowed_vdd_sclk_table->entries[i].clk) { + data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = + allowed_vdd_sclk_table->entries[i].clk; + data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */ + data->dpm_table.sclk_table.count++; + } + } + + PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, + "MCLK dependency table is missing. This table is mandatory", return -1); + /* Initialize Mclk DPM table based on allow Mclk values */ + data->dpm_table.mclk_table.count = 0; + for (i = 0; i < allowed_vdd_mclk_table->count; i++) { + if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != + allowed_vdd_mclk_table->entries[i].clk) { + data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = + allowed_vdd_mclk_table->entries[i].clk; + data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */ + data->dpm_table.mclk_table.count++; + } + } + + /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ + for (i = 0; i < allowed_vdd_sclk_table->count; i++) { + data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc; + /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */ + /* param1 is for corresponding std voltage */ + data->dpm_table.vddc_table.dpm_levels[i].enabled = 1; + } + data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; + + if (NULL != allowed_vdd_mclk_table) { + /* Initialize Vddci DPM table based on allow Mclk values */ + for (i = 0; i < allowed_vdd_mclk_table->count; i++) { + data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci; + data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1; + data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd; + data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1; + } + data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count; + data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; + } + + /* setup PCIE gen speed levels*/ + tonga_setup_default_pcie_tables(hwmgr); + + /* save a copy of the default DPM table*/ + memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table)); + + return 0; +} + +int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr, + const struct tonga_power_state *bootState) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + uint8_t count, level; + + count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count); + for (level = 0; level < count; level++) { + if (pptable_info->vdd_dep_on_sclk->entries[level].clk >= + bootState->performance_levels[0].engine_clock) { + data->smc_state_table.GraphicsBootLevel = level; + break; + } + } + + count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count); + for (level = 0; level < count; level++) { + if (pptable_info->vdd_dep_on_mclk->entries[level].clk >= + bootState->performance_levels[0].memory_clock) { + data->smc_state_table.MemoryBootLevel = level; + break; + } + } + + return 0; +} + +/** + * Initializes the SMC table and uploads it + * + * @param hwmgr the address of the powerplay hardware manager. + * @param pInput the pointer to input data (PowerState) + * @return always 0 + */ +int tonga_init_smc_table(struct pp_hwmgr *hwmgr) +{ + int result; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + SMU72_Discrete_DpmTable *table = &(data->smc_state_table); + const phw_tonga_ulv_parm *ulv = &(data->ulv); + uint8_t i; + PECI_RegistryValue reg_value; + pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; + + result = tonga_setup_default_dpm_tables(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to setup default DPM tables!", return result;); + memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table)); + if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) { + tonga_populate_smc_voltage_tables(hwmgr, table); + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition)) { + table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_StepVddc)) { + table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; + } + + if (data->is_memory_GDDR5) { + table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; + } + + i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); + + if (i == 1 || i == 0) { + table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL; + } + + if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) { + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize ULV state!", return result;); + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter); + } + + result = tonga_populate_smc_link_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Link Level!", return result;); + + result = tonga_populate_all_graphic_levels(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Graphics Level!", return result;); + + result = tonga_populate_all_memory_levels(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Memory Level!", return result;); + + result = tonga_populate_smv_acpi_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize ACPI Level!", return result;); + + result = tonga_populate_smc_vce_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize VCE Level!", return result;); + + result = tonga_populate_smc_acp_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize ACP Level!", return result;); + + result = tonga_populate_smc_samu_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize SAMU Level!", return result;); + + /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ + /* need to populate the ARB settings for the initial state. */ + result = tonga_program_memory_timing_parameters(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to Write ARB settings for the initial state.", return result;); + + result = tonga_populate_smc_boot_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Boot Level!", return result;); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ClockStretcher)) { + result = tonga_populate_clock_stretcher_data_table(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to populate Clock Stretcher Data Table!", return result;); + } + table->GraphicsVoltageChangeEnable = 1; + table->GraphicsThermThrottleEnable = 1; + table->GraphicsInterval = 1; + table->VoltageInterval = 1; + table->ThermalInterval = 1; + table->TemperatureLimitHigh = + pptable_info->cac_dtp_table->usTargetOperatingTemp * + TONGA_Q88_FORMAT_CONVERSION_UNIT; + table->TemperatureLimitLow = + (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) * + TONGA_Q88_FORMAT_CONVERSION_UNIT; + table->MemoryVoltageChangeEnable = 1; + table->MemoryInterval = 1; + table->VoltageResponseTime = 0; + table->PhaseResponseTime = 0; + table->MemoryThermThrottleEnable = 1; + + /* + * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had) + * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again + * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay + * To avoid it, we set PCIeBootLinkLevel to highest dpm level + */ + PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), + "There must be 1 or more PCIE levels defined in PPTable.", + return -1); + + table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); + + table->PCIeGenInterval = 1; + + result = tonga_populate_vr_config(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to populate VRConfig setting!", return result); + + table->ThermGpio = 17; + table->SclkStepSize = 0x4000; + + reg_value = 0; + if ((0 == reg_value) && + (0 == atomctrl_get_pp_assign_pin(hwmgr, + VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) { + table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_RegulatorHot); + } else { + table->VRHotGpio = TONGA_UNUSED_GPIO_PIN; + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_RegulatorHot); + } + + /* ACDC Switch GPIO */ + reg_value = 0; + if ((0 == reg_value) && + (0 == atomctrl_get_pp_assign_pin(hwmgr, + PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) { + table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition); + } else { + table->AcDcGpio = TONGA_UNUSED_GPIO_PIN; + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition); + } + + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_Falcon_QuickTransition); + + reg_value = 0; + if (1 == reg_value) { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition); + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_Falcon_QuickTransition); + } + + reg_value = 0; + if ((0 == reg_value) && + (0 == atomctrl_get_pp_assign_pin(hwmgr, + THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) { + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ThermalOutGPIO); + + table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; + + table->ThermOutPolarity = + (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & + (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0; + + table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; + + /* if required, combine VRHot/PCC with thermal out GPIO*/ + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_RegulatorHot) && + phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_CombinePCCWithThermalSignal)){ + table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; + } + } else { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ThermalOutGPIO); + + table->ThermOutGpio = 17; + table->ThermOutPolarity = 1; + table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; + } + + for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) { + table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); + } + CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); + CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); + CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); + CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); + CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); + CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); + CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); + CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); + CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); + + /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ + result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, SystemFlags), + (uint8_t *)&(table->SystemFlags), + sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController), + data->sram_end); + + PP_ASSERT_WITH_CODE(0 == result, + "Failed to upload dpm data to SMC memory!", return result;); + + return result; +} + +/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/ +static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr) +{ + return; +} + +int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) +{ + PPSMC_Result result; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* Apply minimum voltage based on DAL's request level */ + tonga_apply_dal_minimum_voltage_request(hwmgr); + + if (0 == data->sclk_dpm_key_disabled) { + /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ + if (0 != tonga_is_dpm_running(hwmgr)) + printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n"); + + if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) { + result = smum_send_msg_to_smc_with_parameter( + hwmgr->smumgr, + (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask, + data->dpm_level_enable_mask.sclk_dpm_enable_mask); + PP_ASSERT_WITH_CODE((0 == result), + "Set Sclk Dpm enable Mask failed", return -1); + } + } + + if (0 == data->mclk_dpm_key_disabled) { + /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ + if (0 != tonga_is_dpm_running(hwmgr)) + printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n"); + + if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) { + result = smum_send_msg_to_smc_with_parameter( + hwmgr->smumgr, + (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask, + data->dpm_level_enable_mask.mclk_dpm_enable_mask); + PP_ASSERT_WITH_CODE((0 == result), + "Set Mclk Dpm enable Mask failed", return -1); + } + } + + return 0; +} + + +int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr) +{ + uint32_t level, tmp; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + if (0 == data->pcie_dpm_key_disabled) { + /* PCIE */ + if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) { + level = 0; + tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; + while (tmp >>= 1) + level++ ; + + if (0 != level) { + PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)), + "force highest pcie dpm state failed!", return -1); + } + } + } + + if (0 == data->sclk_dpm_key_disabled) { + /* SCLK */ + if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) { + level = 0; + tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; + while (tmp >>= 1) + level++ ; + + if (0 != level) { + PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)), + "force highest sclk dpm state failed!", return -1); + if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level) + printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ + Curr_Sclk_Index does not match the level \n"); + + } + } + } + + if (0 == data->mclk_dpm_key_disabled) { + /* MCLK */ + if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) { + level = 0; + tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; + while (tmp >>= 1) + level++ ; + + if (0 != level) { + PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)), + "force highest mclk dpm state failed!", return -1); + if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, + TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level) + printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ + Curr_Sclk_Index does not match the level \n"); + } + } + } + + return 0; +} + +/** + * Find the MC microcode version and store it in the HwMgr struct + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr) +{ + cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); + + hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); + + return 0; +} + +/** + * Initialize Dynamic State Adjustment Rule Settings + * + * @param hwmgr the address of the powerplay hardware manager. + */ +int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr) +{ + uint32_t table_size; + struct phm_clock_voltage_dependency_table *table_clk_vlt; + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + hwmgr->dyn_state.mclk_sclk_ratio = 4; + hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */ + hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */ + + /* initialize vddc_dep_on_dal_pwrl table */ + table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record); + table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL); + + if (NULL == table_clk_vlt) { + printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n"); + return -ENOMEM; + } else { + table_clk_vlt->count = 4; + table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW; + table_clk_vlt->entries[0].v = 0; + table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW; + table_clk_vlt->entries[1].v = 720; + table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL; + table_clk_vlt->entries[2].v = 810; + table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE; + table_clk_vlt->entries[3].v = 900; + pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt; + hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; + } + + return 0; +} + +static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = + pptable_info->vdd_dep_on_sclk; + phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = + pptable_info->vdd_dep_on_mclk; + + PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, + "VDD dependency on SCLK table is missing. \ + This table is mandatory", return -1); + PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, + "VDD dependency on SCLK table has to have is missing. \ + This table is mandatory", return -1); + + PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, + "VDD dependency on MCLK table is missing. \ + This table is mandatory", return -1); + PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, + "VDD dependency on MCLK table has to have is missing. \ + This table is mandatory", return -1); + + data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc; + data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; + + pptable_info->max_clock_voltage_on_ac.sclk = + allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; + pptable_info->max_clock_voltage_on_ac.mclk = + allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; + pptable_info->max_clock_voltage_on_ac.vddc = + allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; + pptable_info->max_clock_voltage_on_ac.vddci = + allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; + + hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = + pptable_info->max_clock_voltage_on_ac.sclk; + hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = + pptable_info->max_clock_voltage_on_ac.mclk; + hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = + pptable_info->max_clock_voltage_on_ac.vddc; + hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = + pptable_info->max_clock_voltage_on_ac.vddci; + + return 0; +} + +int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + int result = 1; + + PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr), + "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.", + return result); + + if (0 == data->pcie_dpm_key_disabled) { + PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc( + hwmgr->smumgr, + PPSMC_MSG_PCIeDPM_UnForceLevel)), + "unforce pcie level failed!", + return -1); + } + + result = tonga_upload_dpm_level_enable_mask(hwmgr); + + return result; +} + +static uint32_t tonga_get_lowest_enable_level( + struct pp_hwmgr *hwmgr, uint32_t level_mask) +{ + uint32_t level = 0; + + while (0 == (level_mask & (1 << level))) + level++; + + return level; +} + +static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr) +{ + uint32_t level = 0; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* for now force only sclk */ + if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) { + level = tonga_get_lowest_enable_level(hwmgr, + data->dpm_level_enable_mask.sclk_dpm_enable_mask); + + PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)), + "force sclk dpm state failed!", return -1); + + if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level) + printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \ + Curr_Sclk_Index does not match the level \n"); + } + + return 0; +} + +static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr) +{ + uint8_t entryId; + uint8_t voltageId; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; + phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; + + if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { + for (entryId = 0; entryId < sclk_table->count; ++entryId) { + voltageId = sclk_table->entries[entryId].vddInd; + sclk_table->entries[entryId].vddgfx = + pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd; + } + } else { + for (entryId = 0; entryId < sclk_table->count; ++entryId) { + voltageId = sclk_table->entries[entryId].vddInd; + sclk_table->entries[entryId].vddc = + pptable_info->vddc_lookup_table->entries[voltageId].us_vdd; + } + } + + for (entryId = 0; entryId < mclk_table->count; ++entryId) { + voltageId = mclk_table->entries[entryId].vddInd; + mclk_table->entries[entryId].vddc = + pptable_info->vddc_lookup_table->entries[voltageId].us_vdd; + } + + for (entryId = 0; entryId < mm_table->count; ++entryId) { + voltageId = mm_table->entries[entryId].vddcInd; + mm_table->entries[entryId].vddc = + pptable_info->vddc_lookup_table->entries[voltageId].us_vdd; + } + + return 0; + +} + +static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) +{ + uint8_t entryId; + phm_ppt_v1_voltage_lookup_record v_record; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; + phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; + + if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { + for (entryId = 0; entryId < sclk_table->count; ++entryId) { + if (sclk_table->entries[entryId].vdd_offset & (1 << 15)) + v_record.us_vdd = sclk_table->entries[entryId].vddgfx + + sclk_table->entries[entryId].vdd_offset - 0xFFFF; + else + v_record.us_vdd = sclk_table->entries[entryId].vddgfx + + sclk_table->entries[entryId].vdd_offset; + + sclk_table->entries[entryId].vddc = + v_record.us_cac_low = v_record.us_cac_mid = + v_record.us_cac_high = v_record.us_vdd; + + tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); + } + + for (entryId = 0; entryId < mclk_table->count; ++entryId) { + if (mclk_table->entries[entryId].vdd_offset & (1 << 15)) + v_record.us_vdd = mclk_table->entries[entryId].vddc + + mclk_table->entries[entryId].vdd_offset - 0xFFFF; + else + v_record.us_vdd = mclk_table->entries[entryId].vddc + + mclk_table->entries[entryId].vdd_offset; + + mclk_table->entries[entryId].vddgfx = v_record.us_cac_low = + v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; + tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); + } + } + + return 0; + +} + +static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) +{ + uint32_t entryId; + phm_ppt_v1_voltage_lookup_record v_record; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; + + if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { + for (entryId = 0; entryId < mm_table->count; entryId++) { + if (mm_table->entries[entryId].vddgfx_offset & (1 << 15)) + v_record.us_vdd = mm_table->entries[entryId].vddc + + mm_table->entries[entryId].vddgfx_offset - 0xFFFF; + else + v_record.us_vdd = mm_table->entries[entryId].vddc + + mm_table->entries[entryId].vddgfx_offset; + + /* Add the calculated VDDGFX to the VDDGFX lookup table */ + mm_table->entries[entryId].vddgfx = v_record.us_cac_low = + v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; + tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); + } + } + return 0; +} + + +/** + * Change virtual leakage voltage to actual value. + * + * @param hwmgr the address of the powerplay hardware manager. + * @param pointer to changing voltage + * @param pointer to leakage table + */ +static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, + uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable) +{ + uint32_t leakage_index; + + /* search for leakage voltage ID 0xff01 ~ 0xff08 */ + for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) { + /* if this voltage matches a leakage voltage ID */ + /* patch with actual leakage voltage */ + if (pLeakageTable->leakage_id[leakage_index] == *voltage) { + *voltage = pLeakageTable->actual_voltage[leakage_index]; + break; + } + } + + if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) + printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n"); +} + +/** + * Patch voltage lookup table by EVV leakages. + * + * @param hwmgr the address of the powerplay hardware manager. + * @param pointer to voltage lookup table + * @param pointer to leakage table + * @return always 0 + */ +static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, + phm_ppt_v1_voltage_lookup_table *lookup_table, + phw_tonga_leakage_voltage *pLeakageTable) +{ + uint32_t i; + + for (i = 0; i < lookup_table->count; i++) { + tonga_patch_with_vdd_leakage(hwmgr, + &lookup_table->entries[i].us_vdd, pLeakageTable); + } + + return 0; +} + +static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr, + phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc) +{ + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable); + hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = + pptable_info->max_clock_voltage_on_dc.vddc; + + return 0; +} + +static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage( + struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable, + uint16_t *Vddgfx) +{ + tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable); + return 0; +} + +int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr, + phm_ppt_v1_voltage_lookup_table *lookup_table) +{ + uint32_t table_size, i, j; + phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; + table_size = lookup_table->count; + + PP_ASSERT_WITH_CODE(0 != lookup_table->count, + "Lookup table is empty", return -1); + + /* Sorting voltages */ + for (i = 0; i < table_size - 1; i++) { + for (j = i + 1; j > 0; j--) { + if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) { + tmp_voltage_lookup_record = lookup_table->entries[j-1]; + lookup_table->entries[j-1] = lookup_table->entries[j]; + lookup_table->entries[j] = tmp_voltage_lookup_record; + } + } + } + + return 0; +} + +static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr) +{ + int result = 0; + int tmp_result; + tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) { + tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr, + pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); + if (tmp_result != 0) + result = tmp_result; + + tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr, + &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx); + if (tmp_result != 0) + result = tmp_result; + } else { + tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr, + pptable_info->vddc_lookup_table, &(data->vddc_leakage)); + if (tmp_result != 0) + result = tmp_result; + + tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr, + &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc); + if (tmp_result != 0) + result = tmp_result; + } + + tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr); + if (tmp_result != 0) + result = tmp_result; + + tmp_result = tonga_calc_voltage_dependency_tables(hwmgr); + if (tmp_result != 0) + result = tmp_result; + + tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr); + if (tmp_result != 0) + result = tmp_result; + + tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table); + if (tmp_result != 0) + result = tmp_result; + + tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table); + if (tmp_result != 0) + result = tmp_result; + + return result; +} + +int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + data->low_sclk_interrupt_threshold = 0; + + return 0; +} + +int tonga_setup_asic_task(struct pp_hwmgr *hwmgr) +{ + int tmp_result, result = 0; + + tmp_result = tonga_read_clock_registers(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to read clock registers!", result = tmp_result); + + tmp_result = tonga_get_memory_type(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to get memory type!", result = tmp_result); + + tmp_result = tonga_enable_acpi_power_management(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to enable ACPI power management!", result = tmp_result); + + tmp_result = tonga_init_power_gate_state(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to init power gate state!", result = tmp_result); + + tmp_result = tonga_get_mc_microcode_version(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to get MC microcode version!", result = tmp_result); + + tmp_result = tonga_init_sclk_threshold(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to init sclk threshold!", result = tmp_result); + + return result; +} + +/** + * Enable voltage control + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr) +{ + /* enable voltage control */ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); + + return 0; +} + +/** + * Checks if we want to support voltage control + * + * @param hwmgr the address of the powerplay hardware manager. + */ +bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr) +{ + const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control); +} + +/*---------------------------MC----------------------------*/ + +uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) +{ + return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); +} + +bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg) +{ + bool result = 1; + + switch (inReg) { + case mmMC_SEQ_RAS_TIMING: + *outReg = mmMC_SEQ_RAS_TIMING_LP; + break; + + case mmMC_SEQ_DLL_STBY: + *outReg = mmMC_SEQ_DLL_STBY_LP; + break; + + case mmMC_SEQ_G5PDX_CMD0: + *outReg = mmMC_SEQ_G5PDX_CMD0_LP; + break; + + case mmMC_SEQ_G5PDX_CMD1: + *outReg = mmMC_SEQ_G5PDX_CMD1_LP; + break; + + case mmMC_SEQ_G5PDX_CTRL: + *outReg = mmMC_SEQ_G5PDX_CTRL_LP; + break; + + case mmMC_SEQ_CAS_TIMING: + *outReg = mmMC_SEQ_CAS_TIMING_LP; + break; + + case mmMC_SEQ_MISC_TIMING: + *outReg = mmMC_SEQ_MISC_TIMING_LP; + break; + + case mmMC_SEQ_MISC_TIMING2: + *outReg = mmMC_SEQ_MISC_TIMING2_LP; + break; + + case mmMC_SEQ_PMG_DVS_CMD: + *outReg = mmMC_SEQ_PMG_DVS_CMD_LP; + break; + + case mmMC_SEQ_PMG_DVS_CTL: + *outReg = mmMC_SEQ_PMG_DVS_CTL_LP; + break; + + case mmMC_SEQ_RD_CTL_D0: + *outReg = mmMC_SEQ_RD_CTL_D0_LP; + break; + + case mmMC_SEQ_RD_CTL_D1: + *outReg = mmMC_SEQ_RD_CTL_D1_LP; + break; + + case mmMC_SEQ_WR_CTL_D0: + *outReg = mmMC_SEQ_WR_CTL_D0_LP; + break; + + case mmMC_SEQ_WR_CTL_D1: + *outReg = mmMC_SEQ_WR_CTL_D1_LP; + break; + + case mmMC_PMG_CMD_EMRS: + *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP; + break; + + case mmMC_PMG_CMD_MRS: + *outReg = mmMC_SEQ_PMG_CMD_MRS_LP; + break; + + case mmMC_PMG_CMD_MRS1: + *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP; + break; + + case mmMC_SEQ_PMG_TIMING: + *outReg = mmMC_SEQ_PMG_TIMING_LP; + break; + + case mmMC_PMG_CMD_MRS2: + *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP; + break; + + case mmMC_SEQ_WR_CTL_2: + *outReg = mmMC_SEQ_WR_CTL_2_LP; + break; + + default: + result = 0; + break; + } + + return result; +} + +int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table) +{ + uint32_t i; + uint16_t address; + + for (i = 0; i < table->last; i++) { + table->mc_reg_address[i].s0 = + tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) + ? address : table->mc_reg_address[i].s1; + } + return 0; +} + +int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table) +{ + uint8_t i, j; + + PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), + "Invalid VramInfo table.", return -1); + + for (i = 0; i < table->last; i++) { + ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; + } + ni_table->last = table->last; + + for (i = 0; i < table->num_entries; i++) { + ni_table->mc_reg_table_entry[i].mclk_max = + table->mc_reg_table_entry[i].mclk_max; + for (j = 0; j < table->last; j++) { + ni_table->mc_reg_table_entry[i].mc_data[j] = + table->mc_reg_table_entry[i].mc_data[j]; + } + } + ni_table->num_entries = table->num_entries; + + return 0; +} + +/** + * VBIOS omits some information to reduce size, we need to recover them here. + * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0]. + * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0] + * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0]. + * 3. need to set these data for each clock range + * + * @param hwmgr the address of the powerplay hardware manager. + * @param table the address of MCRegTable + * @return always 0 + */ +int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table) +{ + uint8_t i, j, k; + uint32_t temp_reg; + const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + for (i = 0, j = table->last; i < table->last; i++) { + PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + switch (table->mc_reg_address[i].s1) { + /* + * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0]. + * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0] + */ + case mmMC_SEQ_MISC1: + temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); + table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; + table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + ((temp_reg & 0xffff0000)) | + ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); + } + j++; + PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + + temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); + table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; + table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + (temp_reg & 0xffff0000) | + (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); + + if (!data->is_memory_GDDR5) { + table->mc_reg_table_entry[k].mc_data[j] |= 0x100; + } + } + j++; + PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + + if (!data->is_memory_GDDR5) { + table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; + table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; + } + j++; + PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + } + + break; + + case mmMC_SEQ_RESERVE_M: + temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); + table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; + table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + (temp_reg & 0xffff0000) | + (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); + } + j++; + PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -1); + break; + + default: + break; + } + + } + + table->last = j; + + return 0; +} + +int tonga_set_valid_flag(phw_tonga_mc_reg_table *table) +{ + uint8_t i, j; + for (i = 0; i < table->last; i++) { + for (j = 1; j < table->num_entries; j++) { + if (table->mc_reg_table_entry[j-1].mc_data[i] != + table->mc_reg_table_entry[j].mc_data[i]) { + table->validflag |= (1<<i); + break; + } + } + } + + return 0; +} + +int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) +{ + int result; + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + pp_atomctrl_mc_reg_table *table; + phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table; + uint8_t module_index = tonga_get_memory_modile_index(hwmgr); + + table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); + + if (NULL == table) + return -1; + + /* Program additional LP registers that are no longer programmed by VBIOS */ + cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); + cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); + cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); + cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); + cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); + cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); + cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); + + memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); + + result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); + + if (0 == result) + result = tonga_copy_vbios_smc_reg_table(table, ni_table); + + if (0 == result) { + tonga_set_s0_mc_reg_index(ni_table); + result = tonga_set_mc_special_registers(hwmgr, ni_table); + } + + if (0 == result) + tonga_set_valid_flag(ni_table); + + kfree(table); + return result; +} + +/* +* Copy one arb setting to another and then switch the active set. +* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants. +*/ +int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, + uint32_t arbFreqSrc, uint32_t arbFreqDest) +{ + uint32_t mc_arb_dram_timing; + uint32_t mc_arb_dram_timing2; + uint32_t burst_time; + uint32_t mc_cg_config; + + switch (arbFreqSrc) { + case MC_CG_ARB_FREQ_F0: + mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); + mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); + burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); + break; + + case MC_CG_ARB_FREQ_F1: + mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); + mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); + burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); + break; + + default: + return -1; + } + + switch (arbFreqDest) { + case MC_CG_ARB_FREQ_F0: + cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); + cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); + PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); + break; + + case MC_CG_ARB_FREQ_F1: + cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); + cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); + PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); + break; + + default: + return -1; + } + + mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); + mc_cg_config |= 0x0000000F; + cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); + PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest); + + return 0; +} + +/** + * Initial switch from ARB F0->F1 + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + * This function is to be called from the SetPowerState table. + */ +int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr) +{ + return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); +} + +/** + * Initialize the ARB DRAM timing table's index field. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr) +{ + const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + uint32_t tmp; + int result; + + /* + * This is a read-modify-write on the first byte of the ARB table. + * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'. + * This solution is ugly, but we never write the whole table only individual fields in it. + * In reality this field should not be in that structure but in a soft register. + */ + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + data->arb_table_start, &tmp, data->sram_end); + + if (0 != result) + return result; + + tmp &= 0x00FFFFFF; + tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; + + return tonga_write_smc_sram_dword(hwmgr->smumgr, + data->arb_table_start, tmp, data->sram_end); +} + +int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table) +{ + const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + uint32_t i, j; + + for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) { + if (data->tonga_mc_reg_table.validflag & 1<<j) { + PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, + "Index of mc_reg_table->address[] array out of boundary", return -1); + mc_reg_table->address[i].s0 = + PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0); + mc_reg_table->address[i].s1 = + PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1); + i++; + } + } + + mc_reg_table->last = (uint8_t)i; + + return 0; +} + +/*convert register values from driver to SMC format */ +void tonga_convert_mc_registers( + const phw_tonga_mc_reg_entry * pEntry, + SMU72_Discrete_MCRegisterSet *pData, + uint32_t numEntries, uint32_t validflag) +{ + uint32_t i, j; + + for (i = 0, j = 0; j < numEntries; j++) { + if (validflag & 1<<j) { + pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]); + i++; + } + } +} + +/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */ +int tonga_convert_mc_reg_table_entry_to_smc( + struct pp_hwmgr *hwmgr, + const uint32_t memory_clock, + SMU72_Discrete_MCRegisterSet *mc_reg_table_data + ) +{ + const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + uint32_t i = 0; + + for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) { + if (memory_clock <= + data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) { + break; + } + } + + if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0)) + --i; + + tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i], + mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag); + + return 0; +} + +int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, + SMU72_Discrete_MCRegisters *mc_reg_table) +{ + int result = 0; + tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + int res; + uint32_t i; + + for (i = 0; i < data->dpm_table.mclk_table.count; i++) { + res = tonga_convert_mc_reg_table_entry_to_smc( + hwmgr, + data->dpm_table.mclk_table.dpm_levels[i].value, + &mc_reg_table->data[i] + ); + + if (0 != res) + result = res; + } + + return result; +} + +int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) +{ + int result; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters)); + result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table)); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize MCRegTable for the MC register addresses!", return result;); + + result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize MCRegTable for driver state!", return result;); + + return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start, + (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end); +} + +/** + * Programs static screed detection parameters + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* Set static screen threshold unit*/ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, + data->static_screen_threshold_unit); + /* Set static screen threshold*/ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, + data->static_screen_threshold); + + return 0; +} + +/** + * Setup display gap for glitch free memory clock switching. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_enable_display_gap(struct pp_hwmgr *hwmgr) +{ + uint32_t display_gap = cgs_read_ind_register(hwmgr->device, + CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); + + display_gap = PHM_SET_FIELD(display_gap, + CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE); + + display_gap = PHM_SET_FIELD(display_gap, + CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_DISPLAY_GAP_CNTL, display_gap); + + return 0; +} + +/** + * Programs activity state transition voting clients + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_program_voting_clients(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend); + + /* Clear reset for voting clients before enabling DPM */ + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, + SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); + PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, + SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); + + return 0; +} + + +int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr) +{ + int tmp_result, result = 0; + + tmp_result = tonga_check_for_dpm_stopped(hwmgr); + + if (cf_tonga_voltage_control(hwmgr)) { + tmp_result = tonga_enable_voltage_control(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to enable voltage control!", result = tmp_result); + + tmp_result = tonga_construct_voltage_tables(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to contruct voltage tables!", result = tmp_result); + } + + tmp_result = tonga_initialize_mc_reg_table(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to initialize MC reg table!", result = tmp_result); + + tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to program static screen threshold parameters!", result = tmp_result); + + tmp_result = tonga_enable_display_gap(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to enable display gap!", result = tmp_result); + + tmp_result = tonga_program_voting_clients(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to program voting clients!", result = tmp_result); + + tmp_result = tonga_process_firmware_header(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to process firmware header!", result = tmp_result); + + tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to initialize switch from ArbF0 to F1!", result = tmp_result); + + tmp_result = tonga_init_smc_table(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to initialize SMC table!", result = tmp_result); + + tmp_result = tonga_init_arb_table_index(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to initialize ARB table index!", result = tmp_result); + + tmp_result = tonga_populate_initial_mc_reg_table(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to populate initialize MC Reg table!", result = tmp_result); + + /* enable SCLK control */ + tmp_result = tonga_enable_sclk_control(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to enable SCLK control!", result = tmp_result); + + /* enable DPM */ + tmp_result = tonga_start_dpm(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to start DPM!", result = tmp_result); + + return result; +} + +int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr) +{ + int tmp_result, result = 0; + + tmp_result = tonga_check_for_dpm_running(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "SMC is still running!", return 0); + + tmp_result = tonga_stop_dpm(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to stop DPM!", result = tmp_result); + + tmp_result = tonga_reset_to_default(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), + "Failed to reset to default!", result = tmp_result); + + return result; +} + +int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr) +{ + int result; + + result = tonga_set_boot_state(hwmgr); + if (0 != result) + printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n"); + + return result; +} + +int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) +{ + if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) { + kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); + hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; + } + + if (NULL != hwmgr->backend) { + kfree(hwmgr->backend); + hwmgr->backend = NULL; + } + + return 0; +} + +/** + * Initializes the Volcanic Islands Hardware Manager + * + * @param hwmgr the address of the powerplay hardware manager. + * @return 1 if success; otherwise appropriate error code. + */ +int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr) +{ + int result = 0; + SMU72_Discrete_DpmTable *table = NULL; + tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + phw_tonga_ulv_parm *ulv; + + PP_ASSERT_WITH_CODE((NULL != hwmgr), + "Invalid Parameter!", return -1;); + + data->dll_defaule_on = 0; + data->sram_end = SMC_RAM_END; + + data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT; + data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT; + + data->vddc_vddci_delta = VDDC_VDDCI_DELTA; + data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA; + data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT; + + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DisableVoltageIsland); + + data->sclk_dpm_key_disabled = 0; + data->mclk_dpm_key_disabled = 0; + data->pcie_dpm_key_disabled = 0; + data->pcc_monitor_enabled = 0; + + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_UnTabledHardwareInterface); + + data->gpio_debug = 0; + data->engine_clock_data = 0; + data->memory_clock_data = 0; + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DynamicPatchPowerState); + + /* need to set voltage control types before EVV patching*/ + data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE; + data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE; + data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE; + data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE; + + if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, + VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { + data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ControlVDDGFX)) { + if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, + VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { + data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; + } + } + + if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ControlVDDGFX); + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_EnableMVDDControl)) { + if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, + VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) { + data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO; + } + } + + if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_EnableMVDDControl); + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ControlVDDCI)) { + if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, + VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) + data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO; + else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, + VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) + data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; + } + + if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control) + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ControlVDDCI); + + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_TablelessHardwareInterface); + + if (pptable_info->cac_dtp_table->usClockStretchAmount != 0) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ClockStretcher); + + /* Initializes DPM default values*/ + tonga_initialize_dpm_defaults(hwmgr); + + /* Get leakage voltage based on leakage ID.*/ + PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)), + "Get EVV Voltage Failed. Abort Driver loading!", return -1); + + tonga_complete_dependency_tables(hwmgr); + + /* Parse pptable data read from VBIOS*/ + tonga_set_private_var_based_on_pptale(hwmgr); + + /* ULV Support*/ + ulv = &(data->ulv); + ulv->ulv_supported = 0; + + /* Initalize Dynamic State Adjustment Rule Settings*/ + result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr); + data->uvd_enabled = 0; + + table = &(data->smc_state_table); + + /* + * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable, + * Peak Current Control feature is enabled and we should program PCC HW register + */ + if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { + uint32_t temp_reg = cgs_read_ind_register(hwmgr->device, + CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); + + switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { + case 0: + temp_reg = PHM_SET_FIELD(temp_reg, + CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); + break; + case 1: + temp_reg = PHM_SET_FIELD(temp_reg, + CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); + break; + case 2: + temp_reg = PHM_SET_FIELD(temp_reg, + CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); + break; + case 3: + temp_reg = PHM_SET_FIELD(temp_reg, + CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); + break; + case 4: + temp_reg = PHM_SET_FIELD(temp_reg, + CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); + break; + default: + printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \ + Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n"); + break; + } + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCNB_PWRMGT_CNTL, temp_reg); + } + + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_EnableSMU7ThermalManagement); + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_SMU7); + + data->vddc_phase_shed_control = 0; + + if (0 == result) { + data->is_tlu_enabled = 0; + hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = + TONGA_MAX_HARDWARE_POWERLEVELS; + hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; + hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; + + data->pcie_gen_cap = 0x30007; + data->pcie_lane_cap = 0x2f0000; + } else { + /* Ignore return value in here, we are cleaning up a mess. */ + tonga_hwmgr_backend_fini(hwmgr); + } + + return result; +} + +static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr, + enum amd_dpm_forced_level level) +{ + int ret = 0; + + switch (level) { + case AMD_DPM_FORCED_LEVEL_HIGH: + ret = tonga_force_dpm_highest(hwmgr); + if (ret) + return ret; + break; + case AMD_DPM_FORCED_LEVEL_LOW: + ret = tonga_force_dpm_lowest(hwmgr); + if (ret) + return ret; + break; + case AMD_DPM_FORCED_LEVEL_AUTO: + ret = tonga_unforce_dpm_levels(hwmgr); + if (ret) + return ret; + break; + default: + break; + } + + hwmgr->dpm_level = level; + return ret; +} + +static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, + struct pp_power_state *prequest_ps, + const struct pp_power_state *pcurrent_ps) +{ + struct tonga_power_state *tonga_ps = + cast_phw_tonga_power_state(&prequest_ps->hardware); + + uint32_t sclk; + uint32_t mclk; + struct PP_Clocks minimum_clocks = {0}; + bool disable_mclk_switching; + bool disable_mclk_switching_for_frame_lock; + struct cgs_display_info info = {0}; + const struct phm_clock_and_voltage_limits *max_limits; + uint32_t i; + tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + int32_t count; + int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; + + data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label); + + PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2, + "VI should always have 2 performance levels", + ); + + max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? + &(hwmgr->dyn_state.max_clock_voltage_on_ac) : + &(hwmgr->dyn_state.max_clock_voltage_on_dc); + + if (PP_PowerSource_DC == hwmgr->power_source) { + for (i = 0; i < tonga_ps->performance_level_count; i++) { + if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk) + tonga_ps->performance_levels[i].memory_clock = max_limits->mclk; + if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk) + tonga_ps->performance_levels[i].engine_clock = max_limits->sclk; + } + } + + tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk; + tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk; + + tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk; + + cgs_get_active_displays_info(hwmgr->device, &info); + + /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ + + /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */ + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { + + max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); + stable_pstate_sclk = (max_limits->sclk * 75) / 100; + + for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { + if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) { + stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk; + break; + } + } + + if (count < 0) + stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk; + + stable_pstate_mclk = max_limits->mclk; + + minimum_clocks.engineClock = stable_pstate_sclk; + minimum_clocks.memoryClock = stable_pstate_mclk; + } + + if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) + minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; + + if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) + minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; + + tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; + + if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { + PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock), + "Overdrive sclk exceeds limit", + hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock); + + if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) + tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive; + } + + if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { + PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock), + "Overdrive mclk exceeds limit", + hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock); + + if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) + tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive; + } + + disable_mclk_switching_for_frame_lock = phm_cap_enabled( + hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); + + disable_mclk_switching = (1 < info.display_count) || + disable_mclk_switching_for_frame_lock; + + sclk = tonga_ps->performance_levels[0].engine_clock; + mclk = tonga_ps->performance_levels[0].memory_clock; + + if (disable_mclk_switching) + mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock; + + if (sclk < minimum_clocks.engineClock) + sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; + + if (mclk < minimum_clocks.memoryClock) + mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; + + tonga_ps->performance_levels[0].engine_clock = sclk; + tonga_ps->performance_levels[0].memory_clock = mclk; + + tonga_ps->performance_levels[1].engine_clock = + (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ? + tonga_ps->performance_levels[1].engine_clock : + tonga_ps->performance_levels[0].engine_clock; + + if (disable_mclk_switching) { + if (mclk < tonga_ps->performance_levels[1].memory_clock) + mclk = tonga_ps->performance_levels[1].memory_clock; + + tonga_ps->performance_levels[0].memory_clock = mclk; + tonga_ps->performance_levels[1].memory_clock = mclk; + } else { + if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock) + tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock; + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { + for (i=0; i < tonga_ps->performance_level_count; i++) { + tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk; + tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk; + tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; + tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; + } + } + + return 0; +} + +int tonga_get_power_state_size(struct pp_hwmgr *hwmgr) +{ + return sizeof(struct tonga_power_state); +} + +static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) +{ + struct pp_power_state *ps; + struct tonga_power_state *tonga_ps; + + if (hwmgr == NULL) + return -EINVAL; + + ps = hwmgr->request_ps; + + if (ps == NULL) + return -EINVAL; + + tonga_ps = cast_phw_tonga_power_state(&ps->hardware); + + if (low) + return tonga_ps->performance_levels[0].memory_clock; + else + return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock; +} + +static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) +{ + struct pp_power_state *ps; + struct tonga_power_state *tonga_ps; + + if (hwmgr == NULL) + return -EINVAL; + + ps = hwmgr->request_ps; + + if (ps == NULL) + return -EINVAL; + + tonga_ps = cast_phw_tonga_power_state(&ps->hardware); + + if (low) + return tonga_ps->performance_levels[0].engine_clock; + else + return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock; +} + +static uint16_t tonga_get_current_pcie_speed( + struct pp_hwmgr *hwmgr) +{ + uint32_t speed_cntl = 0; + + speed_cntl = cgs_read_ind_register(hwmgr->device, + CGS_IND_REG__PCIE, + ixPCIE_LC_SPEED_CNTL); + return((uint16_t)PHM_GET_FIELD(speed_cntl, + PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); +} + +static int tonga_get_current_pcie_lane_number( + struct pp_hwmgr *hwmgr) +{ + uint32_t link_width; + + link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__PCIE, + PCIE_LC_LINK_WIDTH_CNTL, + LC_LINK_WIDTH_RD); + + PP_ASSERT_WITH_CODE((7 >= link_width), + "Invalid PCIe lane width!", return 0); + + return decode_pcie_lane_width(link_width); +} + +static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, + struct pp_hw_power_state *hw_ps) +{ + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps; + ATOM_FIRMWARE_INFO_V2_2 *fw_info; + uint16_t size; + uint8_t frev, crev; + int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); + + /* First retrieve the Boot clocks and VDDC from the firmware info table. + * We assume here that fw_info is unchanged if this call fails. + */ + fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( + hwmgr->device, index, + &size, &frev, &crev); + if (!fw_info) + /* During a test, there is no firmware info table. */ + return 0; + + /* Patch the state. */ + data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock); + data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock); + data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage); + data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage); + data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage); + data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr); + data->vbios_boot_state.pcie_lane_bootup_value = + (uint16_t)tonga_get_current_pcie_lane_number(hwmgr); + + /* set boot power state */ + ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; + ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; + ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; + ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; + + return 0; +} + +static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, + void *state, struct pp_power_state *power_state, + void *pp_table, uint32_t classification_flag) +{ + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + struct tonga_power_state *tonga_ps = + (struct tonga_power_state *)(&(power_state->hardware)); + + struct tonga_performance_level *performance_level; + + ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; + + ATOM_Tonga_POWERPLAYTABLE *powerplay_table = + (ATOM_Tonga_POWERPLAYTABLE *)pp_table; + + ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = + (ATOM_Tonga_SCLK_Dependency_Table *) + (((uint64_t)powerplay_table) + + le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); + + ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = + (ATOM_Tonga_MCLK_Dependency_Table *) + (((uint64_t)powerplay_table) + + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); + + /* The following fields are not initialized here: id orderedList allStatesList */ + power_state->classification.ui_label = + (le16_to_cpu(state_entry->usClassification) & + ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> + ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; + power_state->classification.flags = classification_flag; + /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ + + power_state->classification.temporary_state = false; + power_state->classification.to_be_deleted = false; + + power_state->validation.disallowOnDC = + (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC)); + + power_state->pcie.lanes = 0; + + power_state->display.disableFrameModulation = false; + power_state->display.limitRefreshrate = false; + power_state->display.enableVariBright = + (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT)); + + power_state->validation.supportedPowerLevels = 0; + power_state->uvd_clocks.VCLK = 0; + power_state->uvd_clocks.DCLK = 0; + power_state->temperatures.min = 0; + power_state->temperatures.max = 0; + + performance_level = &(tonga_ps->performance_levels + [tonga_ps->performance_level_count++]); + + PP_ASSERT_WITH_CODE( + (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS), + "Performance levels exceeds SMC limit!", + return -1); + + PP_ASSERT_WITH_CODE( + (tonga_ps->performance_level_count <= + hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), + "Performance levels exceeds Driver limit!", + return -1); + + /* Performance levels are arranged from low to high. */ + performance_level->memory_clock = + le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk); + + performance_level->engine_clock = + le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk); + + performance_level->pcie_gen = get_pcie_gen_support( + data->pcie_gen_cap, + state_entry->ucPCIEGenLow); + + performance_level->pcie_lane = get_pcie_lane_support( + data->pcie_lane_cap, + state_entry->ucPCIELaneHigh); + + performance_level = + &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]); + + performance_level->memory_clock = + le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk); + + performance_level->engine_clock = + le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk); + + performance_level->pcie_gen = get_pcie_gen_support( + data->pcie_gen_cap, + state_entry->ucPCIEGenHigh); + + performance_level->pcie_lane = get_pcie_lane_support( + data->pcie_lane_cap, + state_entry->ucPCIELaneHigh); + + return 0; +} + +static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr, + unsigned long entry_index, struct pp_power_state *ps) +{ + int result; + struct tonga_power_state *tonga_ps; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = + table_info->vdd_dep_on_mclk; + + ps->hardware.magic = PhwTonga_Magic; + + tonga_ps = cast_phw_tonga_power_state(&(ps->hardware)); + + result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps, + tonga_get_pp_table_entry_callback_func); + + /* This is the earliest time we have all the dependency table and the VBIOS boot state + * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state + * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state + */ + if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { + if (dep_mclk_table->entries[0].clk != + data->vbios_boot_state.mclk_bootup_value) + printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " + "does not match VBIOS boot MCLK level"); + if (dep_mclk_table->entries[0].vddci != + data->vbios_boot_state.vddci_bootup_value) + printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " + "does not match VBIOS boot VDDCI level"); + } + + /* set DC compatible flag if this state supports DC */ + if (!ps->validation.disallowOnDC) + tonga_ps->dc_compatible = true; + + if (ps->classification.flags & PP_StateClassificationFlag_ACPI) + data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen; + else if (ps->classification.flags & PP_StateClassificationFlag_Boot) { + if (data->bacos.best_match == 0xffff) { + /* For V.I. use boot state as base BACO state */ + data->bacos.best_match = PP_StateClassificationFlag_Boot; + data->bacos.performance_level = tonga_ps->performance_levels[0]; + } + } + + tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK; + tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK; + + if (!result) { + uint32_t i; + + switch (ps->classification.ui_label) { + case PP_StateUILabel_Performance: + data->use_pcie_performance_levels = true; + + for (i = 0; i < tonga_ps->performance_level_count; i++) { + if (data->pcie_gen_performance.max < + tonga_ps->performance_levels[i].pcie_gen) + data->pcie_gen_performance.max = + tonga_ps->performance_levels[i].pcie_gen; + + if (data->pcie_gen_performance.min > + tonga_ps->performance_levels[i].pcie_gen) + data->pcie_gen_performance.min = + tonga_ps->performance_levels[i].pcie_gen; + + if (data->pcie_lane_performance.max < + tonga_ps->performance_levels[i].pcie_lane) + data->pcie_lane_performance.max = + tonga_ps->performance_levels[i].pcie_lane; + + if (data->pcie_lane_performance.min > + tonga_ps->performance_levels[i].pcie_lane) + data->pcie_lane_performance.min = + tonga_ps->performance_levels[i].pcie_lane; + } + break; + case PP_StateUILabel_Battery: + data->use_pcie_power_saving_levels = true; + + for (i = 0; i < tonga_ps->performance_level_count; i++) { + if (data->pcie_gen_power_saving.max < + tonga_ps->performance_levels[i].pcie_gen) + data->pcie_gen_power_saving.max = + tonga_ps->performance_levels[i].pcie_gen; + + if (data->pcie_gen_power_saving.min > + tonga_ps->performance_levels[i].pcie_gen) + data->pcie_gen_power_saving.min = + tonga_ps->performance_levels[i].pcie_gen; + + if (data->pcie_lane_power_saving.max < + tonga_ps->performance_levels[i].pcie_lane) + data->pcie_lane_power_saving.max = + tonga_ps->performance_levels[i].pcie_lane; + + if (data->pcie_lane_power_saving.min > + tonga_ps->performance_levels[i].pcie_lane) + data->pcie_lane_power_saving.min = + tonga_ps->performance_levels[i].pcie_lane; + } + break; + default: + break; + } + } + return 0; +} + +static void +tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m) +{ + uint32_t sclk, mclk; + + smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency)); + + sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); + + smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency)); + + mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); + seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100); +} + +static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) +{ + const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; + const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table); + uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock; + struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table); + uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock; + struct PP_Clocks min_clocks = {0}; + uint32_t i; + struct cgs_display_info info = {0}; + + data->need_update_smu7_dpm_table = 0; + + for (i = 0; i < psclk_table->count; i++) { + if (sclk == psclk_table->dpm_levels[i].value) + break; + } + + if (i >= psclk_table->count) + data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; + else { + /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/ + if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR) + data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; + } + + for (i=0; i < pmclk_table->count; i++) { + if (mclk == pmclk_table->dpm_levels[i].value) + break; + } + + if (i >= pmclk_table->count) + data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; + + cgs_get_active_displays_info(hwmgr->device, &info); + + if (data->display_timing.num_existing_displays != info.display_count) + data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; + + return 0; +} + +static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps) +{ + uint32_t i; + uint32_t sclk, max_sclk = 0; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + struct tonga_dpm_table *pdpm_table = &data->dpm_table; + + for (i = 0; i < hw_ps->performance_level_count; i++) { + sclk = hw_ps->performance_levels[i].engine_clock; + if (max_sclk < sclk) + max_sclk = sclk; + } + + for (i = 0; i < pdpm_table->sclk_table.count; i++) { + if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk) + return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ? + pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value : + pdpm_table->pcie_speed_table.dpm_levels[i].value); + } + + return 0; +} + +static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input) +{ + const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state); + const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state); + + uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps); + uint16_t current_link_speed; + + if (data->force_pcie_gen == PP_PCIEGenInvalid) + current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps); + else + current_link_speed = data->force_pcie_gen; + + data->force_pcie_gen = PP_PCIEGenInvalid; + data->pspp_notify_required = false; + if (target_link_speed > current_link_speed) { + switch(target_link_speed) { + case PP_PCIEGen3: + if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) + break; + data->force_pcie_gen = PP_PCIEGen2; + if (current_link_speed == PP_PCIEGen2) + break; + case PP_PCIEGen2: + if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) + break; + default: + data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr); + break; + } + } else { + if (target_link_speed < current_link_speed) + data->pspp_notify_required = true; + } + + return 0; +} + +static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) +{ + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + if (0 == data->need_update_smu7_dpm_table) + return 0; + + if ((0 == data->sclk_dpm_key_disabled) && + (data->need_update_smu7_dpm_table & + (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { + PP_ASSERT_WITH_CODE( + true == tonga_is_dpm_running(hwmgr), + "Trying to freeze SCLK DPM when DPM is disabled", + ); + PP_ASSERT_WITH_CODE( + 0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_SCLKDPM_FreezeLevel), + "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", + return -1); + } + + if ((0 == data->mclk_dpm_key_disabled) && + (data->need_update_smu7_dpm_table & + DPMTABLE_OD_UPDATE_MCLK)) { + PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr), + "Trying to freeze MCLK DPM when DPM is disabled", + ); + PP_ASSERT_WITH_CODE( + 0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_MCLKDPM_FreezeLevel), + "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", + return -1); + } + + return 0; +} + +static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input) +{ + int result = 0; + + const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; + const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock; + uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock; + struct tonga_dpm_table *pdpm_table = &data->dpm_table; + + struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table; + uint32_t dpm_count, clock_percent; + uint32_t i; + + if (0 == data->need_update_smu7_dpm_table) + return 0; + + if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { + pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || + phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { + /* Need to do calculation based on the golden DPM table + * as the Heatmap GPU Clock axis is also based on the default values + */ + PP_ASSERT_WITH_CODE( + (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0), + "Divide by 0!", + return -1); + dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2; + for (i = dpm_count; i > 1; i--) { + if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) { + clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) / + pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value; + + pdpm_table->sclk_table.dpm_levels[i].value = + pgolden_dpm_table->sclk_table.dpm_levels[i].value + + (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; + + } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) { + clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) / + pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value; + + pdpm_table->sclk_table.dpm_levels[i].value = + pgolden_dpm_table->sclk_table.dpm_levels[i].value - + (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; + } else + pdpm_table->sclk_table.dpm_levels[i].value = + pgolden_dpm_table->sclk_table.dpm_levels[i].value; + } + } + } + + if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { + pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || + phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { + + PP_ASSERT_WITH_CODE( + (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0), + "Divide by 0!", + return -1); + dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2; + for (i = dpm_count; i > 1; i--) { + if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) { + clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) / + pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value; + + pdpm_table->mclk_table.dpm_levels[i].value = + pgolden_dpm_table->mclk_table.dpm_levels[i].value + + (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100; + + } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) { + clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) / + pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value; + + pdpm_table->mclk_table.dpm_levels[i].value = + pgolden_dpm_table->mclk_table.dpm_levels[i].value - + (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100; + } else + pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value; + } + } + } + + if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { + result = tonga_populate_all_memory_levels(hwmgr); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", + return result); + } + + if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { + /*populate MCLK dpm table to SMU7 */ + result = tonga_populate_all_memory_levels(hwmgr); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", + return result); + } + + return result; +} + +static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr, + struct tonga_single_dpm_table * pdpm_table, + uint32_t low_limit, uint32_t high_limit) +{ + uint32_t i; + + for (i = 0; i < pdpm_table->count; i++) { + if ((pdpm_table->dpm_levels[i].value < low_limit) || + (pdpm_table->dpm_levels[i].value > high_limit)) + pdpm_table->dpm_levels[i].enabled = false; + else + pdpm_table->dpm_levels[i].enabled = true; + } + return 0; +} + +static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state) +{ + int result = 0; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + uint32_t high_limit_count; + + PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1), + "power state did not have any performance level", + return -1); + + high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1; + + tonga_trim_single_dpm_states(hwmgr, + &(data->dpm_table.sclk_table), + hw_state->performance_levels[0].engine_clock, + hw_state->performance_levels[high_limit_count].engine_clock); + + tonga_trim_single_dpm_states(hwmgr, + &(data->dpm_table.mclk_table), + hw_state->performance_levels[0].memory_clock, + hw_state->performance_levels[high_limit_count].memory_clock); + + return result; +} + +static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input) +{ + int result; + const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); + + + result = tonga_trim_dpm_states(hwmgr, tonga_ps); + if (0 != result) + return result; + + data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); + data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); + data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask; + if (data->uvd_enabled) + data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; + + data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); + + return 0; +} + +static int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) +{ + return smum_send_msg_to_smc(hwmgr->smumgr, enable? + (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable : + (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable); +} + +static int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) +{ + const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state); + const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state); + + uint32_t mm_boot_level_offset, mm_boot_level_value; + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + + if(tonga_nps->vce_clocks.EVCLK >0 && + (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) { + data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1); + + mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel); + mm_boot_level_offset /= 4; + mm_boot_level_offset *= 4; + mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); + mm_boot_level_value &= 0xFF00FFFF; + mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16; + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { + smum_send_msg_to_smc_with_parameter( + hwmgr->smumgr, + (PPSMC_Msg)(PPSMC_MSG_VCEDPM_SetEnabledMask), + (uint32_t)1 << data->smc_state_table.VceBootLevel); + + tonga_enable_disable_vce_dpm(hwmgr, true); + } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0) + tonga_enable_disable_vce_dpm(hwmgr, false); + } + + return 0; +} + +static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) +{ + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + uint32_t address; + int32_t result; + + if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) + return 0; + + + memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters)); + + result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table)); + + if(result != 0) + return result; + + + address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); + + return tonga_copy_bytes_to_smc(hwmgr->smumgr, address, + (uint8_t *)&data->mc_reg_table.data[0], + sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, + data->sram_end); +} + +static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr) +{ + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + if (data->need_update_smu7_dpm_table & + (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) + return tonga_program_memory_timing_parameters(hwmgr); + + return 0; +} + +static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) +{ + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + + if (0 == data->need_update_smu7_dpm_table) + return 0; + + if ((0 == data->sclk_dpm_key_disabled) && + (data->need_update_smu7_dpm_table & + (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { + + PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr), + "Trying to Unfreeze SCLK DPM when DPM is disabled", + ); + PP_ASSERT_WITH_CODE( + 0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_SCLKDPM_UnfreezeLevel), + "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", + return -1); + } + + if ((0 == data->mclk_dpm_key_disabled) && + (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { + + PP_ASSERT_WITH_CODE( + true == tonga_is_dpm_running(hwmgr), + "Trying to Unfreeze MCLK DPM when DPM is disabled", + ); + PP_ASSERT_WITH_CODE( + 0 == smum_send_msg_to_smc(hwmgr->smumgr, + PPSMC_MSG_SCLKDPM_UnfreezeLevel), + "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", + return -1); + } + + data->need_update_smu7_dpm_table = 0; + + return 0; +} + +static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input) +{ + const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; + struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend); + const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state); + uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps); + uint8_t request; + + if (data->pspp_notify_required || + data->pcie_performance_request) { + if (target_link_speed == PP_PCIEGen3) + request = PCIE_PERF_REQ_GEN3; + else if (target_link_speed == PP_PCIEGen2) + request = PCIE_PERF_REQ_GEN2; + else + request = PCIE_PERF_REQ_GEN1; + + if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) { + data->pcie_performance_request = false; + return 0; + } + + if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) { + if (PP_PCIEGen2 == target_link_speed) + printk("PSPP request to switch to Gen2 from Gen3 Failed!"); + else + printk("PSPP request to switch to Gen1 from Gen2 Failed!"); + } + } + + data->pcie_performance_request = false; + return 0; +} + +static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) +{ + int tmp_result, result = 0; + + tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { + tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result); + } + + tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result); + + tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); + + tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result); + + tmp_result = tonga_update_vce_dpm(hwmgr, input); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result); + + tmp_result = tonga_update_sclk_threshold(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result); + + tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result); + + tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result); + + tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result); + + tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { + tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input); + PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result); + } + + return result; +} + +static const struct pp_hwmgr_func tonga_hwmgr_funcs = { + .backend_init = &tonga_hwmgr_backend_init, + .backend_fini = &tonga_hwmgr_backend_fini, + .asic_setup = &tonga_setup_asic_task, + .dynamic_state_management_enable = &tonga_enable_dpm_tasks, + .apply_state_adjust_rules = tonga_apply_state_adjust_rules, + .force_dpm_level = &tonga_force_dpm_level, + .power_state_set = tonga_set_power_state_tasks, + .get_power_state_size = tonga_get_power_state_size, + .get_mclk = tonga_dpm_get_mclk, + .get_sclk = tonga_dpm_get_sclk, + .patch_boot_state = tonga_dpm_patch_boot_state, + .get_pp_table_entry = tonga_get_pp_table_entry, + .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries, + .print_current_perforce_level = tonga_print_current_perforce_level, +}; + +int tonga_hwmgr_init(struct pp_hwmgr *hwmgr) +{ + tonga_hwmgr *data; + + data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL); + if (data == NULL) + return -ENOMEM; + memset(data, 0x00, sizeof(tonga_hwmgr)); + + hwmgr->backend = data; + hwmgr->hwmgr_func = &tonga_hwmgr_funcs; + hwmgr->pptable_func = &tonga_pptable_funcs; + + return 0; +} + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h new file mode 100644 index 000000000000..d007706a434a --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h @@ -0,0 +1,427 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#ifndef TONGA_HWMGR_H +#define TONGA_HWMGR_H + +#include "hwmgr.h" +#include "smu72_discrete.h" +#include "ppatomctrl.h" +#include "ppinterrupt.h" +#include "tonga_powertune.h" + +#define TONGA_MAX_HARDWARE_POWERLEVELS 2 +#define TONGA_DYNCLK_NUMBER_OF_TREND_COEFFICIENTS 15 + +struct tonga_performance_level { + uint32_t memory_clock; + uint32_t engine_clock; + uint16_t pcie_gen; + uint16_t pcie_lane; +}; + +struct _phw_tonga_bacos { + uint32_t best_match; + uint32_t baco_flags; + struct tonga_performance_level performance_level; +}; +typedef struct _phw_tonga_bacos phw_tonga_bacos; + +struct _phw_tonga_uvd_clocks { + uint32_t VCLK; + uint32_t DCLK; +}; + +typedef struct _phw_tonga_uvd_clocks phw_tonga_uvd_clocks; + +struct _phw_tonga_vce_clocks { + uint32_t EVCLK; + uint32_t ECCLK; +}; + +typedef struct _phw_tonga_vce_clocks phw_tonga_vce_clocks; + +struct tonga_power_state { + uint32_t magic; + phw_tonga_uvd_clocks uvd_clocks; + phw_tonga_vce_clocks vce_clocks; + uint32_t sam_clk; + uint32_t acp_clk; + uint16_t performance_level_count; + bool dc_compatible; + uint32_t sclk_threshold; + struct tonga_performance_level performance_levels[TONGA_MAX_HARDWARE_POWERLEVELS]; +}; + +struct _phw_tonga_dpm_level { + bool enabled; + uint32_t value; + uint32_t param1; +}; +typedef struct _phw_tonga_dpm_level phw_tonga_dpm_level; + +#define TONGA_MAX_DEEPSLEEP_DIVIDER_ID 5 +#define MAX_REGULAR_DPM_NUMBER 8 +#define TONGA_MINIMUM_ENGINE_CLOCK 2500 + +struct tonga_single_dpm_table { + uint32_t count; + phw_tonga_dpm_level dpm_levels[MAX_REGULAR_DPM_NUMBER]; +}; + +struct tonga_dpm_table { + struct tonga_single_dpm_table sclk_table; + struct tonga_single_dpm_table mclk_table; + struct tonga_single_dpm_table pcie_speed_table; + struct tonga_single_dpm_table vddc_table; + struct tonga_single_dpm_table vdd_gfx_table; + struct tonga_single_dpm_table vdd_ci_table; + struct tonga_single_dpm_table mvdd_table; +}; +typedef struct _phw_tonga_dpm_table phw_tonga_dpm_table; + + +struct _phw_tonga_clock_regisiters { + uint32_t vCG_SPLL_FUNC_CNTL; + uint32_t vCG_SPLL_FUNC_CNTL_2; + uint32_t vCG_SPLL_FUNC_CNTL_3; + uint32_t vCG_SPLL_FUNC_CNTL_4; + uint32_t vCG_SPLL_SPREAD_SPECTRUM; + uint32_t vCG_SPLL_SPREAD_SPECTRUM_2; + uint32_t vDLL_CNTL; + uint32_t vMCLK_PWRMGT_CNTL; + uint32_t vMPLL_AD_FUNC_CNTL; + uint32_t vMPLL_DQ_FUNC_CNTL; + uint32_t vMPLL_FUNC_CNTL; + uint32_t vMPLL_FUNC_CNTL_1; + uint32_t vMPLL_FUNC_CNTL_2; + uint32_t vMPLL_SS1; + uint32_t vMPLL_SS2; +}; +typedef struct _phw_tonga_clock_regisiters phw_tonga_clock_registers; + +struct _phw_tonga_voltage_smio_registers { + uint32_t vs0_vid_lower_smio_cntl; +}; +typedef struct _phw_tonga_voltage_smio_registers phw_tonga_voltage_smio_registers; + + +struct _phw_tonga_mc_reg_entry { + uint32_t mclk_max; + uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE]; +}; +typedef struct _phw_tonga_mc_reg_entry phw_tonga_mc_reg_entry; + +struct _phw_tonga_mc_reg_table { + uint8_t last; /* number of registers*/ + uint8_t num_entries; /* number of entries in mc_reg_table_entry used*/ + uint16_t validflag; /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/ + phw_tonga_mc_reg_entry mc_reg_table_entry[MAX_AC_TIMING_ENTRIES]; + SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE]; +}; +typedef struct _phw_tonga_mc_reg_table phw_tonga_mc_reg_table; + +#define DISABLE_MC_LOADMICROCODE 1 +#define DISABLE_MC_CFGPROGRAMMING 2 + +/*Ultra Low Voltage parameter structure */ +struct _phw_tonga_ulv_parm{ + bool ulv_supported; + uint32_t ch_ulv_parameter; + uint32_t ulv_volt_change_delay; + struct tonga_performance_level ulv_power_level; +}; +typedef struct _phw_tonga_ulv_parm phw_tonga_ulv_parm; + +#define TONGA_MAX_LEAKAGE_COUNT 8 + +struct _phw_tonga_leakage_voltage { + uint16_t count; + uint16_t leakage_id[TONGA_MAX_LEAKAGE_COUNT]; + uint16_t actual_voltage[TONGA_MAX_LEAKAGE_COUNT]; +}; +typedef struct _phw_tonga_leakage_voltage phw_tonga_leakage_voltage; + +struct _phw_tonga_display_timing { + uint32_t min_clock_insr; + uint32_t num_existing_displays; +}; +typedef struct _phw_tonga_display_timing phw_tonga_display_timing; + +struct _phw_tonga_dpmlevel_enable_mask { + uint32_t uvd_dpm_enable_mask; + uint32_t vce_dpm_enable_mask; + uint32_t acp_dpm_enable_mask; + uint32_t samu_dpm_enable_mask; + uint32_t sclk_dpm_enable_mask; + uint32_t mclk_dpm_enable_mask; + uint32_t pcie_dpm_enable_mask; +}; +typedef struct _phw_tonga_dpmlevel_enable_mask phw_tonga_dpmlevel_enable_mask; + +struct _phw_tonga_pcie_perf_range { + uint16_t max; + uint16_t min; +}; +typedef struct _phw_tonga_pcie_perf_range phw_tonga_pcie_perf_range; + +struct _phw_tonga_vbios_boot_state { + uint16_t mvdd_bootup_value; + uint16_t vddc_bootup_value; + uint16_t vddci_bootup_value; + uint16_t vddgfx_bootup_value; + uint32_t sclk_bootup_value; + uint32_t mclk_bootup_value; + uint16_t pcie_gen_bootup_value; + uint16_t pcie_lane_bootup_value; +}; +typedef struct _phw_tonga_vbios_boot_state phw_tonga_vbios_boot_state; + +#define DPMTABLE_OD_UPDATE_SCLK 0x00000001 +#define DPMTABLE_OD_UPDATE_MCLK 0x00000002 +#define DPMTABLE_UPDATE_SCLK 0x00000004 +#define DPMTABLE_UPDATE_MCLK 0x00000008 + +/* We need to review which fields are needed. */ +/* This is mostly a copy of the RV7xx/Evergreen structure which is close, but not identical to the N.Islands one. */ +struct tonga_hwmgr { + struct tonga_dpm_table dpm_table; + struct tonga_dpm_table golden_dpm_table; + + uint32_t voting_rights_clients0; + uint32_t voting_rights_clients1; + uint32_t voting_rights_clients2; + uint32_t voting_rights_clients3; + uint32_t voting_rights_clients4; + uint32_t voting_rights_clients5; + uint32_t voting_rights_clients6; + uint32_t voting_rights_clients7; + uint32_t static_screen_threshold_unit; + uint32_t static_screen_threshold; + uint32_t voltage_control; + uint32_t vdd_gfx_control; + + uint32_t vddc_vddci_delta; + uint32_t vddc_vddgfx_delta; + + pp_interrupt_registration_info internal_high_thermal_interrupt_info; + pp_interrupt_registration_info internal_low_thermal_interrupt_info; + pp_interrupt_registration_info smc_to_host_interrupt_info; + uint32_t active_auto_throttle_sources; + + pp_interrupt_registration_info external_throttle_interrupt; + pp_interrupt_callback external_throttle_callback; + void *external_throttle_context; + + pp_interrupt_registration_info ctf_interrupt_info; + pp_interrupt_callback ctf_callback; + void *ctf_context; + + phw_tonga_clock_registers clock_registers; + phw_tonga_voltage_smio_registers voltage_smio_registers; + + bool is_memory_GDDR5; + uint16_t acpi_vddc; + bool pspp_notify_required; /* Flag to indicate if PSPP notification to SBIOS is required */ + uint16_t force_pcie_gen; /* The forced PCI-E speed if not 0xffff */ + uint16_t acpi_pcie_gen; /* The PCI-E speed at ACPI time */ + uint32_t pcie_gen_cap; /* The PCI-E speed capabilities bitmap from CAIL */ + uint32_t pcie_lane_cap; /* The PCI-E lane capabilities bitmap from CAIL */ + uint32_t pcie_spc_cap; /* Symbol Per Clock Capabilities from registry */ + phw_tonga_leakage_voltage vddc_leakage; /* The Leakage VDDC supported (based on leakage ID).*/ + phw_tonga_leakage_voltage vddcgfx_leakage; /* The Leakage VDDC supported (based on leakage ID). */ + phw_tonga_leakage_voltage vddci_leakage; /* The Leakage VDDCI supported (based on leakage ID). */ + + uint32_t mvdd_control; + uint32_t vddc_mask_low; + uint32_t mvdd_mask_low; + uint16_t max_vddc_in_pp_table; /* the maximum VDDC value in the powerplay table*/ + uint16_t min_vddc_in_pp_table; + uint16_t max_vddci_in_pp_table; /* the maximum VDDCI value in the powerplay table */ + uint16_t min_vddci_in_pp_table; + uint32_t mclk_strobe_mode_threshold; + uint32_t mclk_stutter_mode_threshold; + uint32_t mclk_edc_enable_threshold; + uint32_t mclk_edc_wr_enable_threshold; + bool is_uvd_enabled; + bool is_xdma_enabled; + phw_tonga_vbios_boot_state vbios_boot_state; + + bool battery_state; + bool is_tlu_enabled; + bool pcie_performance_request; + + /* -------------- SMC SRAM Address of firmware header tables ----------------*/ + uint32_t sram_end; /* The first address after the SMC SRAM. */ + uint32_t dpm_table_start; /* The start of the dpm table in the SMC SRAM. */ + uint32_t soft_regs_start; /* The start of the soft registers in the SMC SRAM. */ + uint32_t mc_reg_table_start; /* The start of the mc register table in the SMC SRAM. */ + uint32_t fan_table_start; /* The start of the fan table in the SMC SRAM. */ + uint32_t arb_table_start; /* The start of the ARB setting table in the SMC SRAM. */ + SMU72_Discrete_DpmTable smc_state_table; /* The carbon copy of the SMC state table. */ + SMU72_Discrete_MCRegisters mc_reg_table; + SMU72_Discrete_Ulv ulv_setting; /* The carbon copy of ULV setting. */ + /* -------------- Stuff originally coming from Evergreen --------------------*/ + phw_tonga_mc_reg_table tonga_mc_reg_table; + uint32_t vdd_ci_control; + pp_atomctrl_voltage_table vddc_voltage_table; + pp_atomctrl_voltage_table vddci_voltage_table; + pp_atomctrl_voltage_table vddgfx_voltage_table; + pp_atomctrl_voltage_table mvdd_voltage_table; + + uint32_t mgcg_cgtt_local2; + uint32_t mgcg_cgtt_local3; + uint32_t gpio_debug; + uint32_t mc_micro_code_feature; + uint32_t highest_mclk; + uint16_t acpi_vdd_ci; + uint8_t mvdd_high_index; + uint8_t mvdd_low_index; + bool dll_defaule_on; + bool performance_request_registered; + + /* ----------------- Low Power Features ---------------------*/ + phw_tonga_bacos bacos; + phw_tonga_ulv_parm ulv; + /* ----------------- CAC Stuff ---------------------*/ + uint32_t cac_table_start; + bool cac_configuration_required; /* TRUE if PP_CACConfigurationRequired == 1 */ + bool driver_calculate_cac_leakage; /* TRUE if PP_DriverCalculateCACLeakage == 1 */ + bool cac_enabled; + /* ----------------- DPM2 Parameters ---------------------*/ + uint32_t power_containment_features; + bool enable_bapm_feature; + bool enable_tdc_limit_feature; + bool enable_pkg_pwr_tracking_feature; + bool disable_uvd_power_tune_feature; + phw_tonga_pt_defaults *power_tune_defaults; + SMU72_Discrete_PmFuses power_tune_table; + uint32_t ul_dte_tj_offset; /* Fudge factor in DPM table to correct HW DTE errors */ + uint32_t fast_watemark_threshold; /* use fast watermark if clock is equal or above this. In percentage of the target high sclk. */ + + /* ----------------- Phase Shedding ---------------------*/ + bool vddc_phase_shed_control; + /* --------------------- DI/DT --------------------------*/ + phw_tonga_display_timing display_timing; + /* --------- ReadRegistry data for memory and engine clock margins ---- */ + uint32_t engine_clock_data; + uint32_t memory_clock_data; + /* -------- Thermal Temperature Setting --------------*/ + phw_tonga_dpmlevel_enable_mask dpm_level_enable_mask; + uint32_t need_update_smu7_dpm_table; + uint32_t sclk_dpm_key_disabled; + uint32_t mclk_dpm_key_disabled; + uint32_t pcie_dpm_key_disabled; + uint32_t min_engine_clocks; /* used to store the previous dal min sclock */ + phw_tonga_pcie_perf_range pcie_gen_performance; + phw_tonga_pcie_perf_range pcie_lane_performance; + phw_tonga_pcie_perf_range pcie_gen_power_saving; + phw_tonga_pcie_perf_range pcie_lane_power_saving; + bool use_pcie_performance_levels; + bool use_pcie_power_saving_levels; + uint32_t activity_target[SMU72_MAX_LEVELS_GRAPHICS]; /* percentage value from 0-100, default 50 */ + uint32_t mclk_activity_target; + uint32_t low_sclk_interrupt_threshold; + uint32_t last_mclk_dpm_enable_mask; + bool uvd_enabled; + uint32_t pcc_monitor_enabled; + + /* --------- Power Gating States ------------*/ + bool uvd_power_gated; /* 1: gated, 0:not gated */ + bool vce_power_gated; /* 1: gated, 0:not gated */ + bool samu_power_gated; /* 1: gated, 0:not gated */ + bool acp_power_gated; /* 1: gated, 0:not gated */ + bool pg_acp_init; + +}; + +typedef struct tonga_hwmgr tonga_hwmgr; + +#define TONGA_DPM2_NEAR_TDP_DEC 10 +#define TONGA_DPM2_ABOVE_SAFE_INC 5 +#define TONGA_DPM2_BELOW_SAFE_INC 20 + +#define TONGA_DPM2_LTA_WINDOW_SIZE 7 /* Log2 of the LTA window size (l2numWin_TDP). Eg. If LTA windows size is 128, then this value should be Log2(128) = 7. */ + +#define TONGA_DPM2_LTS_TRUNCATE 0 + +#define TONGA_DPM2_TDP_SAFE_LIMIT_PERCENT 80 /* Maximum 100 */ + +#define TONGA_DPM2_MAXPS_PERCENT_H 90 /* Maximum 0xFF */ +#define TONGA_DPM2_MAXPS_PERCENT_M 90 /* Maximum 0xFF */ + +#define TONGA_DPM2_PWREFFICIENCYRATIO_MARGIN 50 + +#define TONGA_DPM2_SQ_RAMP_MAX_POWER 0x3FFF +#define TONGA_DPM2_SQ_RAMP_MIN_POWER 0x12 +#define TONGA_DPM2_SQ_RAMP_MAX_POWER_DELTA 0x15 +#define TONGA_DPM2_SQ_RAMP_SHORT_TERM_INTERVAL_SIZE 0x1E +#define TONGA_DPM2_SQ_RAMP_LONG_TERM_INTERVAL_RATIO 0xF + +#define TONGA_VOLTAGE_CONTROL_NONE 0x0 +#define TONGA_VOLTAGE_CONTROL_BY_GPIO 0x1 +#define TONGA_VOLTAGE_CONTROL_BY_SVID2 0x2 +#define TONGA_VOLTAGE_CONTROL_MERGED 0x3 + +#define TONGA_Q88_FORMAT_CONVERSION_UNIT 256 /*To convert to Q8.8 format for firmware */ + +#define TONGA_UNUSED_GPIO_PIN 0x7F + +/* Following flags shows PCIe link speed supported in driver which are decided by chipset and ASIC */ +#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 0x00010000 +#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 0x00020000 +#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 0x00040000 +#define CAIL_PCIE_LINK_SPEED_SUPPORT_MASK 0xFFFF0000 +#define CAIL_PCIE_LINK_SPEED_SUPPORT_SHIFT 16 + +/* Following flags shows PCIe link speed supported by ASIC H/W.*/ +#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 0x00000001 +#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 0x00000002 +#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3 0x00000004 +#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK 0x0000FFFF +#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_SHIFT 0 + +/* Following flags shows PCIe lane width switch supported in driver which are decided by chipset and ASIC */ +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X1 0x00010000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 0x00020000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 0x00040000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 0x00080000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 0x00100000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 0x00200000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X32 0x00400000 +#define CAIL_PCIE_LINK_WIDTH_SUPPORT_SHIFT 16 + +#define PP_HOST_TO_SMC_UL(X) cpu_to_be32(X) +#define PP_SMC_TO_HOST_UL(X) be32_to_cpu(X) + +#define PP_HOST_TO_SMC_US(X) cpu_to_be16(X) +#define PP_SMC_TO_HOST_US(X) be16_to_cpu(X) + +#define CONVERT_FROM_HOST_TO_SMC_UL(X) ((X) = PP_HOST_TO_SMC_UL(X)) +#define CONVERT_FROM_SMC_TO_HOST_UL(X) ((X) = PP_SMC_TO_HOST_UL(X)) + +#define CONVERT_FROM_HOST_TO_SMC_US(X) ((X) = PP_HOST_TO_SMC_US(X)) + +int tonga_hwmgr_init(struct pp_hwmgr *hwmgr); + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h new file mode 100644 index 000000000000..8e6670b3cb67 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h @@ -0,0 +1,66 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#ifndef TONGA_POWERTUNE_H +#define TONGA_POWERTUNE_H + +enum _phw_tonga_ptc_config_reg_type { + TONGA_CONFIGREG_MMR = 0, + TONGA_CONFIGREG_SMC_IND, + TONGA_CONFIGREG_DIDT_IND, + TONGA_CONFIGREG_CACHE, + + TONGA_CONFIGREG_MAX +}; +typedef enum _phw_tonga_ptc_config_reg_type phw_tonga_ptc_config_reg_type; + +/* PowerContainment Features */ +#define POWERCONTAINMENT_FEATURE_BAPM 0x00000001 +#define POWERCONTAINMENT_FEATURE_TDCLimit 0x00000002 +#define POWERCONTAINMENT_FEATURE_PkgPwrLimit 0x00000004 + +struct _phw_tonga_pt_config_reg { + uint32_t Offset; + uint32_t Mask; + uint32_t Shift; + uint32_t Value; + phw_tonga_ptc_config_reg_type Type; +}; +typedef struct _phw_tonga_pt_config_reg phw_tonga_pt_config_reg; + +struct _phw_tonga_pt_defaults { + uint8_t svi_load_line_en; + uint8_t svi_load_line_vddC; + uint8_t tdc_vddc_throttle_release_limit_perc; + uint8_t tdc_mawt; + uint8_t tdc_waterfall_ctl; + uint8_t dte_ambient_temp_base; + uint32_t display_cac; + uint32_t bamp_temp_gradient; + uint16_t bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS]; + uint16_t bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS]; +}; +typedef struct _phw_tonga_pt_defaults phw_tonga_pt_defaults; + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h new file mode 100644 index 000000000000..9a4456e6521b --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h @@ -0,0 +1,406 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#ifndef TONGA_PPTABLE_H +#define TONGA_PPTABLE_H + +/** \file + * This is a PowerPlay table header file + */ +#pragma pack(push, 1) + +#include "hwmgr.h" + +#define ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK 0x0f +#define ATOM_TONGA_PP_FANPARAMETERS_NOFAN 0x80 /* No fan is connected to this controller. */ + +#define ATOM_TONGA_PP_THERMALCONTROLLER_NONE 0 +#define ATOM_TONGA_PP_THERMALCONTROLLER_LM96163 17 +#define ATOM_TONGA_PP_THERMALCONTROLLER_TONGA 21 +#define ATOM_TONGA_PP_THERMALCONTROLLER_FIJI 22 + +/* + * Thermal controller 'combo type' to use an external controller for Fan control and an internal controller for thermal. + * We probably should reserve the bit 0x80 for this use. + * To keep the number of these types low we should also use the same code for all ASICs (i.e. do not distinguish RV6xx and RV7xx Internal here). + * The driver can pick the correct internal controller based on the ASIC. + */ + +#define ATOM_TONGA_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL 0x89 /* ADT7473 Fan Control + Internal Thermal Controller */ +#define ATOM_TONGA_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL 0x8D /* EMC2103 Fan Control + Internal Thermal Controller */ + +/*/* ATOM_TONGA_POWERPLAYTABLE::ulPlatformCaps */ +#define ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL 0x1 /* This cap indicates whether vddgfx will be a separated power rail. */ +#define ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY 0x2 /* This cap indicates whether this is a mobile part and CCC need to show Powerplay page. */ +#define ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE 0x4 /* This cap indicates whether power source notificaiton is done by SBIOS directly. */ +#define ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND 0x8 /* Enable the option to overwrite voltage island feature to be disabled, regardless of VddGfx power rail support. */ +#define ____RETIRE16____ 0x10 +#define ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC 0x20 /* This cap indicates whether power source notificaiton is done by GPIO directly. */ +#define ____RETIRE64____ 0x40 +#define ____RETIRE128____ 0x80 +#define ____RETIRE256____ 0x100 +#define ____RETIRE512____ 0x200 +#define ____RETIRE1024____ 0x400 +#define ____RETIRE2048____ 0x800 +#define ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL 0x1000 /* This cap indicates dynamic MVDD is required. Uncheck to disable it. */ +#define ____RETIRE2000____ 0x2000 +#define ____RETIRE4000____ 0x4000 +#define ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL 0x8000 /* This cap indicates dynamic VDDCI is required. Uncheck to disable it. */ +#define ____RETIRE10000____ 0x10000 +#define ATOM_TONGA_PP_PLATFORM_CAP_BACO 0x20000 /* Enable to indicate the driver supports BACO state. */ + +#define ATOM_TONGA_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17 0x100000 /* Enable to indicate the driver supports thermal2GPIO17. */ +#define ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL 0x1000000 /* Enable to indicate if thermal and PCC are sharing the same GPIO */ +#define ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE 0x2000000 + +/* ATOM_PPLIB_NONCLOCK_INFO::usClassification */ +#define ATOM_PPLIB_CLASSIFICATION_UI_MASK 0x0007 +#define ATOM_PPLIB_CLASSIFICATION_UI_SHIFT 0 +#define ATOM_PPLIB_CLASSIFICATION_UI_NONE 0 +#define ATOM_PPLIB_CLASSIFICATION_UI_BATTERY 1 +#define ATOM_PPLIB_CLASSIFICATION_UI_BALANCED 3 +#define ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE 5 +/* 2, 4, 6, 7 are reserved */ + +#define ATOM_PPLIB_CLASSIFICATION_BOOT 0x0008 +#define ATOM_PPLIB_CLASSIFICATION_THERMAL 0x0010 +#define ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE 0x0020 +#define ATOM_PPLIB_CLASSIFICATION_REST 0x0040 +#define ATOM_PPLIB_CLASSIFICATION_FORCED 0x0080 +#define ATOM_PPLIB_CLASSIFICATION_ACPI 0x1000 + +/* ATOM_PPLIB_NONCLOCK_INFO::usClassification2 */ +#define ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2 0x0001 + +#define ATOM_Tonga_DISALLOW_ON_DC 0x00004000 +#define ATOM_Tonga_ENABLE_VARIBRIGHT 0x00008000 + +#define ATOM_Tonga_TABLE_REVISION_TONGA 7 + +typedef struct _ATOM_Tonga_POWERPLAYTABLE { + ATOM_COMMON_TABLE_HEADER sHeader; + + UCHAR ucTableRevision; + USHORT usTableSize; /*the size of header structure */ + + ULONG ulGoldenPPID; + ULONG ulGoldenRevision; + USHORT usFormatID; + + USHORT usVoltageTime; /*in microseconds */ + ULONG ulPlatformCaps; /*See ATOM_Tonga_CAPS_* */ + + ULONG ulMaxODEngineClock; /*For Overdrive. */ + ULONG ulMaxODMemoryClock; /*For Overdrive. */ + + USHORT usPowerControlLimit; + USHORT usUlvVoltageOffset; /*in mv units */ + + USHORT usStateArrayOffset; /*points to ATOM_Tonga_State_Array */ + USHORT usFanTableOffset; /*points to ATOM_Tonga_Fan_Table */ + USHORT usThermalControllerOffset; /*points to ATOM_Tonga_Thermal_Controller */ + USHORT usReserv; /*CustomThermalPolicy removed for Tonga. Keep this filed as reserved. */ + + USHORT usMclkDependencyTableOffset; /*points to ATOM_Tonga_MCLK_Dependency_Table */ + USHORT usSclkDependencyTableOffset; /*points to ATOM_Tonga_SCLK_Dependency_Table */ + USHORT usVddcLookupTableOffset; /*points to ATOM_Tonga_Voltage_Lookup_Table */ + USHORT usVddgfxLookupTableOffset; /*points to ATOM_Tonga_Voltage_Lookup_Table */ + + USHORT usMMDependencyTableOffset; /*points to ATOM_Tonga_MM_Dependency_Table */ + + USHORT usVCEStateTableOffset; /*points to ATOM_Tonga_VCE_State_Table; */ + + USHORT usPPMTableOffset; /*points to ATOM_Tonga_PPM_Table */ + USHORT usPowerTuneTableOffset; /*points to ATOM_PowerTune_Table */ + + USHORT usHardLimitTableOffset; /*points to ATOM_Tonga_Hard_Limit_Table */ + + USHORT usPCIETableOffset; /*points to ATOM_Tonga_PCIE_Table */ + + USHORT usGPIOTableOffset; /*points to ATOM_Tonga_GPIO_Table */ + + USHORT usReserved[6]; /*TODO: modify reserved size to fit structure aligning */ +} ATOM_Tonga_POWERPLAYTABLE; + +typedef struct _ATOM_Tonga_State { + UCHAR ucEngineClockIndexHigh; + UCHAR ucEngineClockIndexLow; + + UCHAR ucMemoryClockIndexHigh; + UCHAR ucMemoryClockIndexLow; + + UCHAR ucPCIEGenLow; + UCHAR ucPCIEGenHigh; + + UCHAR ucPCIELaneLow; + UCHAR ucPCIELaneHigh; + + USHORT usClassification; + ULONG ulCapsAndSettings; + USHORT usClassification2; + UCHAR ucUnused[4]; +} ATOM_Tonga_State; + +typedef struct _ATOM_Tonga_State_Array { + UCHAR ucRevId; + UCHAR ucNumEntries; /* Number of entries. */ + ATOM_Tonga_State states[1]; /* Dynamically allocate entries. */ +} ATOM_Tonga_State_Array; + +typedef struct _ATOM_Tonga_MCLK_Dependency_Record { + UCHAR ucVddcInd; /* Vddc voltage */ + USHORT usVddci; + USHORT usVddgfxOffset; /* Offset relative to Vddc voltage */ + USHORT usMvdd; + ULONG ulMclk; + USHORT usReserved; +} ATOM_Tonga_MCLK_Dependency_Record; + +typedef struct _ATOM_Tonga_MCLK_Dependency_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; /* Number of entries. */ + ATOM_Tonga_MCLK_Dependency_Record entries[1]; /* Dynamically allocate entries. */ +} ATOM_Tonga_MCLK_Dependency_Table; + +typedef struct _ATOM_Tonga_SCLK_Dependency_Record { + UCHAR ucVddInd; /* Base voltage */ + USHORT usVddcOffset; /* Offset relative to base voltage */ + ULONG ulSclk; + USHORT usEdcCurrent; + UCHAR ucReliabilityTemperature; + UCHAR ucCKSVOffsetandDisable; /* Bits 0~6: Voltage offset for CKS, Bit 7: Disable/enable for the SCLK level. */ +} ATOM_Tonga_SCLK_Dependency_Record; + +typedef struct _ATOM_Tonga_SCLK_Dependency_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; /* Number of entries. */ + ATOM_Tonga_SCLK_Dependency_Record entries[1]; /* Dynamically allocate entries. */ +} ATOM_Tonga_SCLK_Dependency_Table; + +typedef struct _ATOM_Tonga_PCIE_Record { + UCHAR ucPCIEGenSpeed; + UCHAR usPCIELaneWidth; + UCHAR ucReserved[2]; +} ATOM_Tonga_PCIE_Record; + +typedef struct _ATOM_Tonga_PCIE_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; /* Number of entries. */ + ATOM_Tonga_PCIE_Record entries[1]; /* Dynamically allocate entries. */ +} ATOM_Tonga_PCIE_Table; + +typedef struct _ATOM_Tonga_MM_Dependency_Record { + UCHAR ucVddcInd; /* VDDC voltage */ + USHORT usVddgfxOffset; /* Offset relative to VDDC voltage */ + ULONG ulDClk; /* UVD D-clock */ + ULONG ulVClk; /* UVD V-clock */ + ULONG ulEClk; /* VCE clock */ + ULONG ulAClk; /* ACP clock */ + ULONG ulSAMUClk; /* SAMU clock */ +} ATOM_Tonga_MM_Dependency_Record; + +typedef struct _ATOM_Tonga_MM_Dependency_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; /* Number of entries. */ + ATOM_Tonga_MM_Dependency_Record entries[1]; /* Dynamically allocate entries. */ +} ATOM_Tonga_MM_Dependency_Table; + +typedef struct _ATOM_Tonga_Voltage_Lookup_Record { + USHORT usVdd; /* Base voltage */ + USHORT usCACLow; + USHORT usCACMid; + USHORT usCACHigh; +} ATOM_Tonga_Voltage_Lookup_Record; + +typedef struct _ATOM_Tonga_Voltage_Lookup_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; /* Number of entries. */ + ATOM_Tonga_Voltage_Lookup_Record entries[1]; /* Dynamically allocate entries. */ +} ATOM_Tonga_Voltage_Lookup_Table; + +typedef struct _ATOM_Tonga_Fan_Table { + UCHAR ucRevId; /* Change this if the table format changes or version changes so that the other fields are not the same. */ + UCHAR ucTHyst; /* Temperature hysteresis. Integer. */ + USHORT usTMin; /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */ + USHORT usTMed; /* The middle temperature where we change slopes. */ + USHORT usTHigh; /* The high point above TMed for adjusting the second slope. */ + USHORT usPWMMin; /* The minimum PWM value in percent (0.01% increments). */ + USHORT usPWMMed; /* The PWM value (in percent) at TMed. */ + USHORT usPWMHigh; /* The PWM value at THigh. */ + USHORT usTMax; /* The max temperature */ + UCHAR ucFanControlMode; /* Legacy or Fuzzy Fan mode */ + USHORT usFanPWMMax; /* Maximum allowed fan power in percent */ + USHORT usFanOutputSensitivity; /* Sensitivity of fan reaction to temepature changes */ + USHORT usFanRPMMax; /* The default value in RPM */ + ULONG ulMinFanSCLKAcousticLimit; /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */ + UCHAR ucTargetTemperature; /* Advanced fan controller target temperature. */ + UCHAR ucMinimumPWMLimit; /* The minimum PWM that the advanced fan controller can set. This should be set to the highest PWM that will run the fan at its lowest RPM. */ + USHORT usReserved; +} ATOM_Tonga_Fan_Table; + +typedef struct _ATOM_Fiji_Fan_Table { + UCHAR ucRevId; /* Change this if the table format changes or version changes so that the other fields are not the same. */ + UCHAR ucTHyst; /* Temperature hysteresis. Integer. */ + USHORT usTMin; /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */ + USHORT usTMed; /* The middle temperature where we change slopes. */ + USHORT usTHigh; /* The high point above TMed for adjusting the second slope. */ + USHORT usPWMMin; /* The minimum PWM value in percent (0.01% increments). */ + USHORT usPWMMed; /* The PWM value (in percent) at TMed. */ + USHORT usPWMHigh; /* The PWM value at THigh. */ + USHORT usTMax; /* The max temperature */ + UCHAR ucFanControlMode; /* Legacy or Fuzzy Fan mode */ + USHORT usFanPWMMax; /* Maximum allowed fan power in percent */ + USHORT usFanOutputSensitivity; /* Sensitivity of fan reaction to temepature changes */ + USHORT usFanRPMMax; /* The default value in RPM */ + ULONG ulMinFanSCLKAcousticLimit; /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */ + UCHAR ucTargetTemperature; /* Advanced fan controller target temperature. */ + UCHAR ucMinimumPWMLimit; /* The minimum PWM that the advanced fan controller can set. This should be set to the highest PWM that will run the fan at its lowest RPM. */ + USHORT usFanGainEdge; + USHORT usFanGainHotspot; + USHORT usFanGainLiquid; + USHORT usFanGainVrVddc; + USHORT usFanGainVrMvdd; + USHORT usFanGainPlx; + USHORT usFanGainHbm; + USHORT usReserved; +} ATOM_Fiji_Fan_Table; + +typedef struct _ATOM_Tonga_Thermal_Controller { + UCHAR ucRevId; + UCHAR ucType; /* one of ATOM_TONGA_PP_THERMALCONTROLLER_* */ + UCHAR ucI2cLine; /* as interpreted by DAL I2C */ + UCHAR ucI2cAddress; + UCHAR ucFanParameters; /* Fan Control Parameters. */ + UCHAR ucFanMinRPM; /* Fan Minimum RPM (hundreds) -- for display purposes only. */ + UCHAR ucFanMaxRPM; /* Fan Maximum RPM (hundreds) -- for display purposes only. */ + UCHAR ucReserved; + UCHAR ucFlags; /* to be defined */ +} ATOM_Tonga_Thermal_Controller; + +typedef struct _ATOM_Tonga_VCE_State_Record { + UCHAR ucVCEClockIndex; /*index into usVCEDependencyTableOffset of 'ATOM_Tonga_MM_Dependency_Table' type */ + UCHAR ucFlag; /* 2 bits indicates memory p-states */ + UCHAR ucSCLKIndex; /*index into ATOM_Tonga_SCLK_Dependency_Table */ + UCHAR ucMCLKIndex; /*index into ATOM_Tonga_MCLK_Dependency_Table */ +} ATOM_Tonga_VCE_State_Record; + +typedef struct _ATOM_Tonga_VCE_State_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; + ATOM_Tonga_VCE_State_Record entries[1]; +} ATOM_Tonga_VCE_State_Table; + +typedef struct _ATOM_Tonga_PowerTune_Table { + UCHAR ucRevId; + USHORT usTDP; + USHORT usConfigurableTDP; + USHORT usTDC; + USHORT usBatteryPowerLimit; + USHORT usSmallPowerLimit; + USHORT usLowCACLeakage; + USHORT usHighCACLeakage; + USHORT usMaximumPowerDeliveryLimit; + USHORT usTjMax; + USHORT usPowerTuneDataSetID; + USHORT usEDCLimit; + USHORT usSoftwareShutdownTemp; + USHORT usClockStretchAmount; + USHORT usReserve[2]; +} ATOM_Tonga_PowerTune_Table; + +typedef struct _ATOM_Fiji_PowerTune_Table { + UCHAR ucRevId; + USHORT usTDP; + USHORT usConfigurableTDP; + USHORT usTDC; + USHORT usBatteryPowerLimit; + USHORT usSmallPowerLimit; + USHORT usLowCACLeakage; + USHORT usHighCACLeakage; + USHORT usMaximumPowerDeliveryLimit; + USHORT usTjMax; /* For Fiji, this is also usTemperatureLimitEdge; */ + USHORT usPowerTuneDataSetID; + USHORT usEDCLimit; + USHORT usSoftwareShutdownTemp; + USHORT usClockStretchAmount; + USHORT usTemperatureLimitHotspot; /*The following are added for Fiji */ + USHORT usTemperatureLimitLiquid1; + USHORT usTemperatureLimitLiquid2; + USHORT usTemperatureLimitVrVddc; + USHORT usTemperatureLimitVrMvdd; + USHORT usTemperatureLimitPlx; + UCHAR ucLiquid1_I2C_address; /*Liquid */ + UCHAR ucLiquid2_I2C_address; + UCHAR ucLiquid_I2C_Line; + UCHAR ucVr_I2C_address; /*VR */ + UCHAR ucVr_I2C_Line; + UCHAR ucPlx_I2C_address; /*PLX */ + UCHAR ucPlx_I2C_Line; + USHORT usReserved; +} ATOM_Fiji_PowerTune_Table; + +#define ATOM_PPM_A_A 1 +#define ATOM_PPM_A_I 2 +typedef struct _ATOM_Tonga_PPM_Table { + UCHAR ucRevId; + UCHAR ucPpmDesign; /*A+I or A+A */ + USHORT usCpuCoreNumber; + ULONG ulPlatformTDP; + ULONG ulSmallACPlatformTDP; + ULONG ulPlatformTDC; + ULONG ulSmallACPlatformTDC; + ULONG ulApuTDP; + ULONG ulDGpuTDP; + ULONG ulDGpuUlvPower; + ULONG ulTjmax; +} ATOM_Tonga_PPM_Table; + +typedef struct _ATOM_Tonga_Hard_Limit_Record { + ULONG ulSCLKLimit; + ULONG ulMCLKLimit; + USHORT usVddcLimit; + USHORT usVddciLimit; + USHORT usVddgfxLimit; +} ATOM_Tonga_Hard_Limit_Record; + +typedef struct _ATOM_Tonga_Hard_Limit_Table { + UCHAR ucRevId; + UCHAR ucNumEntries; + ATOM_Tonga_Hard_Limit_Record entries[1]; +} ATOM_Tonga_Hard_Limit_Table; + +typedef struct _ATOM_Tonga_GPIO_Table { + UCHAR ucRevId; + UCHAR ucVRHotTriggeredSclkDpmIndex; /* If VRHot signal is triggered SCLK will be limited to this DPM level */ + UCHAR ucReserve[5]; +} ATOM_Tonga_GPIO_Table; + +typedef struct _PPTable_Generic_SubTable_Header { + UCHAR ucRevId; +} PPTable_Generic_SubTable_Header; + + +#pragma pack(pop) + + +#endif diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c new file mode 100644 index 000000000000..ddb03a0eeec0 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c @@ -0,0 +1,1129 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/fb.h> + +#include "tonga_processpptables.h" +#include "ppatomctrl.h" +#include "atombios.h" +#include "pp_debug.h" +#include "hwmgr.h" +#include "cgs_common.h" +#include "tonga_pptable.h" + +/** + * Private Function used during initialization. + * @param hwmgr Pointer to the hardware manager. + * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE). + * @param cap Which capability to set/reset. + */ +static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap) +{ + if (setIt) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); + else + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); +} + + +/** + * Private Function used during initialization. + * @param hwmgr Pointer to the hardware manager. + * @param powerplay_caps the bit array (from BIOS) of capability bits. + * @exception the current implementation always returns 1. + */ +static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) +{ + PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____), + "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue); + PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____), + "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue); + PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____), + "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue); + PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____), + "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue); + PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____), + "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY), + PHM_PlatformCaps_PowerPlaySupport + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), + PHM_PlatformCaps_BiosPowerSourceControl + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC), + PHM_PlatformCaps_AutomaticDCTransition + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL), + PHM_PlatformCaps_EnableMVDDControl + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL), + PHM_PlatformCaps_ControlVDDCI + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL), + PHM_PlatformCaps_ControlVDDGFX + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO), + PHM_PlatformCaps_BACO + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND), + PHM_PlatformCaps_DisableVoltageIsland + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), + PHM_PlatformCaps_CombinePCCWithThermalSignal + ); + + set_hw_cap( + hwmgr, + 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), + PHM_PlatformCaps_LoadPostProductionFirmware + ); + + return 0; +} + +/** + * Private Function to get the PowerPlay Table Address. + */ +const void *get_powerplay_table(struct pp_hwmgr *hwmgr) +{ + int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); + + u16 size; + u8 frev, crev; + void *table_address; + + table_address = (ATOM_Tonga_POWERPLAYTABLE *) + cgs_atom_get_data_table(hwmgr->device, index, &size, &frev, &crev); + + hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/ + + return table_address; +} + +static int get_vddc_lookup_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_voltage_lookup_table **lookup_table, + const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables, + uint32_t max_levels + ) +{ + uint32_t table_size, i; + phm_ppt_v1_voltage_lookup_table *table; + + PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries), + "Invalid CAC Leakage PowerPlay Table!", return 1); + + table_size = sizeof(uint32_t) + + sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels; + + table = (phm_ppt_v1_voltage_lookup_table *) + kzalloc(table_size, GFP_KERNEL); + + if (NULL == table) + return -1; + + memset(table, 0x00, table_size); + + table->count = vddc_lookup_pp_tables->ucNumEntries; + + for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) { + table->entries[i].us_calculated = 0; + table->entries[i].us_vdd = + vddc_lookup_pp_tables->entries[i].usVdd; + table->entries[i].us_cac_low = + vddc_lookup_pp_tables->entries[i].usCACLow; + table->entries[i].us_cac_mid = + vddc_lookup_pp_tables->entries[i].usCACMid; + table->entries[i].us_cac_high = + vddc_lookup_pp_tables->entries[i].usCACHigh; + } + + *lookup_table = table; + + return 0; +} + +/** + * Private Function used during initialization. + * Initialize Platform Power Management Parameter table + * @param hwmgr Pointer to the hardware manager. + * @param atom_ppm_table Pointer to PPM table in VBIOS + */ +static int get_platform_power_management_table( + struct pp_hwmgr *hwmgr, + ATOM_Tonga_PPM_Table *atom_ppm_table) +{ + struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL); + struct phm_ppt_v1_information *pp_table_information = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + if (NULL == ptr) + return -1; + + ptr->ppm_design + = atom_ppm_table->ucPpmDesign; + ptr->cpu_core_number + = atom_ppm_table->usCpuCoreNumber; + ptr->platform_tdp + = atom_ppm_table->ulPlatformTDP; + ptr->small_ac_platform_tdp + = atom_ppm_table->ulSmallACPlatformTDP; + ptr->platform_tdc + = atom_ppm_table->ulPlatformTDC; + ptr->small_ac_platform_tdc + = atom_ppm_table->ulSmallACPlatformTDC; + ptr->apu_tdp + = atom_ppm_table->ulApuTDP; + ptr->dgpu_tdp + = atom_ppm_table->ulDGpuTDP; + ptr->dgpu_ulv_power + = atom_ppm_table->ulDGpuUlvPower; + ptr->tj_max + = atom_ppm_table->ulTjmax; + + pp_table_information->ppm_parameter_table = ptr; + + return 0; +} + +/** + * Private Function used during initialization. + * Initialize TDP limits for DPM2 + * @param hwmgr Pointer to the hardware manager. + * @param powerplay_table Pointer to the PowerPlay Table. + */ +static int init_dpm_2_parameters( + struct pp_hwmgr *hwmgr, + const ATOM_Tonga_POWERPLAYTABLE *powerplay_table + ) +{ + int result = 0; + struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); + ATOM_Tonga_PPM_Table *atom_ppm_table; + uint32_t disable_ppm = 0; + uint32_t disable_power_control = 0; + + pp_table_information->us_ulv_voltage_offset = + le16_to_cpu(powerplay_table->usUlvVoltageOffset); + + pp_table_information->ppm_parameter_table = NULL; + pp_table_information->vddc_lookup_table = NULL; + pp_table_information->vddgfx_lookup_table = NULL; + /* TDP limits */ + hwmgr->platform_descriptor.TDPODLimit = + le16_to_cpu(powerplay_table->usPowerControlLimit); + hwmgr->platform_descriptor.TDPAdjustment = 0; + hwmgr->platform_descriptor.VidAdjustment = 0; + hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; + hwmgr->platform_descriptor.VidMinLimit = 0; + hwmgr->platform_descriptor.VidMaxLimit = 1500000; + hwmgr->platform_descriptor.VidStep = 6250; + + disable_power_control = 0; + if (0 == disable_power_control) { + /* enable TDP overdrive (PowerControl) feature as well if supported */ + if (hwmgr->platform_descriptor.TDPODLimit != 0) + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_PowerControl); + } + + if (0 != powerplay_table->usVddcLookupTableOffset) { + const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable = + (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + + le16_to_cpu(powerplay_table->usVddcLookupTableOffset)); + + result = get_vddc_lookup_table(hwmgr, + &pp_table_information->vddc_lookup_table, pVddcCACTable, 16); + } + + if (0 != powerplay_table->usVddgfxLookupTableOffset) { + const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable = + (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + + le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset)); + + result = get_vddc_lookup_table(hwmgr, + &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16); + } + + disable_ppm = 0; + if (0 == disable_ppm) { + atom_ppm_table = (ATOM_Tonga_PPM_Table *) + (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset)); + + if (0 != powerplay_table->usPPMTableOffset) { + if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) { + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_EnablePlatformPowerManagement); + } + } + } + + return result; +} + +static int get_valid_clk( + struct pp_hwmgr *hwmgr, + struct phm_clock_array **clk_table, + const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table + ) +{ + uint32_t table_size, i; + struct phm_clock_array *table; + + PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count), + "Invalid PowerPlay Table!", return -1); + + table_size = sizeof(uint32_t) + + sizeof(uint32_t) * clk_volt_pp_table->count; + + table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL); + + if (NULL == table) + return -1; + + memset(table, 0x00, table_size); + + table->count = (uint32_t)clk_volt_pp_table->count; + + for (i = 0; i < table->count; i++) + table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk; + + *clk_table = table; + + return 0; +} + +static int get_hard_limits( + struct pp_hwmgr *hwmgr, + struct phm_clock_and_voltage_limits *limits, + const ATOM_Tonga_Hard_Limit_Table * limitable + ) +{ + PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1); + + /* currently we always take entries[0] parameters */ + limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit; + limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit; + limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit; + limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit; + limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit; + + return 0; +} + +static int get_mclk_voltage_dependency_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table, + const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table + ) +{ + uint32_t table_size, i; + phm_ppt_v1_clock_voltage_dependency_table *mclk_table; + + PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries), + "Invalid PowerPlay Table!", return -1); + + table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) + * mclk_dep_table->ucNumEntries; + + mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) + kzalloc(table_size, GFP_KERNEL); + + if (NULL == mclk_table) + return -1; + + memset(mclk_table, 0x00, table_size); + + mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries; + + for (i = 0; i < mclk_dep_table->ucNumEntries; i++) { + mclk_table->entries[i].vddInd = + mclk_dep_table->entries[i].ucVddcInd; + mclk_table->entries[i].vdd_offset = + mclk_dep_table->entries[i].usVddgfxOffset; + mclk_table->entries[i].vddci = + mclk_dep_table->entries[i].usVddci; + mclk_table->entries[i].mvdd = + mclk_dep_table->entries[i].usMvdd; + mclk_table->entries[i].clk = + mclk_dep_table->entries[i].ulMclk; + } + + *pp_tonga_mclk_dep_table = mclk_table; + + return 0; +} + +static int get_sclk_voltage_dependency_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table, + const ATOM_Tonga_SCLK_Dependency_Table * sclk_dep_table + ) +{ + uint32_t table_size, i; + phm_ppt_v1_clock_voltage_dependency_table *sclk_table; + + PP_ASSERT_WITH_CODE((0 != sclk_dep_table->ucNumEntries), + "Invalid PowerPlay Table!", return -1); + + table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) + * sclk_dep_table->ucNumEntries; + + sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) + kzalloc(table_size, GFP_KERNEL); + + if (NULL == sclk_table) + return -1; + + memset(sclk_table, 0x00, table_size); + + sclk_table->count = (uint32_t)sclk_dep_table->ucNumEntries; + + for (i = 0; i < sclk_dep_table->ucNumEntries; i++) { + sclk_table->entries[i].vddInd = + sclk_dep_table->entries[i].ucVddInd; + sclk_table->entries[i].vdd_offset = + sclk_dep_table->entries[i].usVddcOffset; + sclk_table->entries[i].clk = + sclk_dep_table->entries[i].ulSclk; + sclk_table->entries[i].cks_enable = + (((sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0; + sclk_table->entries[i].cks_voffset = + (sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x7F); + } + + *pp_tonga_sclk_dep_table = sclk_table; + + return 0; +} + +static int get_pcie_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_pcie_table **pp_tonga_pcie_table, + const ATOM_Tonga_PCIE_Table * atom_pcie_table + ) +{ + uint32_t table_size, i, pcie_count; + phm_ppt_v1_pcie_table *pcie_table; + struct phm_ppt_v1_information *pp_table_information = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + PP_ASSERT_WITH_CODE((0 != atom_pcie_table->ucNumEntries), + "Invalid PowerPlay Table!", return -1); + + table_size = sizeof(uint32_t) + + sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries; + + pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL); + + if (NULL == pcie_table) + return -1; + + memset(pcie_table, 0x00, table_size); + + /* + * Make sure the number of pcie entries are less than or equal to sclk dpm levels. + * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. + */ + pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; + if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) + pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; + else + printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \ + Disregarding the excess entries... \n"); + + pcie_table->count = pcie_count; + + for (i = 0; i < pcie_count; i++) { + pcie_table->entries[i].gen_speed = + atom_pcie_table->entries[i].ucPCIEGenSpeed; + pcie_table->entries[i].lane_width = + atom_pcie_table->entries[i].usPCIELaneWidth; + } + + *pp_tonga_pcie_table = pcie_table; + + return 0; +} + +static int get_cac_tdp_table( + struct pp_hwmgr *hwmgr, + struct phm_cac_tdp_table **cac_tdp_table, + const PPTable_Generic_SubTable_Header * table + ) +{ + uint32_t table_size; + struct phm_cac_tdp_table *tdp_table; + + table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table); + tdp_table = kzalloc(table_size, GFP_KERNEL); + + if (NULL == tdp_table) + return -1; + + memset(tdp_table, 0x00, table_size); + + hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL); + + if (NULL == hwmgr->dyn_state.cac_dtp_table) + return -1; + + memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size); + + if (table->ucRevId < 3) { + const ATOM_Tonga_PowerTune_Table *tonga_table = + (ATOM_Tonga_PowerTune_Table *)table; + tdp_table->usTDP = tonga_table->usTDP; + tdp_table->usConfigurableTDP = + tonga_table->usConfigurableTDP; + tdp_table->usTDC = tonga_table->usTDC; + tdp_table->usBatteryPowerLimit = + tonga_table->usBatteryPowerLimit; + tdp_table->usSmallPowerLimit = + tonga_table->usSmallPowerLimit; + tdp_table->usLowCACLeakage = + tonga_table->usLowCACLeakage; + tdp_table->usHighCACLeakage = + tonga_table->usHighCACLeakage; + tdp_table->usMaximumPowerDeliveryLimit = + tonga_table->usMaximumPowerDeliveryLimit; + tdp_table->usDefaultTargetOperatingTemp = + tonga_table->usTjMax; + tdp_table->usTargetOperatingTemp = + tonga_table->usTjMax; /*Set the initial temp to the same as default */ + tdp_table->usPowerTuneDataSetID = + tonga_table->usPowerTuneDataSetID; + tdp_table->usSoftwareShutdownTemp = + tonga_table->usSoftwareShutdownTemp; + tdp_table->usClockStretchAmount = + tonga_table->usClockStretchAmount; + } else { /* Fiji and newer */ + const ATOM_Fiji_PowerTune_Table *fijitable = + (ATOM_Fiji_PowerTune_Table *)table; + tdp_table->usTDP = fijitable->usTDP; + tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP; + tdp_table->usTDC = fijitable->usTDC; + tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit; + tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit; + tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage; + tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage; + tdp_table->usMaximumPowerDeliveryLimit = + fijitable->usMaximumPowerDeliveryLimit; + tdp_table->usDefaultTargetOperatingTemp = + fijitable->usTjMax; + tdp_table->usTargetOperatingTemp = + fijitable->usTjMax; /*Set the initial temp to the same as default */ + tdp_table->usPowerTuneDataSetID = + fijitable->usPowerTuneDataSetID; + tdp_table->usSoftwareShutdownTemp = + fijitable->usSoftwareShutdownTemp; + tdp_table->usClockStretchAmount = + fijitable->usClockStretchAmount; + tdp_table->usTemperatureLimitHotspot = + fijitable->usTemperatureLimitHotspot; + tdp_table->usTemperatureLimitLiquid1 = + fijitable->usTemperatureLimitLiquid1; + tdp_table->usTemperatureLimitLiquid2 = + fijitable->usTemperatureLimitLiquid2; + tdp_table->usTemperatureLimitVrVddc = + fijitable->usTemperatureLimitVrVddc; + tdp_table->usTemperatureLimitVrMvdd = + fijitable->usTemperatureLimitVrMvdd; + tdp_table->usTemperatureLimitPlx = + fijitable->usTemperatureLimitPlx; + tdp_table->ucLiquid1_I2C_address = + fijitable->ucLiquid1_I2C_address; + tdp_table->ucLiquid2_I2C_address = + fijitable->ucLiquid2_I2C_address; + tdp_table->ucLiquid_I2C_Line = + fijitable->ucLiquid_I2C_Line; + tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address; + tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line; + tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address; + tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line; + } + + *cac_tdp_table = tdp_table; + + return 0; +} + +static int get_mm_clock_voltage_table( + struct pp_hwmgr *hwmgr, + phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table, + const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table + ) +{ + uint32_t table_size, i; + const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record; + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table; + + PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries), + "Invalid PowerPlay Table!", return -1); + table_size = sizeof(uint32_t) + + sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record) + * mm_dependency_table->ucNumEntries; + mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *) + kzalloc(table_size, GFP_KERNEL); + + if (NULL == mm_table) + return -1; + + memset(mm_table, 0x00, table_size); + + mm_table->count = mm_dependency_table->ucNumEntries; + + for (i = 0; i < mm_dependency_table->ucNumEntries; i++) { + mm_dependency_record = &mm_dependency_table->entries[i]; + mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd; + mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset; + mm_table->entries[i].aclk = mm_dependency_record->ulAClk; + mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk; + mm_table->entries[i].eclk = mm_dependency_record->ulEClk; + mm_table->entries[i].vclk = mm_dependency_record->ulVClk; + mm_table->entries[i].dclk = mm_dependency_record->ulDClk; + } + + *tonga_mm_table = mm_table; + + return 0; +} + +/** + * Private Function used during initialization. + * Initialize clock voltage dependency + * @param hwmgr Pointer to the hardware manager. + * @param powerplay_table Pointer to the PowerPlay Table. + */ +static int init_clock_voltage_dependency( + struct pp_hwmgr *hwmgr, + const ATOM_Tonga_POWERPLAYTABLE *powerplay_table + ) +{ + int result = 0; + struct phm_ppt_v1_information *pp_table_information = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table = + (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) + + le16_to_cpu(powerplay_table->usMMDependencyTableOffset)); + const PPTable_Generic_SubTable_Header *pPowerTuneTable = + (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + + le16_to_cpu(powerplay_table->usPowerTuneTableOffset)); + const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = + (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) + + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); + const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = + (const ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long) powerplay_table) + + le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); + const ATOM_Tonga_Hard_Limit_Table *pHardLimits = + (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) + + le16_to_cpu(powerplay_table->usHardLimitTableOffset)); + const ATOM_Tonga_PCIE_Table *pcie_table = + (const ATOM_Tonga_PCIE_Table *)(((unsigned long) powerplay_table) + + le16_to_cpu(powerplay_table->usPCIETableOffset)); + + pp_table_information->vdd_dep_on_sclk = NULL; + pp_table_information->vdd_dep_on_mclk = NULL; + pp_table_information->mm_dep_table = NULL; + pp_table_information->pcie_table = NULL; + + if (powerplay_table->usMMDependencyTableOffset != 0) + result = get_mm_clock_voltage_table(hwmgr, + &pp_table_information->mm_dep_table, mm_dependency_table); + + if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0) + result = get_cac_tdp_table(hwmgr, + &pp_table_information->cac_dtp_table, pPowerTuneTable); + + if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0) + result = get_sclk_voltage_dependency_table(hwmgr, + &pp_table_information->vdd_dep_on_sclk, sclk_dep_table); + + if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0) + result = get_mclk_voltage_dependency_table(hwmgr, + &pp_table_information->vdd_dep_on_mclk, mclk_dep_table); + + if (result == 0 && powerplay_table->usPCIETableOffset != 0) + result = get_pcie_table(hwmgr, + &pp_table_information->pcie_table, pcie_table); + + if (result == 0 && powerplay_table->usHardLimitTableOffset != 0) + result = get_hard_limits(hwmgr, + &pp_table_information->max_clock_voltage_on_dc, pHardLimits); + + hwmgr->dyn_state.max_clock_voltage_on_dc.sclk = + pp_table_information->max_clock_voltage_on_dc.sclk; + hwmgr->dyn_state.max_clock_voltage_on_dc.mclk = + pp_table_information->max_clock_voltage_on_dc.mclk; + hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = + pp_table_information->max_clock_voltage_on_dc.vddc; + hwmgr->dyn_state.max_clock_voltage_on_dc.vddci = + pp_table_information->max_clock_voltage_on_dc.vddci; + + if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk) + && (0 != pp_table_information->vdd_dep_on_mclk->count)) + result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values, + pp_table_information->vdd_dep_on_mclk); + + if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk) + && (0 != pp_table_information->vdd_dep_on_sclk->count)) + result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values, + pp_table_information->vdd_dep_on_sclk); + + return result; +} + +/** Retrieves the (signed) Overdrive limits from VBIOS. + * The max engine clock, memory clock and max temperature come from the firmware info table. + * + * The information is placed into the platform descriptor. + * + * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated. + * @param powerplay_table the address of the PowerPlay table. + * + * @return 1 as long as the firmware info table was present and of a supported version. + */ +static int init_over_drive_limits( + struct pp_hwmgr *hwmgr, + const ATOM_Tonga_POWERPLAYTABLE *powerplay_table) +{ + hwmgr->platform_descriptor.overdriveLimit.engineClock = + le16_to_cpu(powerplay_table->ulMaxODEngineClock); + hwmgr->platform_descriptor.overdriveLimit.memoryClock = + le16_to_cpu(powerplay_table->ulMaxODMemoryClock); + + hwmgr->platform_descriptor.minOverdriveVDDC = 0; + hwmgr->platform_descriptor.maxOverdriveVDDC = 0; + hwmgr->platform_descriptor.overdriveVDDCStep = 0; + + if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \ + && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) { + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ACOverdriveSupport); + } + + return 0; +} + +/** + * Private Function used during initialization. + * Inspect the PowerPlay table for obvious signs of corruption. + * @param hwmgr Pointer to the hardware manager. + * @param powerplay_table Pointer to the PowerPlay Table. + * @exception This implementation always returns 1. + */ +static int init_thermal_controller( + struct pp_hwmgr *hwmgr, + const ATOM_Tonga_POWERPLAYTABLE *powerplay_table + ) +{ + const PPTable_Generic_SubTable_Header *fan_table; + ATOM_Tonga_Thermal_Controller *thermal_controller; + + thermal_controller = (ATOM_Tonga_Thermal_Controller *) + (((unsigned long)powerplay_table) + + le16_to_cpu(powerplay_table->usThermalControllerOffset)); + PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset), + "Thermal controller table not set!", return -1); + + hwmgr->thermal_controller.ucType = thermal_controller->ucType; + hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine; + hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress; + + hwmgr->thermal_controller.fanInfo.bNoFan = + (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN)); + + hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = + thermal_controller->ucFanParameters & + ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; + + hwmgr->thermal_controller.fanInfo.ulMinRPM + = thermal_controller->ucFanMinRPM * 100UL; + hwmgr->thermal_controller.fanInfo.ulMaxRPM + = thermal_controller->ucFanMaxRPM * 100UL; + + set_hw_cap( + hwmgr, + ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, + PHM_PlatformCaps_ThermalController + ); + + if (0 == powerplay_table->usFanTableOffset) + return -1; + + fan_table = (const PPTable_Generic_SubTable_Header *) + (((unsigned long)powerplay_table) + + le16_to_cpu(powerplay_table->usFanTableOffset)); + + PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset), + "Fan table not set!", return -1); + PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId), + "Unsupported fan table format!", return -1); + + hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay + = 100000; + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_MicrocodeFanControl); + + if (fan_table->ucRevId < 8) { + const ATOM_Tonga_Fan_Table *tonga_fan_table = + (ATOM_Tonga_Fan_Table *)fan_table; + hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst + = tonga_fan_table->ucTHyst; + hwmgr->thermal_controller.advanceFanControlParameters.usTMin + = tonga_fan_table->usTMin; + hwmgr->thermal_controller.advanceFanControlParameters.usTMed + = tonga_fan_table->usTMed; + hwmgr->thermal_controller.advanceFanControlParameters.usTHigh + = tonga_fan_table->usTHigh; + hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin + = tonga_fan_table->usPWMMin; + hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed + = tonga_fan_table->usPWMMed; + hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh + = tonga_fan_table->usPWMHigh; + hwmgr->thermal_controller.advanceFanControlParameters.usTMax + = 10900; /* hard coded */ + hwmgr->thermal_controller.advanceFanControlParameters.usTMax + = tonga_fan_table->usTMax; + hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode + = tonga_fan_table->ucFanControlMode; + hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM + = tonga_fan_table->usFanPWMMax; + hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity + = 4836; + hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity + = tonga_fan_table->usFanOutputSensitivity; + hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM + = tonga_fan_table->usFanRPMMax; + hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit + = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ + hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature + = tonga_fan_table->ucTargetTemperature; + hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit + = tonga_fan_table->ucMinimumPWMLimit; + } else { + const ATOM_Fiji_Fan_Table *fiji_fan_table = + (ATOM_Fiji_Fan_Table *)fan_table; + hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst + = fiji_fan_table->ucTHyst; + hwmgr->thermal_controller.advanceFanControlParameters.usTMin + = fiji_fan_table->usTMin; + hwmgr->thermal_controller.advanceFanControlParameters.usTMed + = fiji_fan_table->usTMed; + hwmgr->thermal_controller.advanceFanControlParameters.usTHigh + = fiji_fan_table->usTHigh; + hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin + = fiji_fan_table->usPWMMin; + hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed + = fiji_fan_table->usPWMMed; + hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh + = fiji_fan_table->usPWMHigh; + hwmgr->thermal_controller.advanceFanControlParameters.usTMax + = fiji_fan_table->usTMax; + hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode + = fiji_fan_table->ucFanControlMode; + hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM + = fiji_fan_table->usFanPWMMax; + hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity + = 4836; + hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity + = fiji_fan_table->usFanOutputSensitivity; + hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM + = fiji_fan_table->usFanRPMMax; + hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit + = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ + hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature + = fiji_fan_table->ucTargetTemperature; + hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit + = fiji_fan_table->ucMinimumPWMLimit; + + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge + = fiji_fan_table->usFanGainEdge; + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot + = fiji_fan_table->usFanGainHotspot; + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid + = fiji_fan_table->usFanGainLiquid; + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc + = fiji_fan_table->usFanGainVrVddc; + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd + = fiji_fan_table->usFanGainVrMvdd; + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx + = fiji_fan_table->usFanGainPlx; + hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm + = fiji_fan_table->usFanGainHbm; + } + + return 0; +} + +/** + * Private Function used during initialization. + * Inspect the PowerPlay table for obvious signs of corruption. + * @param hwmgr Pointer to the hardware manager. + * @param powerplay_table Pointer to the PowerPlay Table. + * @exception 2 if the powerplay table is incorrect. + */ +static int check_powerplay_tables( + struct pp_hwmgr *hwmgr, + const ATOM_Tonga_POWERPLAYTABLE *powerplay_table + ) +{ + const ATOM_Tonga_State_Array *state_arrays; + + state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) + + le16_to_cpu(powerplay_table->usStateArrayOffset)); + + PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <= + powerplay_table->sHeader.ucTableFormatRevision), + "Unsupported PPTable format!", return -1); + PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset), + "State table is not set!", return -1); + PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize), + "Invalid PowerPlay Table!", return -1); + PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), + "Invalid PowerPlay Table!", return -1); + + return 0; +} + +int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr) +{ + int result = 0; + const ATOM_Tonga_POWERPLAYTABLE *powerplay_table; + + hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL); + + if (NULL == hwmgr->pptable) + return -1; + + memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information)); + + powerplay_table = get_powerplay_table(hwmgr); + + PP_ASSERT_WITH_CODE((NULL != powerplay_table), + "Missing PowerPlay Table!", return -1); + + result = check_powerplay_tables(hwmgr, powerplay_table); + + if (0 == result) + result = set_platform_caps(hwmgr, + le32_to_cpu(powerplay_table->ulPlatformCaps)); + + if (0 == result) + result = init_thermal_controller(hwmgr, powerplay_table); + + if (0 == result) + result = init_over_drive_limits(hwmgr, powerplay_table); + + if (0 == result) + result = init_clock_voltage_dependency(hwmgr, powerplay_table); + + if (0 == result) + result = init_dpm_2_parameters(hwmgr, powerplay_table); + + return result; +} + +int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr) +{ + int result = 0; + struct phm_ppt_v1_information *pp_table_information = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + if (NULL != hwmgr->soft_pp_table) { + kfree(hwmgr->soft_pp_table); + hwmgr->soft_pp_table = NULL; + } + + if (NULL != pp_table_information->vdd_dep_on_sclk) + pp_table_information->vdd_dep_on_sclk = NULL; + + if (NULL != pp_table_information->vdd_dep_on_mclk) + pp_table_information->vdd_dep_on_mclk = NULL; + + if (NULL != pp_table_information->valid_mclk_values) + pp_table_information->valid_mclk_values = NULL; + + if (NULL != pp_table_information->valid_sclk_values) + pp_table_information->valid_sclk_values = NULL; + + if (NULL != pp_table_information->vddc_lookup_table) + pp_table_information->vddc_lookup_table = NULL; + + if (NULL != pp_table_information->vddgfx_lookup_table) + pp_table_information->vddgfx_lookup_table = NULL; + + if (NULL != pp_table_information->mm_dep_table) + pp_table_information->mm_dep_table = NULL; + + if (NULL != pp_table_information->cac_dtp_table) + pp_table_information->cac_dtp_table = NULL; + + if (NULL != hwmgr->dyn_state.cac_dtp_table) + hwmgr->dyn_state.cac_dtp_table = NULL; + + if (NULL != pp_table_information->ppm_parameter_table) + pp_table_information->ppm_parameter_table = NULL; + + if (NULL != pp_table_information->pcie_table) + pp_table_information->pcie_table = NULL; + + if (NULL != hwmgr->pptable) { + kfree(hwmgr->pptable); + hwmgr->pptable = NULL; + } + + return result; +} + +const struct pp_table_func tonga_pptable_funcs = { + .pptable_init = tonga_pp_tables_initialize, + .pptable_fini = tonga_pp_tables_uninitialize, +}; + +int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) +{ + const ATOM_Tonga_State_Array * state_arrays; + const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); + + PP_ASSERT_WITH_CODE((NULL != pp_table), + "Missing PowerPlay Table!", return -1); + PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >= + ATOM_Tonga_TABLE_REVISION_TONGA), + "Incorrect PowerPlay table revision!", return -1); + + state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + + le16_to_cpu(pp_table->usStateArrayOffset)); + + return (uint32_t)(state_arrays->ucNumEntries); +} + +/** +* Private function to convert flags stored in the BIOS to software flags in PowerPlay. +*/ +static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr, + uint16_t classification, uint16_t classification2) +{ + uint32_t result = 0; + + if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) + result |= PP_StateClassificationFlag_Boot; + + if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) + result |= PP_StateClassificationFlag_Thermal; + + if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) + result |= PP_StateClassificationFlag_LimitedPowerSource; + + if (classification & ATOM_PPLIB_CLASSIFICATION_REST) + result |= PP_StateClassificationFlag_Rest; + + if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) + result |= PP_StateClassificationFlag_Forced; + + if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) + result |= PP_StateClassificationFlag_ACPI; + + if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) + result |= PP_StateClassificationFlag_LimitedPowerSource_2; + + return result; +} + +/** +* Create a Power State out of an entry in the PowerPlay table. +* This function is called by the hardware back-end. +* @param hwmgr Pointer to the hardware manager. +* @param entry_index The index of the entry to be extracted from the table. +* @param power_state The address of the PowerState instance being created. +* @return -1 if the entry cannot be retrieved. +*/ +int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, + uint32_t entry_index, struct pp_power_state *power_state, + int (*call_back_func)(struct pp_hwmgr *, void *, + struct pp_power_state *, void *, uint32_t)) +{ + int result = 0; + const ATOM_Tonga_State_Array * state_arrays; + const ATOM_Tonga_State *state_entry; + const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); + + PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;); + power_state->classification.bios_index = entry_index; + + if (pp_table->sHeader.ucTableFormatRevision >= + ATOM_Tonga_TABLE_REVISION_TONGA) { + state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + + le16_to_cpu(pp_table->usStateArrayOffset)); + + PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset), + "Invalid PowerPlay Table State Array Offset.", return -1); + PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), + "Invalid PowerPlay Table State Array.", return -1); + PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries), + "Invalid PowerPlay Table State Array Entry.", return -1); + + state_entry = &(state_arrays->states[entry_index]); + + result = call_back_func(hwmgr, (void *)state_entry, power_state, + (void *)pp_table, + make_classification_flags(hwmgr, + le16_to_cpu(state_entry->usClassification), + le16_to_cpu(state_entry->usClassification2))); + } + + if (!result && (power_state->classification.flags & + PP_StateClassificationFlag_Boot)) + result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware)); + + return result; +} diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h new file mode 100644 index 000000000000..d24b8887f466 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h @@ -0,0 +1,35 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#ifndef TONGA_PROCESSPPTABLES_H +#define TONGA_PROCESSPPTABLES_H + +#include "hwmgr.h" + +extern const struct pp_table_func tonga_pptable_funcs; +extern int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr); +extern int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, uint32_t entry_index, + struct pp_power_state *power_state, int (*call_back_func)(struct pp_hwmgr *, void *, + struct pp_power_state *, void *, uint32_t)); + +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h b/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h index a69b3798e6ad..9795b9ad24c0 100644 --- a/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h +++ b/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h @@ -219,12 +219,12 @@ enum PHM_PerformanceLevelDesignation { typedef enum PHM_PerformanceLevelDesignation PHM_PerformanceLevelDesignation; struct PHM_PerformanceLevel { - uint32_t coreClock; - uint32_t memory_clock; - uint32_t vddc; - uint32_t vddci; - uint32_t nonLocalMemoryFreq; - uint32_t nonLocalMemoryWidth; + uint32_t coreClock; + uint32_t memory_clock; + uint32_t vddc; + uint32_t vddci; + uint32_t nonLocalMemoryFreq; + uint32_t nonLocalMemoryWidth; }; typedef struct PHM_PerformanceLevel PHM_PerformanceLevel; @@ -251,9 +251,9 @@ static inline bool phm_cap_enabled(const uint32_t *caps, enum phm_platform_caps #define PP_PCIEGenInvalid 0xffff enum PP_PCIEGen { - PP_PCIEGen1 = 0, /* PCIE 1.0 - Transfer rate of 2.5 GT/s */ - PP_PCIEGen2, /*PCIE 2.0 - Transfer rate of 5.0 GT/s */ - PP_PCIEGen3 /*PCIE 3.0 - Transfer rate of 8.0 GT/s */ + PP_PCIEGen1 = 0, /* PCIE 1.0 - Transfer rate of 2.5 GT/s */ + PP_PCIEGen2, /*PCIE 2.0 - Transfer rate of 5.0 GT/s */ + PP_PCIEGen3 /*PCIE 3.0 - Transfer rate of 8.0 GT/s */ }; typedef enum PP_PCIEGen PP_PCIEGen; diff --git a/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h b/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h index 18b5ab1e04d7..ca513a124b8e 100644 --- a/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h +++ b/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h @@ -28,6 +28,7 @@ #include "pp_instance.h" #include "hardwaremanager.h" #include "pp_power_source.h" +#include "hwmgr_ppt.h" struct pp_instance; struct pp_hwmgr; @@ -400,7 +401,24 @@ struct phm_clock_and_voltage_limits { uint16_t vddgfx; }; +/* Structure to hold PPTable information */ +struct phm_ppt_v1_information { + struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk; + struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_mclk; + struct phm_clock_array *valid_sclk_values; + struct phm_clock_array *valid_mclk_values; + struct phm_clock_and_voltage_limits max_clock_voltage_on_dc; + struct phm_clock_and_voltage_limits max_clock_voltage_on_ac; + struct phm_clock_voltage_dependency_table *vddc_dep_on_dal_pwrl; + struct phm_ppm_table *ppm_parameter_table; + struct phm_cac_tdp_table *cac_dtp_table; + struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_dep_table; + struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; + struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table; + struct phm_ppt_v1_pcie_table *pcie_table; + uint16_t us_ulv_voltage_offset; +}; struct phm_dynamic_state_info { struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk; @@ -434,6 +452,70 @@ struct phm_dynamic_state_info { struct phm_vq_budgeting_table *vq_budgeting_table; }; +struct pp_fan_info { + bool bNoFan; + uint8_t ucTachometerPulsesPerRevolution; + uint32_t ulMinRPM; + uint32_t ulMaxRPM; +}; + +struct pp_advance_fan_control_parameters { + uint16_t usTMin; /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */ + uint16_t usTMed; /* The middle temperature where we change slopes. */ + uint16_t usTHigh; /* The high temperature for setting the second slope. */ + uint16_t usPWMMin; /* The minimum PWM value in percent (0.01% increments). */ + uint16_t usPWMMed; /* The PWM value (in percent) at TMed. */ + uint16_t usPWMHigh; /* The PWM value at THigh. */ + uint8_t ucTHyst; /* Temperature hysteresis. Integer. */ + uint32_t ulCycleDelay; /* The time between two invocations of the fan control routine in microseconds. */ + uint16_t usTMax; /* The max temperature */ + uint8_t ucFanControlMode; + uint16_t usFanPWMMinLimit; + uint16_t usFanPWMMaxLimit; + uint16_t usFanPWMStep; + uint16_t usDefaultMaxFanPWM; + uint16_t usFanOutputSensitivity; + uint16_t usDefaultFanOutputSensitivity; + uint16_t usMaxFanPWM; /* The max Fan PWM value for Fuzzy Fan Control feature */ + uint16_t usFanRPMMinLimit; /* Minimum limit range in percentage, need to calculate based on minRPM/MaxRpm */ + uint16_t usFanRPMMaxLimit; /* Maximum limit range in percentage, usually set to 100% by default */ + uint16_t usFanRPMStep; /* Step increments/decerements, in percent */ + uint16_t usDefaultMaxFanRPM; /* The max Fan RPM value for Fuzzy Fan Control feature, default from PPTable */ + uint16_t usMaxFanRPM; /* The max Fan RPM value for Fuzzy Fan Control feature, user defined */ + uint16_t usFanCurrentLow; /* Low current */ + uint16_t usFanCurrentHigh; /* High current */ + uint16_t usFanRPMLow; /* Low RPM */ + uint16_t usFanRPMHigh; /* High RPM */ + uint32_t ulMinFanSCLKAcousticLimit; /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */ + uint8_t ucTargetTemperature; /* Advanced fan controller target temperature. */ + uint8_t ucMinimumPWMLimit; /* The minimum PWM that the advanced fan controller can set. This should be set to the highest PWM that will run the fan at its lowest RPM. */ + uint16_t usFanGainEdge; /* The following is added for Fiji */ + uint16_t usFanGainHotspot; + uint16_t usFanGainLiquid; + uint16_t usFanGainVrVddc; + uint16_t usFanGainVrMvdd; + uint16_t usFanGainPlx; + uint16_t usFanGainHbm; +}; + +struct pp_thermal_controller_info { + uint8_t ucType; + uint8_t ucI2cLine; + uint8_t ucI2cAddress; + struct pp_fan_info fanInfo; + struct pp_advance_fan_control_parameters advanceFanControlParameters; +}; + +struct phm_microcode_version_info { + uint32_t SMC; + uint32_t DMCU; + uint32_t MC; + uint32_t NB; +}; + +/** + * The main hardware manager structure. + */ struct pp_hwmgr { uint32_t chip_family; uint32_t chip_id; @@ -466,6 +548,8 @@ struct pp_hwmgr { struct pp_power_state *ps; enum pp_power_source power_source; uint32_t num_ps; + struct pp_thermal_controller_info thermal_controller; + struct phm_microcode_version_info microcode_version_info; uint32_t ps_size; struct pp_power_state *current_ps; struct pp_power_state *request_ps; @@ -487,7 +571,13 @@ extern int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index, extern int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value, uint32_t mask); +extern uint32_t phm_read_indirect_register(struct pp_hwmgr *hwmgr, + uint32_t indirect_port, uint32_t index); +extern void phm_write_indirect_register(struct pp_hwmgr *hwmgr, + uint32_t indirect_port, + uint32_t index, + uint32_t value); extern void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr, uint32_t indirect_port, diff --git a/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h b/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h index 65ef5478b5ed..3df3dedb1bb5 100644 --- a/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h +++ b/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h @@ -31,7 +31,7 @@ #define PP_ASSERT_WITH_CODE(cond, msg, code) \ do { \ if (!(cond)) { \ - printk(msg); \ + printk("%s\n", msg); \ code; \ } \ } while (0) diff --git a/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h b/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h new file mode 100644 index 000000000000..c24a81eebc7c --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h @@ -0,0 +1,100 @@ +/* + * Copyright 2014 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ + +#ifndef SMU_UCODE_XFER_VI_H +#define SMU_UCODE_XFER_VI_H + +#define SMU_DRAMData_TOC_VERSION 1 +#define MAX_IH_REGISTER_COUNT 65535 +#define SMU_DIGEST_SIZE_BYTES 20 +#define SMU_FB_SIZE_BYTES 1048576 +#define SMU_MAX_ENTRIES 12 + +#define UCODE_ID_SMU 0 +#define UCODE_ID_SDMA0 1 +#define UCODE_ID_SDMA1 2 +#define UCODE_ID_CP_CE 3 +#define UCODE_ID_CP_PFP 4 +#define UCODE_ID_CP_ME 5 +#define UCODE_ID_CP_MEC 6 +#define UCODE_ID_CP_MEC_JT1 7 +#define UCODE_ID_CP_MEC_JT2 8 +#define UCODE_ID_GMCON_RENG 9 +#define UCODE_ID_RLC_G 10 +#define UCODE_ID_IH_REG_RESTORE 11 +#define UCODE_ID_VBIOS 12 +#define UCODE_ID_MISC_METADATA 13 +#define UCODE_ID_RLC_SCRATCH 32 +#define UCODE_ID_RLC_SRM_ARAM 33 +#define UCODE_ID_RLC_SRM_DRAM 34 +#define UCODE_ID_MEC_STORAGE 35 +#define UCODE_ID_VBIOS_PARAMETERS 36 +#define UCODE_META_DATA 0xFF + +#define UCODE_ID_SMU_MASK 0x00000001 +#define UCODE_ID_SDMA0_MASK 0x00000002 +#define UCODE_ID_SDMA1_MASK 0x00000004 +#define UCODE_ID_CP_CE_MASK 0x00000008 +#define UCODE_ID_CP_PFP_MASK 0x00000010 +#define UCODE_ID_CP_ME_MASK 0x00000020 +#define UCODE_ID_CP_MEC_MASK 0x00000040 +#define UCODE_ID_CP_MEC_JT1_MASK 0x00000080 +#define UCODE_ID_CP_MEC_JT2_MASK 0x00000100 +#define UCODE_ID_GMCON_RENG_MASK 0x00000200 +#define UCODE_ID_RLC_G_MASK 0x00000400 +#define UCODE_ID_IH_REG_RESTORE_MASK 0x00000800 +#define UCODE_ID_VBIOS_MASK 0x00001000 + +#define UCODE_FLAG_UNHALT_MASK 0x1 + +struct SMU_Entry { +#ifndef __BIG_ENDIAN + uint16_t id; + uint16_t version; + uint32_t image_addr_high; + uint32_t image_addr_low; + uint32_t meta_data_addr_high; + uint32_t meta_data_addr_low; + uint32_t data_size_byte; + uint16_t flags; + uint16_t num_register_entries; +#else + uint16_t version; + uint16_t id; + uint32_t image_addr_high; + uint32_t image_addr_low; + uint32_t meta_data_addr_high; + uint32_t meta_data_addr_low; + uint32_t data_size_byte; + uint16_t num_register_entries; + uint16_t flags; +#endif +}; + +struct SMU_DRAMData_TOC { + uint32_t structure_version; + uint32_t num_entries; + struct SMU_Entry entry[SMU_MAX_ENTRIES]; +}; + +#endif |