summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2021-05-05 13:50:15 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2021-05-05 13:50:15 -0700
commit8404c9fbc84b741f66cff7d4934a25dd2c344452 (patch)
treead9b31db8b954b89a0984760a57aec7526caa1b5 /Documentation
parenta79cdfba68a13b731004f0aafe1155a83830d472 (diff)
parent36f0b35d0894576fe63268ede80d9f5aa140be09 (diff)
downloadlinux-8404c9fbc84b741f66cff7d4934a25dd2c344452.tar.gz
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: "The remainder of the main mm/ queue. 143 patches. Subsystems affected by this patch series (all mm): pagecache, hugetlb, userfaultfd, vmscan, compaction, migration, cma, ksm, vmstat, mmap, kconfig, util, memory-hotplug, zswap, zsmalloc, highmem, cleanups, and kfence" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (143 commits) kfence: use power-efficient work queue to run delayed work kfence: maximize allocation wait timeout duration kfence: await for allocation using wait_event kfence: zero guard page after out-of-bounds access mm/process_vm_access.c: remove duplicate include mm/mempool: minor coding style tweaks mm/highmem.c: fix coding style issue btrfs: use memzero_page() instead of open coded kmap pattern iov_iter: lift memzero_page() to highmem.h mm/zsmalloc: use BUG_ON instead of if condition followed by BUG. mm/zswap.c: switch from strlcpy to strscpy arm64/Kconfig: introduce ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE x86/Kconfig: introduce ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE mm,memory_hotplug: add kernel boot option to enable memmap_on_memory acpi,memhotplug: enable MHP_MEMMAP_ON_MEMORY when supported mm,memory_hotplug: allocate memmap from the added memory range mm,memory_hotplug: factor out adjusting present pages into adjust_present_page_count() mm,memory_hotplug: relax fully spanned sections check drivers/base/memory: introduce memory_block_{online,offline} mm/memory_hotplug: remove broken locking of zone PCP structures during hot remove ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-mm-cma25
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt17
-rw-r--r--Documentation/admin-guide/mm/memory-hotplug.rst9
-rw-r--r--Documentation/admin-guide/mm/userfaultfd.rst107
4 files changed, 117 insertions, 41 deletions
diff --git a/Documentation/ABI/testing/sysfs-kernel-mm-cma b/Documentation/ABI/testing/sysfs-kernel-mm-cma
new file mode 100644
index 000000000000..02b2bb60c296
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-mm-cma
@@ -0,0 +1,25 @@
+What: /sys/kernel/mm/cma/
+Date: Feb 2021
+Contact: Minchan Kim <minchan@kernel.org>
+Description:
+ /sys/kernel/mm/cma/ contains a subdirectory for each CMA
+ heap name (also sometimes called CMA areas).
+
+ Each CMA heap subdirectory (that is, each
+ /sys/kernel/mm/cma/<cma-heap-name> directory) contains the
+ following items:
+
+ alloc_pages_success
+ alloc_pages_fail
+
+What: /sys/kernel/mm/cma/<cma-heap-name>/alloc_pages_success
+Date: Feb 2021
+Contact: Minchan Kim <minchan@kernel.org>
+Description:
+ the number of pages CMA API succeeded to allocate
+
+What: /sys/kernel/mm/cma/<cma-heap-name>/alloc_pages_fail
+Date: Feb 2021
+Contact: Minchan Kim <minchan@kernel.org>
+Description:
+ the number of pages CMA API failed to allocate
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 0d48fbd9107f..a1266f33d6e6 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -2804,6 +2804,23 @@
seconds. Use this parameter to check at some
other rate. 0 disables periodic checking.
+ memory_hotplug.memmap_on_memory
+ [KNL,X86,ARM] Boolean flag to enable this feature.
+ Format: {on | off (default)}
+ When enabled, runtime hotplugged memory will
+ allocate its internal metadata (struct pages)
+ from the hotadded memory which will allow to
+ hotadd a lot of memory without requiring
+ additional memory to do so.
+ This feature is disabled by default because it
+ has some implication on large (e.g. GB)
+ allocations in some configurations (e.g. small
+ memory blocks).
+ The state of the flag can be read in
+ /sys/module/memory_hotplug/parameters/memmap_on_memory.
+ Note that even when enabled, there are a few cases where
+ the feature is not effective.
+
memtest= [KNL,X86,ARM,PPC] Enable memtest
Format: <integer>
default : 0 <disable>
diff --git a/Documentation/admin-guide/mm/memory-hotplug.rst b/Documentation/admin-guide/mm/memory-hotplug.rst
index 5307f90738aa..05d51d2d8beb 100644
--- a/Documentation/admin-guide/mm/memory-hotplug.rst
+++ b/Documentation/admin-guide/mm/memory-hotplug.rst
@@ -357,6 +357,15 @@ creates ZONE_MOVABLE as following.
Unfortunately, there is no information to show which memory block belongs
to ZONE_MOVABLE. This is TBD.
+.. note::
+ Techniques that rely on long-term pinnings of memory (especially, RDMA and
+ vfio) are fundamentally problematic with ZONE_MOVABLE and, therefore, memory
+ hot remove. Pinned pages cannot reside on ZONE_MOVABLE, to guarantee that
+ memory can still get hot removed - be aware that pinning can fail even if
+ there is plenty of free memory in ZONE_MOVABLE. In addition, using
+ ZONE_MOVABLE might make page pinning more expensive, because pages have to be
+ migrated off that zone first.
+
.. _memory_hotplug_how_to_offline_memory:
How to offline memory
diff --git a/Documentation/admin-guide/mm/userfaultfd.rst b/Documentation/admin-guide/mm/userfaultfd.rst
index 65eefa66c0ba..3aa38e8b8361 100644
--- a/Documentation/admin-guide/mm/userfaultfd.rst
+++ b/Documentation/admin-guide/mm/userfaultfd.rst
@@ -63,36 +63,36 @@ the generic ioctl available.
The ``uffdio_api.features`` bitmask returned by the ``UFFDIO_API`` ioctl
defines what memory types are supported by the ``userfaultfd`` and what
-events, except page fault notifications, may be generated.
-
-If the kernel supports registering ``userfaultfd`` ranges on hugetlbfs
-virtual memory areas, ``UFFD_FEATURE_MISSING_HUGETLBFS`` will be set in
-``uffdio_api.features``. Similarly, ``UFFD_FEATURE_MISSING_SHMEM`` will be
-set if the kernel supports registering ``userfaultfd`` ranges on shared
-memory (covering all shmem APIs, i.e. tmpfs, ``IPCSHM``, ``/dev/zero``,
-``MAP_SHARED``, ``memfd_create``, etc).
-
-The userland application that wants to use ``userfaultfd`` with hugetlbfs
-or shared memory need to set the corresponding flag in
-``uffdio_api.features`` to enable those features.
-
-If the userland desires to receive notifications for events other than
-page faults, it has to verify that ``uffdio_api.features`` has appropriate
-``UFFD_FEATURE_EVENT_*`` bits set. These events are described in more
-detail below in `Non-cooperative userfaultfd`_ section.
-
-Once the ``userfaultfd`` has been enabled the ``UFFDIO_REGISTER`` ioctl should
-be invoked (if present in the returned ``uffdio_api.ioctls`` bitmask) to
-register a memory range in the ``userfaultfd`` by setting the
+events, except page fault notifications, may be generated:
+
+- The ``UFFD_FEATURE_EVENT_*`` flags indicate that various other events
+ other than page faults are supported. These events are described in more
+ detail below in the `Non-cooperative userfaultfd`_ section.
+
+- ``UFFD_FEATURE_MISSING_HUGETLBFS`` and ``UFFD_FEATURE_MISSING_SHMEM``
+ indicate that the kernel supports ``UFFDIO_REGISTER_MODE_MISSING``
+ registrations for hugetlbfs and shared memory (covering all shmem APIs,
+ i.e. tmpfs, ``IPCSHM``, ``/dev/zero``, ``MAP_SHARED``, ``memfd_create``,
+ etc) virtual memory areas, respectively.
+
+- ``UFFD_FEATURE_MINOR_HUGETLBFS`` indicates that the kernel supports
+ ``UFFDIO_REGISTER_MODE_MINOR`` registration for hugetlbfs virtual memory
+ areas.
+
+The userland application should set the feature flags it intends to use
+when invoking the ``UFFDIO_API`` ioctl, to request that those features be
+enabled if supported.
+
+Once the ``userfaultfd`` API has been enabled the ``UFFDIO_REGISTER``
+ioctl should be invoked (if present in the returned ``uffdio_api.ioctls``
+bitmask) to register a memory range in the ``userfaultfd`` by setting the
uffdio_register structure accordingly. The ``uffdio_register.mode``
bitmask will specify to the kernel which kind of faults to track for
-the range (``UFFDIO_REGISTER_MODE_MISSING`` would track missing
-pages). The ``UFFDIO_REGISTER`` ioctl will return the
+the range. The ``UFFDIO_REGISTER`` ioctl will return the
``uffdio_register.ioctls`` bitmask of ioctls that are suitable to resolve
userfaults on the range registered. Not all ioctls will necessarily be
-supported for all memory types depending on the underlying virtual
-memory backend (anonymous memory vs tmpfs vs real filebacked
-mappings).
+supported for all memory types (e.g. anonymous memory vs. shmem vs.
+hugetlbfs), or all types of intercepted faults.
Userland can use the ``uffdio_register.ioctls`` to manage the virtual
address space in the background (to add or potentially also remove
@@ -100,21 +100,46 @@ memory from the ``userfaultfd`` registered range). This means a userfault
could be triggering just before userland maps in the background the
user-faulted page.
-The primary ioctl to resolve userfaults is ``UFFDIO_COPY``. That
-atomically copies a page into the userfault registered range and wakes
-up the blocked userfaults
-(unless ``uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE`` is set).
-Other ioctl works similarly to ``UFFDIO_COPY``. They're atomic as in
-guaranteeing that nothing can see an half copied page since it'll
-keep userfaulting until the copy has finished.
+Resolving Userfaults
+--------------------
+
+There are three basic ways to resolve userfaults:
+
+- ``UFFDIO_COPY`` atomically copies some existing page contents from
+ userspace.
+
+- ``UFFDIO_ZEROPAGE`` atomically zeros the new page.
+
+- ``UFFDIO_CONTINUE`` maps an existing, previously-populated page.
+
+These operations are atomic in the sense that they guarantee nothing can
+see a half-populated page, since readers will keep userfaulting until the
+operation has finished.
+
+By default, these wake up userfaults blocked on the range in question.
+They support a ``UFFDIO_*_MODE_DONTWAKE`` ``mode`` flag, which indicates
+that waking will be done separately at some later time.
+
+Which ioctl to choose depends on the kind of page fault, and what we'd
+like to do to resolve it:
+
+- For ``UFFDIO_REGISTER_MODE_MISSING`` faults, the fault needs to be
+ resolved by either providing a new page (``UFFDIO_COPY``), or mapping
+ the zero page (``UFFDIO_ZEROPAGE``). By default, the kernel would map
+ the zero page for a missing fault. With userfaultfd, userspace can
+ decide what content to provide before the faulting thread continues.
+
+- For ``UFFDIO_REGISTER_MODE_MINOR`` faults, there is an existing page (in
+ the page cache). Userspace has the option of modifying the page's
+ contents before resolving the fault. Once the contents are correct
+ (modified or not), userspace asks the kernel to map the page and let the
+ faulting thread continue with ``UFFDIO_CONTINUE``.
Notes:
-- If you requested ``UFFDIO_REGISTER_MODE_MISSING`` when registering then
- you must provide some kind of page in your thread after reading from
- the uffd. You must provide either ``UFFDIO_COPY`` or ``UFFDIO_ZEROPAGE``.
- The normal behavior of the OS automatically providing a zero page on
- an anonymous mmaping is not in place.
+- You can tell which kind of fault occurred by examining
+ ``pagefault.flags`` within the ``uffd_msg``, checking for the
+ ``UFFD_PAGEFAULT_FLAG_*`` flags.
- None of the page-delivering ioctls default to the range that you
registered with. You must fill in all fields for the appropriate
@@ -122,9 +147,9 @@ Notes:
- You get the address of the access that triggered the missing page
event out of a struct uffd_msg that you read in the thread from the
- uffd. You can supply as many pages as you want with ``UFFDIO_COPY`` or
- ``UFFDIO_ZEROPAGE``. Keep in mind that unless you used DONTWAKE then
- the first of any of those IOCTLs wakes up the faulting thread.
+ uffd. You can supply as many pages as you want with these IOCTLs.
+ Keep in mind that unless you used DONTWAKE then the first of any of
+ those IOCTLs wakes up the faulting thread.
- Be sure to test for all errors including
(``pollfd[0].revents & POLLERR``). This can happen, e.g. when ranges