1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
// SPDX-License-Identifier: GPL-2.0
//! Revocable objects.
//!
//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
//! of a [`RevocableGuard`] ensures that objects remain valid.
use crate::bindings;
use core::{
cell::UnsafeCell,
marker::PhantomData,
mem::ManuallyDrop,
ops::Deref,
ptr::drop_in_place,
sync::atomic::{AtomicBool, Ordering},
};
/// An object that can become inaccessible at runtime.
///
/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
///
/// # Examples
///
/// ```
/// # use kernel::revocable::Revocable;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
/// let guard = v.try_access()?;
/// Some(guard.a + guard.b)
/// }
///
/// let v = Revocable::new(Example { a: 10, b: 20 });
/// assert_eq!(add_two(&v), Some(30));
/// v.revoke();
/// assert_eq!(add_two(&v), None);
/// ```
pub struct Revocable<T: ?Sized> {
is_available: AtomicBool,
data: ManuallyDrop<UnsafeCell<T>>,
}
// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
// this isn't supported by the wrapped object.
unsafe impl<T: ?Sized + Send> Send for Revocable<T> {}
// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop`
// implementation of the wrapped object from an arbitrary thread.
unsafe impl<T: ?Sized + Sync + Send> Sync for Revocable<T> {}
impl<T> Revocable<T> {
/// Creates a new revocable instance of the given data.
pub fn new(data: T) -> Self {
Self {
is_available: AtomicBool::new(true),
data: ManuallyDrop::new(UnsafeCell::new(data)),
}
}
}
impl<T: ?Sized> Revocable<T> {
/// Tries to access the \[revocable\] wrapped object.
///
/// Returns `None` if the object has been revoked and is therefore no longer accessible.
///
/// Returns a guard that gives access to the object otherwise; the object is guaranteed to
/// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
/// because another CPU may be waiting to complete the revocation of this object.
pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
let guard = RevocableGuard::new(self.data.get());
if self.is_available.load(Ordering::Relaxed) {
Some(guard)
} else {
None
}
}
/// Revokes access to and drops the wrapped object.
///
/// Access to the object is revoked immediately to new callers of [`Revocable::try_access`]. If
/// there are concurrent users of the object (i.e., ones that called [`Revocable::try_access`]
/// beforehand and still haven't dropped the returned guard), this function waits for the
/// concurrent access to complete before dropping the wrapped object.
pub fn revoke(&self) {
if self
.is_available
.compare_exchange(true, false, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()
{
// SAFETY: Just an FFI call, there are no further requirements.
unsafe { bindings::synchronize_rcu() };
// SAFETY: We know `self.data` is valid because only one CPU can succeed the
// `compare_exchange` above that takes `is_available` from `true` to `false`.
unsafe { drop_in_place(self.data.get()) };
}
}
}
impl<T: ?Sized> Drop for Revocable<T> {
fn drop(&mut self) {
// Drop only if the data hasn't been revoked yet (in which case it has already been
// dropped).
if *self.is_available.get_mut() {
// SAFETY: We know `self.data` is valid because no other CPU has changed
// `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
// holds the only reference (mutable) to `self` now.
unsafe { drop_in_place(self.data.get()) };
}
}
}
/// A guard that allows access to a revocable object and keeps it alive.
///
/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
/// holding the RCU read-side lock.
///
/// # Invariants
///
/// The RCU read-side lock is held while the guard is alive.
pub struct RevocableGuard<'a, T: ?Sized> {
data_ref: *const T,
_p: PhantomData<&'a ()>,
}
impl<T: ?Sized> RevocableGuard<'_, T> {
fn new(data_ref: *const T) -> Self {
// SAFETY: Just an FFI call, there are no further requirements.
unsafe { bindings::rcu_read_lock() };
// INVARIANTS: The RCU read-side lock was just acquired.
Self {
data_ref,
_p: PhantomData,
}
}
}
impl<T: ?Sized> Drop for RevocableGuard<'_, T> {
fn drop(&mut self) {
// SAFETY: By the type invariants, we know that we hold the RCU read-side lock.
unsafe { bindings::rcu_read_unlock() };
}
}
impl<T: ?Sized> Deref for RevocableGuard<'_, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
// guaranteed to remain valid.
unsafe { &*self.data_ref }
}
}
|