summaryrefslogtreecommitdiff
path: root/arch/s390/include/asm/lowcore.h
Commit message (Collapse)AuthorAgeFilesLines
* s390/pai: Add support for PAI Extension 1 NNPA countersThomas Richter2022-09-161-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PMU device driver perf_paiext supports Processor Activity Instrumentation Extension (PAIE1), available with IBM z16: - maps a 512 byte block to lowcore address 0x1508 called PAIE1 control block. - maps a 1024 byte block at PAIE1 control block entry with index 2. - uses control register bit 14 to enable PAIE1 control block lookup. - turn PAIE1 nnpa counting on and off by setting bit 63 in PAIE1 control block entry with index 2. - creates a sample with raw data on each context switch out when at context switch some mapped counters have a value of nonzero. This device driver only supports CPU wide context, no task context is allowed. Support for counting: - one or more counters can be specified using perf stat -e pai_ext/xxx/ where xxx stands for the counter event name. Multiple invocation of this command is possible. The counter names are listed in /sys/devices/pai_ext/events directory. - one special counters can be specified using perf stat -e pai_ext/NNPA_ALL/ which returns the sum of all incremented nnpa counters. - multiple counting events can run in parallel. Support for Sampling: - one event pai_ext/NNPA_ALL/ is reserved for sampling. The event collects data at context switch out and saves them in the ring buffer. - no multiple invocations are possible. The PAIE1 nnpa counter events are system wide. No task context is supported. Therefore some restrictions documented in function paiext_busy() apply. Extend qpaci assembly instruction to query supported memory mapped nnpa counters. It returns the number of counters (no holes allowed in that range). PAIE1 nnpa counter events can not be created when a CPU hot plug add is processed. This means a CPU hot plug add does not get the necessary PAIE1 event to record PAIE1 nnpa counter increments on the newly added CPU. CPU hot plug remove removes the event and terminates the counting of PAIE1 counters immediately. Signed-off-by: Thomas Richter <tmricht@linux.ibm.com> Reviewed-by: Sumanth Korikkar <sumanthk@linux.ibm.com> Reviewed-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/pai: add support for cryptography countersThomas Richter2022-05-091-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PMU device driver perf_pai_crypto supports Processor Activity Instrumentation (PAI), available with IBM z16: - maps a full page to lowcore address 0x1500. - uses CR0 bit 13 to turn PAI crypto counting on and off. - creates a sample with raw data on each context switch out when at context switch some mapped counters have a value of nonzero. This device driver only supports CPU wide context, no task context is allowed. Support for counting: - one or more counters can be specified using perf stat -e pai_crypto/xxx/ where xxx stands for the counter event name. Multiple invocation of this command is possible. The counter names are listed in /sys/devices/pai_crypto/events directory. - one special counters can be specified using perf stat -e pai_crypto/CRYPTO_ALL/ which returns the sum of all incremented crypto counters. - one event pai_crypto/CRYPTO_ALL/ is reserved for sampling. No multiple invocations are possible. The event collects data at context switch out and saves them in the ring buffer. Add qpaci assembly instruction to query supported memory mapped crypto counters. It returns the number of counters (no holes allowed in that range). The PAI crypto counter events are system wide and can not be executed in parallel. Therefore some restrictions documented in function paicrypt_busy apply. In particular event CRYPTO_ALL for sampling must run exclusive. Only counting events can run in parallel. PAI crypto counter events can not be created when a CPU hot plug add is processed. This means a CPU hot plug add does not get the necessary PAI event to record PAI cryptography counter increments on the newly added CPU. CPU hot plug remove removes the event and terminates the counting of PAI counters immediately. Co-developed-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Reviewed-by: Juergen Christ <jchrist@linux.ibm.com> Signed-off-by: Thomas Richter <tmricht@linux.ibm.com> Link: https://lore.kernel.org/r/20220504062351.2954280-3-tmricht@linux.ibm.com Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
* s390: raise minimum supported machine generation to z10Vasily Gorbik2022-03-101-5/+3
| | | | | | | | | | | | | | | | | | | | | | Machine generations up to z9 (released in May 2006) have been officially out of service for several years now (z9 end of service - January 31, 2019). No distributions build kernels supporting those old machine generations anymore, except Debian, which seems to pick the oldest supported generation. The team supporting Debian on s390 has been notified about the change. Raising minimum supported machine generation to z10 helps to reduce maintenance cost and effectively remove code, which is not getting enough testing coverage due to lack of older hardware and distributions support. Besides that this unblocks some optimization opportunities and allows to use wider instruction set in asm files for future features implementation. Due to this change spectre mitigation and usercopy implementations could be drastically simplified and many newer instructions could be converted from ".insn" encoding to instruction names. Acked-by: Ilya Leoshkevich <iii@linux.ibm.com> Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/traps: get rid of magic cast for per codeHeiko Carstens2022-03-081-2/+7
| | | | | | | | Add a proper union in lowcore to reflect architecture and get rid of a "magic" cast in order to read the full per code. Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/traps: get rid of magic cast for program interruption codeHeiko Carstens2022-03-081-2/+7
| | | | | | | | Add a proper union in lowcore to reflect architecture and get rid of a "magic" cast in order to read the full program interruption code. Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390: add support for BEAR enhancement facilitySven Schnelle2021-10-261-3/+4
| | | | | | | | | | | | | | | | | | | The Breaking-Event-Address-Register (BEAR) stores the address of the last breaking event instruction. Breaking events are usually instructions that change the program flow - for example branches, and instructions that modify the address in the PSW like lpswe. This is useful for debugging wild branches, because one could easily figure out where the wild branch was originating from. What is problematic is that lpswe is considered a breaking event, and therefore overwrites BEAR on kernel exit. The BEAR enhancement facility adds new instructions that allow to save/restore BEAR and also an lpswey instruction that doesn't cause a breaking event. So we can save BEAR on kernel entry and restore it on exit to user space. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390: rename last_break to pgm_last_breakSven Schnelle2021-10-261-1/+1
| | | | | | | | | | | With the upcoming BEAR enhancements last_break isn't really unique, so rename it to pgm_last_break. This way it should be more obvious that this is the last_break value that is written by the hardware when a program check occurs. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/smp: enable DAT before CPU restart callback is calledAlexander Gordeev2021-08-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The restart interrupt is triggered whenever a secondary CPU is brought online, a remote function call dispatched from another CPU or a manual PSW restart is initiated and causes the system to kdump. The handling routine is always called with DAT turned off. It then initializes the stack frame and invokes a callback. The existing callbacks handle DAT as follows: * __do_restart() and __machine_kexec() turn in on upon entry; * __ipl_run(), __reipl_run() and __dump_run() do not turn it right away, but all of them call diag308() - which turns DAT on, but only if kasan is enabled; In addition to the described complexity all callbacks (and the functions they call) should avoid kasan instrumentation while DAT is off. This update enables DAT in the assembler restart handler and relieves any callbacks (which are mostly C functions) from dealing with DAT altogether. There are four types of CPU restart that initialize control registers in different ways: 1. Start of secondary CPU on boot - control registers are inherited from the IPL CPU; 2. Restart of online CPU - control registers of the CPU being restarted are kept; 3. Hotplug of offline CPU - control registers are inherited from the starting CPU; 4. Start of offline CPU triggered by manual PSW restart - the control registers are read from the absolute lowcore and contain the boot time IPL CPU values updated with all follow-up calls of smp_ctl_set_bit() and smp_ctl_clear_bit() routines; In first three cases contents of the control registers is the most recent. In the latter case control registers are good enough to facilitate successful completion of kdump operation. Suggested-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
* s390/lowcore: remove superfluous __packed annotationsHeiko Carstens2021-06-071-2/+2
| | | | | Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390: use struct tpi_info in lowcore.hSven Schnelle2021-06-071-4/+9
| | | | | | Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/traps: add struct to access transactional diagnostic blockSven Schnelle2021-06-071-1/+5
| | | | | | | | | | | | | | | gcc-11 warns: arch/s390/kernel/traps.c: In function __do_pgm_check: arch/s390/kernel/traps.c:319:17: warning: memcpy reading 256 bytes from a region of size 0 [-Wstringop-overread] 319 | memcpy(&current->thread.trap_tdb, &S390_lowcore.pgm_tdb, 256); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by adding a struct pgm_tdb to struct lowcore and copy that. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/irq: add union/struct to access external interrupt parametersSven Schnelle2021-06-071-2/+7
| | | | | | | | | | | | | | | gcc-11 warns: arch/s390/kernel/irq.c: In function do_ext_irq: arch/s390/kernel/irq.c:175:9: warning: memcpy reading 4 bytes from a region of size 0 [-Wstringop-overread] 175 | memcpy(&regs->int_code, &S390_lowcore.ext_cpu_addr, 4); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by adding a struct for int_code to struct lowcore. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/facilities: move stfl information from lowcore to global dataSven Schnelle2021-06-071-6/+1
| | | | | | | | | | With gcc-11, there are a lot of warnings because the facility functions are accessing lowcore through a null pointer. Fix this by moving the facility arrays away from lowcore. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/entry: use assignment to read intcode / asm to copy gprsSven Schnelle2021-06-071-2/+1
| | | | | | | | | | | | | | | | | arch/s390/kernel/syscall.c: In function __do_syscall: arch/s390/kernel/syscall.c:147:9: warning: memcpy reading 64 bytes from a region of size 0 [-Wstringop-overread] 147 | memcpy(&regs->gprs[8], S390_lowcore.save_area_sync, 8 * sizeof(unsigned long)); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ arch/s390/kernel/syscall.c:148:9: warning: memcpy reading 4 bytes from a region of size 0 [-Wstringop-overread] 148 | memcpy(&regs->int_code, &S390_lowcore.svc_ilc, sizeof(regs->int_code)); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix this by moving the gprs restore from C to assembly, and use a assignment for int_code instead of memcpy. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390: add stack for machine check handlerSven Schnelle2021-02-131-7/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The previous code used the normal kernel stack for machine checks. This is problematic when a machine check interrupts a system call or interrupt handler right at the beginning where registers are set up. Assume system_call is interrupted at the first instruction and a machine check is triggered. The machine check handler is called, checks the PSW to see whether it is coming from user space, notices that it is already in kernel mode but %r15 still contains the user space stack. This would lead to a kernel crash. There are basically two ways of fixing that: Either using the 'critical cleanup' approach which compares the address in the PSW to see whether it is already at a point where the stack has been set up, or use an extra stack for the machine check handler. For simplicity, we will go with the second approach and allocate an extra stack. This adds some memory overhead for large systems, but usually large system have plenty of memory so this isn't really a concern. But it keeps the mchk stack setup simple and less error prone. Fixes: 0b0ed657fe00 ("s390: remove critical section cleanup from entry.S") Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Cc: <stable@kernel.org> # v5.8+ Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390: convert to generic entrySven Schnelle2021-01-191-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch converts s390 to use the generic entry infrastructure from kernel/entry/*. There are a few special things on s390: - PIF_PER_TRAP is moved to TIF_PER_TRAP as the generic code doesn't know about our PIF flags in exit_to_user_mode_loop(). - The old code had several ways to restart syscalls: a) PIF_SYSCALL_RESTART, which was only set during execve to force a restart after upgrading a process (usually qemu-kvm) to pgste page table extensions. b) PIF_SYSCALL, which is set by do_signal() to indicate that the current syscall should be restarted. This is changed so that do_signal() now also uses PIF_SYSCALL_RESTART. Continuing to use PIF_SYSCALL doesn't work with the generic code, and changing it to PIF_SYSCALL_RESTART makes PIF_SYSCALL and PIF_SYSCALL_RESTART more unique. - On s390 calling sys_sigreturn or sys_rt_sigreturn is implemented by executing a svc instruction on the process stack which causes a fault. While handling that fault the fault code sets PIF_SYSCALL to hand over processing to the syscall code on exit to usermode. The patch introduces PIF_SYSCALL_RET_SET, which is set if ptrace sets a return value for a syscall. The s390x ptrace ABI uses r2 both for the syscall number and return value, so ptrace cannot set the syscall number + return value at the same time. The flag makes handling that a bit easier. do_syscall() will just skip executing the syscall if PIF_SYSCALL_RET_SET is set. CONFIG_DEBUG_ASCE was removd in favour of the generic CONFIG_DEBUG_ENTRY. CR1/7/13 will be checked both on kernel entry and exit to contain the correct asces. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390/mm: remove set_fs / rework address space handlingHeiko Carstens2020-11-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove set_fs support from s390. With doing this rework address space handling and simplify it. As a result address spaces are now setup like this: CPU running in | %cr1 ASCE | %cr7 ASCE | %cr13 ASCE ----------------------------|-----------|-----------|----------- user space | user | user | kernel kernel, normal execution | kernel | user | kernel kernel, kvm guest execution | gmap | user | kernel To achieve this the getcpu vdso syscall is removed in order to avoid secondary address mode and a separate vdso address space in for user space. The getcpu vdso syscall will be implemented differently with a subsequent patch. The kernel accesses user space always via secondary address space. This happens in different ways: - with mvcos in home space mode and directly read/write to secondary address space - with mvcs/mvcp in primary space mode and copy from primary space to secondary space or vice versa - with e.g. cs in secondary space mode and access secondary space Switching translation modes happens with sacf before and after instructions which access user space, like before. Lazy handling of control register reloading is removed in the hope to make everything simpler, but at the cost of making kernel entry and exit a bit slower. That is: on kernel entry the primary asce is always changed to contain the kernel asce, and on kernel exit the primary asce is changed again so it contains the user asce. In kernel mode there is only one exception to the primary asce: when kvm guests are executed the primary asce contains the gmap asce (which describes the guest address space). The primary asce is reset to kernel asce whenever kvm guest execution is interrupted, so that this doesn't has to be taken into account for any user space accesses. Reviewed-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
* s390: prevent leaking kernel address in BEARSven Schnelle2020-03-101-1/+3
| | | | | | | | | | | | | | | | | When userspace executes a syscall or gets interrupted, BEAR contains a kernel address when returning to userspace. This make it pretty easy to figure out where the kernel is mapped even with KASLR enabled. To fix this, add lpswe to lowcore and always execute it there, so userspace sees only the lowcore address of lpswe. For this we have to extend both critical_cleanup and the SWITCH_ASYNC macro to also check for lpswe addresses in lowcore. Fixes: b2d24b97b2a9 ("s390/kernel: add support for kernel address space layout randomization (KASLR)") Cc: <stable@vger.kernel.org> # v5.2+ Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
* s390: fix clang -Wpointer-sign warnigns in boot codeArnd Bergmann2019-05-031-1/+1
| | | | | | | | | | | | | | | | The arch/s390/boot directory is built with its own set of compiler options that does not include -Wno-pointer-sign like the rest of the kernel does, this causes a lot of harmless but correct warnings when building with clang. For the atomics, we can add type casts to avoid the warnings, for everything else the easiest way is to slightly adapt the types to be more consistent. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/vtime: steal time exponential moving averageMartin Schwidefsky2019-03-061-30/+31
| | | | | | | | To be able to judge the current overcommitment ratio for a CPU add a lowcore field with the exponential moving average of the steal time. The average is updated every tick. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: add support for virtually mapped kernel stacksMartin Schwidefsky2018-10-091-2/+2
| | | | | | | | | | | | | | | | | | | | | With virtually mapped kernel stacks the kernel stack overflow detection is now fault based, every stack has a guard page in the vmalloc space. The panic_stack is renamed to nodat_stack and is used for all function that need to run without DAT, e.g. memcpy_real or do_start_kdump. The main effect is a reduction in the kernel image size as with vmap stacks the old style overflow checking that adds two instructions per function is not needed anymore. Result from bloat-o-meter: add/remove: 20/1 grow/shrink: 13/26854 up/down: 2198/-216240 (-214042) In regard to performance the micro-benchmark for fork has a hit of a few microseconds, allocating 4 pages in vmalloc space is more expensive compare to an order-2 page allocation. But with real workload I could not find a noticeable difference. Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: align struct lowcore to double page sizeVasily Gorbik2018-07-021-1/+1
| | | | | | | | | | | | | | | | | | | | | | Aligning struct lowcore to double page size allows to get rid of this gcc warning: In file included from ./arch/s390/include/asm/setup.h:56, from ./arch/s390/include/asm/page.h:36, from ./arch/s390/include/asm/user.h:11, from ./include/linux/user.h:1, from ./include/linux/elfcore.h:5, from ./include/linux/crash_core.h:6, from ./include/linux/kexec.h:18, from arch/s390/purgatory/purgatory.c:10: ./arch/s390/include/asm/lowcore.h:189:1: warning: alignment 1 of 'struct lowcore' is less than 8 [-Wpacked-not-aligned] } __packed; Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: introduce execute-trampolines for branchesMartin Schwidefsky2018-02-071-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add CONFIG_EXPOLINE to enable the use of the new -mindirect-branch= and -mfunction_return= compiler options to create a kernel fortified against the specte v2 attack. With CONFIG_EXPOLINE=y all indirect branches will be issued with an execute type instruction. For z10 or newer the EXRL instruction will be used, for older machines the EX instruction. The typical indirect call basr %r14,%r1 is replaced with a PC relative call to a new thunk brasl %r14,__s390x_indirect_jump_r1 The thunk contains the EXRL/EX instruction to the indirect branch __s390x_indirect_jump_r1: exrl 0,0f j . 0: br %r1 The detour via the execute type instruction has a performance impact. To get rid of the detour the new kernel parameter "nospectre_v2" and "spectre_v2=[on,off,auto]" can be used. If the parameter is specified the kernel and module code will be patched at runtime. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/alternative: use a copy of the facility bit maskMartin Schwidefsky2018-02-051-1/+2
| | | | | | | | | | To be able to switch off specific CPU alternatives with kernel parameters make a copy of the facility bit mask provided by STFLE and use the copy for the decision to apply an alternative. Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: correct some inline assembly constraintsVasily Gorbik2017-11-141-2/+2
| | | | | | | | | | Inline assembly code changed in this patch should really use "Q" constraint "Memory reference without index register and with short displacement". The kernel does not compile with kasan support enabled otherwise (due to stack instrumentation). Signed-off-by: Vasily Gorbik <gor@linux.vnet.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
* s390: remove all code using the access register modeMartin Schwidefsky2017-11-141-19/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The vdso code for the getcpu() and the clock_gettime() call use the access register mode to access the per-CPU vdso data page with the current code. An alternative to the complicated AR mode is to use the secondary space mode. This makes the vdso faster and quite a bit simpler. The downside is that the uaccess code has to be changed quite a bit. Which instructions are used depends on the machine and what kind of uaccess operation is requested. The instruction dictates which ASCE value needs to be loaded into %cr1 and %cr7. The different cases: * User copy with MVCOS for z10 and newer machines The MVCOS instruction can copy between the primary space (aka user) and the home space (aka kernel) directly. For set_fs(KERNEL_DS) the kernel ASCE is loaded into %cr1. For set_fs(USER_DS) the user space is already loaded in %cr1. * User copy with MVCP/MVCS for older machines To be able to execute the MVCP/MVCS instructions the kernel needs to switch to primary mode. The control register %cr1 has to be set to the kernel ASCE and %cr7 to either the kernel ASCE or the user ASCE dependent on set_fs(KERNEL_DS) vs set_fs(USER_DS). * Data access in the user address space for strnlen / futex To use "normal" instruction with data from the user address space the secondary space mode is used. The kernel needs to switch to primary mode, %cr1 has to contain the kernel ASCE and %cr7 either the user ASCE or the kernel ASCE, dependent on set_fs. To load a new value into %cr1 or %cr7 is an expensive operation, the kernel tries to be lazy about it. E.g. for multiple user copies in a row with MVCP/MVCS the replacement of the vdso ASCE in %cr7 with the user ASCE is done only once. On return to user space a CPU bit is checked that loads the vdso ASCE again. To enable and disable the data access via the secondary space two new functions are added, enable_sacf_uaccess and disable_sacf_uaccess. The fact that a context is in secondary space uaccess mode is stored in the mm_segment_t value for the task. The code of an interrupt may use set_fs as long as it returns to the previous state it got with get_fs with another call to set_fs. The code in finish_arch_post_lock_switch simply has to do a set_fs with the current mm_segment_t value for the task. For CPUs with MVCOS: CPU running in | %cr1 ASCE | %cr7 ASCE | --------------------------------------|-----------|-----------| user space | user | vdso | kernel, USER_DS, normal-mode | user | vdso | kernel, USER_DS, normal-mode, lazy | user | user | kernel, USER_DS, sacf-mode | kernel | user | kernel, KERNEL_DS, normal-mode | kernel | vdso | kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel | kernel, KERNEL_DS, sacf-mode | kernel | kernel | For CPUs without MVCOS: CPU running in | %cr1 ASCE | %cr7 ASCE | --------------------------------------|-----------|-----------| user space | user | vdso | kernel, USER_DS, normal-mode | user | vdso | kernel, USER_DS, normal-mode lazy | kernel | user | kernel, USER_DS, sacf-mode | kernel | user | kernel, KERNEL_DS, normal-mode | kernel | vdso | kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel | kernel, KERNEL_DS, sacf-mode | kernel | kernel | The lines with "lazy" refer to the state after a copy via the secondary space with a delayed reload of %cr1 and %cr7. There are three hardware address spaces that can cause a DAT exception, primary, secondary and home space. The exception can be related to four different fault types: user space fault, vdso fault, kernel fault, and the gmap faults. Dependent on the set_fs state and normal vs. sacf mode there are a number of fault combinations: 1) user address space fault via the primary ASCE 2) gmap address space fault via the primary ASCE 3) kernel address space fault via the primary ASCE for machines with MVCOS and set_fs(KERNEL_DS) 4) vdso address space faults via the secondary ASCE with an invalid address while running in secondary space in problem state 5) user address space fault via the secondary ASCE for user-copy based on the secondary space mode, e.g. futex_ops or strnlen_user 6) kernel address space fault via the secondary ASCE for user-copy with secondary space mode with set_fs(KERNEL_DS) 7) kernel address space fault via the primary ASCE for user-copy with secondary space mode with set_fs(USER_DS) on machines without MVCOS. 8) kernel address space fault via the home space ASCE Replace user_space_fault() with a new function get_fault_type() that can distinguish all four different fault types. With these changes the futex atomic ops from the kernel and the strnlen_user will get a little bit slower, as well as the old style uaccess with MVCP/MVCS. All user accesses based on MVCOS will be as fast as before. On the positive side, the user space vdso code is a lot faster and Linux ceases to use the complicated AR mode. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
* Merge branch 'for-linus' of ↵Linus Torvalds2017-11-131-2/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux Pull s390 updates from Heiko Carstens: "Since Martin is on vacation you get the s390 pull request for the v4.15 merge window this time from me. Besides a lot of cleanups and bug fixes these are the most important changes: - a new regset for runtime instrumentation registers - hardware accelerated AES-GCM support for the aes_s390 module - support for the new CEX6S crypto cards - support for FORTIFY_SOURCE - addition of missing z13 and new z14 instructions to the in-kernel disassembler - generate opcode tables for the in-kernel disassembler out of a simple text file instead of having to manually maintain those tables - fast memset16, memset32 and memset64 implementations - removal of named saved segment support - hardware counter support for z14 - queued spinlocks and queued rwlocks implementations for s390 - use the stack_depth tracking feature for s390 BPF JIT - a new s390_sthyi system call which emulates the sthyi (store hypervisor information) instruction - removal of the old KVM virtio transport - an s390 specific CPU alternatives implementation which is used in the new spinlock code" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (88 commits) MAINTAINERS: add virtio-ccw.h to virtio/s390 section s390/noexec: execute kexec datamover without DAT s390: fix transactional execution control register handling s390/bpf: take advantage of stack_depth tracking s390: simplify transactional execution elf hwcap handling s390/zcrypt: Rework struct ap_qact_ap_info. s390/virtio: remove unused header file kvm_virtio.h s390: avoid undefined behaviour s390/disassembler: generate opcode tables from text file s390/disassembler: remove insn_to_mnemonic() s390/dasd: avoid calling do_gettimeofday() s390: vfio-ccw: Do not attempt to free no-op, test and tic cda. s390: remove named saved segment support s390/archrandom: Reconsider s390 arch random implementation s390/pci: do not require AIS facility s390/qdio: sanitize put_indicator s390/qdio: use atomic_cmpxchg s390/nmi: avoid using long-displacement facility s390: pass endianness info to sparse s390/decompressor: remove informational messages ...
| * s390/spinlock: introduce spinlock wait queueingMartin Schwidefsky2017-09-281-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The queued spinlock code for s390 follows the principles of the common code qspinlock implementation but with a few notable differences. The format of the spinlock_t locking word differs, s390 needs to store the logical CPU number of the lock holder in the spinlock_t to be able to use the diagnose 9c directed yield hypervisor call. The inline code sequences for spin_lock and spin_unlock are nice and short. The inline portion of a spin_lock now typically looks like this: lhi %r0,0 # 0 indicates an empty lock l %r1,0x3a0 # CPU number + 1 from lowcore cs %r0,%r1,<some_lock> # lock operation jnz call_wait # on failure call wait function locked: ... call_wait: la %r2,<some_lock> brasl %r14,arch_spin_lock_wait j locked A spin_unlock is as simple as before: lhi %r0,0 sth %r0,2(%r2) # unlock operation After a CPU has queued itself it may not enable interrupts again for the arch_spin_lock_flags() variant. The arch_spin_lock_wait_flags wait function is removed. To improve performance the code implements opportunistic lock stealing. If the wait function finds a spinlock_t that indicates that the lock is free but there are queued waiters, the CPU may steal the lock up to three times without queueing itself. The lock stealing update the steal counter in the lock word to prevent more than 3 steals. The counter is reset at the time the CPU next in the queue successfully takes the lock. While the queued spinlocks improve performance in a system with dedicated CPUs, in a virtualized environment with continuously overcommitted CPUs the queued spinlocks can have a negative effect on performance. This is due to the fact that a queued CPU that is preempted by the hypervisor will block the queue at some point even without holding the lock. With the classic spinlock it does not matter if a CPU is preempted that waits for the lock. Therefore use the queued spinlock code only if the system runs with dedicated CPUs and fall back to classic spinlocks when running with shared CPUs. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* | License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* s390/time: add support for the TOD clock epoch extensionMartin Schwidefsky2017-07-261-24/+24
| | | | | | | | | | | | | | | | | | | | | | | | The TOD epoch extension adds 8 epoch bits to the TOD clock to provide a continuous clock after 2042/09/17. The store-clock-extended (STCKE) instruction will store the epoch index in the first byte of the 16 bytes stored by the instruction. The read_boot_clock64 and the read_presistent_clock64 functions need to take the additional bits into account to give the correct result after 2042/09/17. The clock-comparator register will stay 64 bit wide. The comparison of the clock-comparator with the TOD clock is limited to bytes 1 to 8 of the extended TOD format. To deal with the overflow problem due to an epoch change the clock-comparator sign control in CR0 can be used to switch the comparison of the 64-bit TOD clock with the clock-comparator to a signed comparison. The decision between the signed vs. unsigned clock-comparator comparisons is done at boot time. Only if the TOD clock is in the second half of a 142 year epoch the signed comparison is used. This solves the epoch overflow issue as long as the machine is booted at least once in an epoch. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: add a system call for guarded storageMartin Schwidefsky2017-03-221-6/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* sched/cputime, s390: Implement delayed accounting of system timeMartin Schwidefsky2017-01-141-31/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The account_system_time() function is called with a cputime that occurred while running in the kernel. The function detects which context the CPU is currently running in and accounts the time to the correct bucket. This forces the arch code to account the cputime for hardirq and softirq immediately. Such accounting function can be costly and perform unwelcome divisions and multiplications, among others. The arch code can delay the accounting for system time. For s390 the accounting is done once per timer tick and for each task switch. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> [ Rebase against latest linus tree and move account_system_index_scaled(). ] Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Link: http://lkml.kernel.org/r/1483636310-6557-10-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* s390: move thread_info into task_structHeiko Carstens2016-11-111-1/+1
| | | | | | | | This is the s390 variant of commit 15f4eae70d36 ("x86: Move thread_info into task_struct"). Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/preempt: move preempt_count to the lowcoreMartin Schwidefsky2016-11-111-1/+2
| | | | | | | | | | | | | | | | | | | | Convert s390 to use a field in the struct lowcore for the CPU preemption count. It is a bit cheaper to access a lowcore field compared to a thread_info variable and it removes the depencency on a task related structure. bloat-o-meter on the vmlinux image for the default configuration (CONFIG_PREEMPT_NONE=y) reports a small reduction in text size: add/remove: 0/0 grow/shrink: 18/578 up/down: 228/-5448 (-5220) A larger improvement is achieved with the default configuration but with CONFIG_PREEMPT=y and CONFIG_DEBUG_PREEMPT=n: add/remove: 2/6 grow/shrink: 59/4477 up/down: 1618/-228762 (-227144) Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/fpu: improve kernel_fpu_[begin|end]Martin Schwidefsky2016-08-291-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | In case of nested user of the FPU or vector registers in the kernel the current code uses the mask of the FPU/vector registers of the previous contexts to decide which registers to save and restore. E.g. if the previous context used KERNEL_VXR_V0V7 and the next context wants to use KERNEL_VXR_V24V31 the first 8 vector registers are stored to the FPU state structure. But this is not necessary as the next context does not use these registers. Rework the FPU/vector register save and restore code. The new code does a few things differently: 1) A lowcore field is used instead of a per-cpu variable. 2) The kernel_fpu_end function now has two parameters just like kernel_fpu_begin. The register flags are required by both functions to save / restore the minimal register set. 3) The inline functions kernel_fpu_begin/kernel_fpu_end now do the update of the register masks. If the user space FPU registers have already been stored neither save_fpu_regs nor the __kernel_fpu_begin/__kernel_fpu_end functions have to be called for the first context. In this case kernel_fpu_begin adds 7 instructions and kernel_fpu_end adds 4 instructions. 3) The inline assemblies in __kernel_fpu_begin / __kernel_fpu_end to save / restore the vector registers are simplified a bit. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: rename struct _lowcore to struct lowcoreHeiko Carstens2016-01-111-3/+3
| | | | | | | | | | | | | Finally get rid of the leading underscore. I tried this already two or three years ago, however Michael Holzheu objected since this would break the crash utility (again). However Michael integrated support for the new name into the crash utility back then, so it doesn't break if the name will be changed now. So finally get rid of the ever confusing leading underscore. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/dump: cleanup CPU save area handlingMartin Schwidefsky2015-11-271-21/+0
| | | | | | | | | | | Introduce save_area_alloc(), save_area_boot_cpu(), save_area_add_regs() and save_area_add_vxrs to deal with storing the CPU state in case of a system dump. Remove struct save_area and save_area_ext, and create a new struct save_area as a local definition to arch/s390/kernel/crash_dump.c. Copy each individual field from the hardware status area to the save area, storing the minimum of required data. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/zcore: remove /sys/kernel/debug/zcore/memMartin Schwidefsky2015-11-271-1/+0
| | | | | | | | New versions of the SCSI dumper use the /dev/vmcore interface instead of zcore mem. Remove the outdated interface. Acked-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/zcore: copy vector registers into the image dataMartin Schwidefsky2015-11-271-0/+1
| | | | | | | | | | | | | | | | | | The /sys/kernel/debug/zcore/mem interface delivers the memory of the old system with the CPU registers stored to the assigned locations in each prefix page. For the vector registers the prefix page of each CPU has an address of a 1024 byte save area at 0x11b0. But the /sys/kernel/debug/zcore/mem interface fails copy the vector registers saved at boot of the zfcpdump kernel into the dump image. Copy the saved vector registers of a CPU to the outout buffer if the memory area that is read via /sys/kernel/debug/zcore/mem intersects with the vector register save area of this CPU. Acked-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/nmi: change type of mcck_interruption_code lowcore fieldHeiko Carstens2015-10-141-1/+1
| | | | | | | | | For some unknown reason the mcck_interruption_code field is defined as array of two 32 bit values. Given that this actually is a 64 bit field according to the architecture, change the type to u64. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/cpumf: rework program parameter setting to detect guest samplesChristian Borntraeger2015-10-141-1/+8
| | | | | | | | | | | | | | | | | | | | | | The program parameter can be used to mark hardware samples with some token. Previously, it was used to mark guest samples only. Improve the program parameter doubleword by combining two parts, the leftmost LPP part and the rightmost PID part. Set the PID part for processes by using the task PID. To distinguish host and guest samples for the kernel (PID part is zero), the guest must always set the program paramater to a non-zero value. Use the leftmost bit in the LPP part of the program parameter to be able to detect guest kernel samples. [brueckner@linux.vnet.ibm.com]: Split __LC_CURRENT and introduced __LC_LPP. Corrected __LC_CURRENT users and adjusted assembler parts. And updated the commit message accordingly. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: remove 31 bit supportHeiko Carstens2015-03-251-159/+0
| | | | | | | | | | | | | | | | | | | Remove the 31 bit support in order to reduce maintenance cost and effectively remove dead code. Since a couple of years there is no distribution left that comes with a 31 bit kernel. The 31 bit kernel also has been broken since more than a year before anybody noticed. In addition I added a removal warning to the kernel shown at ipl for 5 minutes: a960062e5826 ("s390: add 31 bit warning message") which let everybody know about the plan to remove 31 bit code. We didn't get any response. Given that the last 31 bit only machine was introduced in 1999 let's remove the code. Anybody with 31 bit user space code can still use the compat mode. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/ftrace,kprobes: allow to patch first instructionHeiko Carstens2014-10-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/kdump: add support for vector extensionMichael Holzheu2014-10-091-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | With this patch for kdump the s390 vector registers are stored into the prepared save areas in the old kernel and into the REGSET_VX_LOW and REGSET_VX_HIGH ELF notes for /proc/vmcore in the new kernel. The NT_S390_VXRS_LOW note contains the lower halves of the first 16 vector registers 0-15. The higher halves are stored in the floating point register ELF note. The NT_S390_VXRS_HIGH contains the full vector registers 16-31. The kernel provides a save area for storing vector register in case of machine checks. A pointer to this save are is stored in the CPU lowcore at offset 0x11b0. This save area is also used to save the registers for kdump. In case of a dumped crashed kdump those areas are used to extract the registers of the production system. The vector registers for remote CPUs are stored using the "store additional status at address" SIGP. For the dump CPU the vector registers are stored with the VSTM instruction. With this patch also zfcpdump stores the vector registers. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: add support for vector extensionMartin Schwidefsky2014-10-091-3/+7
| | | | | | | | | | | | | | The vector extension introduces 32 128-bit vector registers and a set of instruction to operate on the vector registers. The kernel can control the use of vector registers for the problem state program with a bit in control register 0. Once enabled for a process the kernel needs to retain the content of the vector registers on context switch. The signal frame is extended to include the vector registers. Two new register sets NT_S390_VXRS_LOW and NT_S390_VXRS_HIGH are added to the regset interface for the debugger and core dumps. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into nextLinus Torvalds2014-06-041-4/+6
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM updates from Paolo Bonzini: "At over 200 commits, covering almost all supported architectures, this was a pretty active cycle for KVM. Changes include: - a lot of s390 changes: optimizations, support for migration, GDB support and more - ARM changes are pretty small: support for the PSCI 0.2 hypercall interface on both the guest and the host (the latter acked by Catalin) - initial POWER8 and little-endian host support - support for running u-boot on embedded POWER targets - pretty large changes to MIPS too, completing the userspace interface and improving the handling of virtualized timer hardware - for x86, a larger set of changes is scheduled for 3.17. Still, we have a few emulator bugfixes and support for running nested fully-virtualized Xen guests (para-virtualized Xen guests have always worked). And some optimizations too. The only missing architecture here is ia64. It's not a coincidence that support for KVM on ia64 is scheduled for removal in 3.17" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits) KVM: add missing cleanup_srcu_struct KVM: PPC: Book3S PR: Rework SLB switching code KVM: PPC: Book3S PR: Use SLB entry 0 KVM: PPC: Book3S HV: Fix machine check delivery to guest KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs KVM: PPC: Book3S HV: Make sure we don't miss dirty pages KVM: PPC: Book3S HV: Fix dirty map for hugepages KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates() KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number KVM: PPC: Book3S: Add ONE_REG register names that were missed KVM: PPC: Add CAP to indicate hcall fixes KVM: PPC: MPIC: Reset IRQ source private members KVM: PPC: Graciously fail broken LE hypercalls PPC: ePAPR: Fix hypercall on LE guest KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler KVM: PPC: BOOK3S: Always use the saved DAR value PPC: KVM: Make NX bit available with magic page KVM: PPC: Disable NX for old magic page using guests KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest ...
| * s390: rename and split lowcore field per_perc_atmidJens Freimann2014-04-221-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | per_perc_atmid is currently a two-byte field that combines two fields, the PER code and the PER Addressing-and-Translation-Mode Identification (ATMID) Let's make them accessible indepently and also rename per_cause to per_code. Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
| * s390: fix name of lowcore field at offset 0xa3Jens Freimann2014-04-221-2/+2
| | | | | | | | | | | | | | | | | | | | According to the Principles of Operation, at offset 0xA3 in the lowcore we have the "Architectural-Mode identification", not an "access identification". Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
* | s390/lowcore: replace lowcore irb array with a per-cpu variableMartin Schwidefsky2014-05-281-10/+3
| | | | | | | | | | | | | | | | | | Remove the 96-byte irb array from the lowcore and create a per-cpu variable instead. That way we will pick up any change in the definition of the struct irb automatically. Acked-By: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* | s390/lowcore: reserve 96 bytes for IRB in lowcoreChristian Borntraeger2014-05-281-5/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The IRB might be 96 bytes if the extended-I/O-measurement facility is used. This feature is currently not used by Linux, but struct irb already has the emw defined. So let's make the irb in lowcore match the size of the internal data structure to be future proof. We also have to add a pad, to correctly align the paste. The bigger irb field also circumvents a bug in some QEMU versions that always write the emw field on test subchannel and therefore destroy the paste definitions of this CPU. Running under these QEMU version broke some timing functions in the VDSO and all users of these functions, e.g. some JREs. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: stable@vger.kernel.org