summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/book3s64/slb.c
blob: 6956f637a38c1062c05081bc3ad045b321563ddd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * PowerPC64 SLB support.
 *
 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
 * Based on earlier code written by:
 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
 *    Copyright (c) 2001 Dave Engebretsen
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 */

#include <asm/interrupt.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/paca.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/smp.h>
#include <linux/compiler.h>
#include <linux/context_tracking.h>
#include <linux/mm_types.h>
#include <linux/pgtable.h>

#include <asm/udbg.h>
#include <asm/code-patching.h>

#include "internal.h"


static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);

bool stress_slb_enabled __initdata;

static int __init parse_stress_slb(char *p)
{
	stress_slb_enabled = true;
	return 0;
}
early_param("stress_slb", parse_stress_slb);

__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);

static void assert_slb_presence(bool present, unsigned long ea)
{
#ifdef CONFIG_DEBUG_VM
	unsigned long tmp;

	WARN_ON_ONCE(mfmsr() & MSR_EE);

	if (!cpu_has_feature(CPU_FTR_ARCH_206))
		return;

	/*
	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
	 * ignores all other bits from 0-27, so just clear them all.
	 */
	ea &= ~((1UL << SID_SHIFT) - 1);
	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");

	WARN_ON(present == (tmp == 0));
#endif
}

static inline void slb_shadow_update(unsigned long ea, int ssize,
				     unsigned long flags,
				     enum slb_index index)
{
	struct slb_shadow *p = get_slb_shadow();

	/*
	 * Clear the ESID first so the entry is not valid while we are
	 * updating it.  No write barriers are needed here, provided
	 * we only update the current CPU's SLB shadow buffer.
	 */
	WRITE_ONCE(p->save_area[index].esid, 0);
	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
}

static inline void slb_shadow_clear(enum slb_index index)
{
	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
}

static inline void create_shadowed_slbe(unsigned long ea, int ssize,
					unsigned long flags,
					enum slb_index index)
{
	/*
	 * Updating the shadow buffer before writing the SLB ensures
	 * we don't get a stale entry here if we get preempted by PHYP
	 * between these two statements.
	 */
	slb_shadow_update(ea, ssize, flags, index);

	assert_slb_presence(false, ea);
	asm volatile("slbmte  %0,%1" :
		     : "r" (mk_vsid_data(ea, ssize, flags)),
		       "r" (mk_esid_data(ea, ssize, index))
		     : "memory" );
}

/*
 * Insert bolted entries into SLB (which may not be empty, so don't clear
 * slb_cache_ptr).
 */
void __slb_restore_bolted_realmode(void)
{
	struct slb_shadow *p = get_slb_shadow();
	enum slb_index index;

	 /* No isync needed because realmode. */
	for (index = 0; index < SLB_NUM_BOLTED; index++) {
		asm volatile("slbmte  %0,%1" :
		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
		       "r" (be64_to_cpu(p->save_area[index].esid)));
	}

	assert_slb_presence(true, local_paca->kstack);
}

/*
 * Insert the bolted entries into an empty SLB.
 */
void slb_restore_bolted_realmode(void)
{
	__slb_restore_bolted_realmode();
	get_paca()->slb_cache_ptr = 0;

	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
}

/*
 * This flushes all SLB entries including 0, so it must be realmode.
 */
void slb_flush_all_realmode(void)
{
	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
}

static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
{
	struct slb_shadow *p = get_slb_shadow();
	unsigned long ksp_esid_data, ksp_vsid_data;
	u32 ih;

	/*
	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
	 * information created with Class=0 entries, which we use for kernel
	 * SLB entries (the SLB entries themselves are still invalidated).
	 *
	 * Older processors will ignore this optimisation. Over-invalidation
	 * is fine because we never rely on lookaside information existing.
	 */
	if (preserve_kernel_lookaside)
		ih = 1;
	else
		ih = 0;

	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);

	asm volatile(PPC_SLBIA(%0)"	\n"
		     "slbmte	%1, %2	\n"
		     :: "i" (ih),
			"r" (ksp_vsid_data),
			"r" (ksp_esid_data)
		     : "memory");
}

/*
 * This flushes non-bolted entries, it can be run in virtual mode. Must
 * be called with interrupts disabled.
 */
void slb_flush_and_restore_bolted(void)
{
	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);

	WARN_ON(!irqs_disabled());

	/*
	 * We can't take a PMU exception in the following code, so hard
	 * disable interrupts.
	 */
	hard_irq_disable();

	isync();
	__slb_flush_and_restore_bolted(false);
	isync();

	assert_slb_presence(true, get_paca()->kstack);

	get_paca()->slb_cache_ptr = 0;

	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
}

void slb_save_contents(struct slb_entry *slb_ptr)
{
	int i;
	unsigned long e, v;

	/* Save slb_cache_ptr value. */
	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;

	if (!slb_ptr)
		return;

	for (i = 0; i < mmu_slb_size; i++) {
		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
		slb_ptr->esid = e;
		slb_ptr->vsid = v;
		slb_ptr++;
	}
}

void slb_dump_contents(struct slb_entry *slb_ptr)
{
	int i, n;
	unsigned long e, v;
	unsigned long llp;

	if (!slb_ptr)
		return;

	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());

	for (i = 0; i < mmu_slb_size; i++) {
		e = slb_ptr->esid;
		v = slb_ptr->vsid;
		slb_ptr++;

		if (!e && !v)
			continue;

		pr_err("%02d %016lx %016lx %s\n", i, e, v,
				(e & SLB_ESID_V) ? "VALID" : "NOT VALID");

		if (!(e & SLB_ESID_V))
			continue;

		llp = v & SLB_VSID_LLP;
		if (v & SLB_VSID_B_1T) {
			pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
			       GET_ESID_1T(e),
			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
		} else {
			pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
			       GET_ESID(e),
			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
		}
	}

	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* RR is not so useful as it's often not used for allocation */
		pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);

		/* Dump slb cache entires as well. */
		pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
		pr_err("Valid SLB cache entries:\n");
		n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
		for (i = 0; i < n; i++)
			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
		pr_err("Rest of SLB cache entries:\n");
		for (i = n; i < SLB_CACHE_ENTRIES; i++)
			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
	}
}

void slb_vmalloc_update(void)
{
	/*
	 * vmalloc is not bolted, so just have to flush non-bolted.
	 */
	slb_flush_and_restore_bolted();
}

static bool preload_hit(struct thread_info *ti, unsigned long esid)
{
	unsigned char i;

	for (i = 0; i < ti->slb_preload_nr; i++) {
		unsigned char idx;

		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
		if (esid == ti->slb_preload_esid[idx])
			return true;
	}
	return false;
}

static bool preload_add(struct thread_info *ti, unsigned long ea)
{
	unsigned char idx;
	unsigned long esid;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
		/* EAs are stored >> 28 so 256MB segments don't need clearing */
		if (ea & ESID_MASK_1T)
			ea &= ESID_MASK_1T;
	}

	esid = ea >> SID_SHIFT;

	if (preload_hit(ti, esid))
		return false;

	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
	ti->slb_preload_esid[idx] = esid;
	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
	else
		ti->slb_preload_nr++;

	return true;
}

static void preload_age(struct thread_info *ti)
{
	if (!ti->slb_preload_nr)
		return;
	ti->slb_preload_nr--;
	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
}

void slb_setup_new_exec(void)
{
	struct thread_info *ti = current_thread_info();
	struct mm_struct *mm = current->mm;
	unsigned long exec = 0x10000000;

	WARN_ON(irqs_disabled());

	/*
	 * preload cache can only be used to determine whether a SLB
	 * entry exists if it does not start to overflow.
	 */
	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
		return;

	hard_irq_disable();

	/*
	 * We have no good place to clear the slb preload cache on exec,
	 * flush_thread is about the earliest arch hook but that happens
	 * after we switch to the mm and have already preloaded the SLBEs.
	 *
	 * For the most part that's probably okay to use entries from the
	 * previous exec, they will age out if unused. It may turn out to
	 * be an advantage to clear the cache before switching to it,
	 * however.
	 */

	/*
	 * preload some userspace segments into the SLB.
	 * Almost all 32 and 64bit PowerPC executables are linked at
	 * 0x10000000 so it makes sense to preload this segment.
	 */
	if (!is_kernel_addr(exec)) {
		if (preload_add(ti, exec))
			slb_allocate_user(mm, exec);
	}

	/* Libraries and mmaps. */
	if (!is_kernel_addr(mm->mmap_base)) {
		if (preload_add(ti, mm->mmap_base))
			slb_allocate_user(mm, mm->mmap_base);
	}

	/* see switch_slb */
	asm volatile("isync" : : : "memory");

	local_irq_enable();
}

void preload_new_slb_context(unsigned long start, unsigned long sp)
{
	struct thread_info *ti = current_thread_info();
	struct mm_struct *mm = current->mm;
	unsigned long heap = mm->start_brk;

	WARN_ON(irqs_disabled());

	/* see above */
	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
		return;

	hard_irq_disable();

	/* Userspace entry address. */
	if (!is_kernel_addr(start)) {
		if (preload_add(ti, start))
			slb_allocate_user(mm, start);
	}

	/* Top of stack, grows down. */
	if (!is_kernel_addr(sp)) {
		if (preload_add(ti, sp))
			slb_allocate_user(mm, sp);
	}

	/* Bottom of heap, grows up. */
	if (heap && !is_kernel_addr(heap)) {
		if (preload_add(ti, heap))
			slb_allocate_user(mm, heap);
	}

	/* see switch_slb */
	asm volatile("isync" : : : "memory");

	local_irq_enable();
}

static void slb_cache_slbie_kernel(unsigned int index)
{
	unsigned long slbie_data = get_paca()->slb_cache[index];
	unsigned long ksp = get_paca()->kstack;

	slbie_data <<= SID_SHIFT;
	slbie_data |= 0xc000000000000000ULL;
	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
		return;
	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;

	asm volatile("slbie %0" : : "r" (slbie_data));
}

static void slb_cache_slbie_user(unsigned int index)
{
	unsigned long slbie_data = get_paca()->slb_cache[index];

	slbie_data <<= SID_SHIFT;
	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
	slbie_data |= SLBIE_C; /* user slbs have C=1 */

	asm volatile("slbie %0" : : "r" (slbie_data));
}

/* Flush all user entries from the segment table of the current processor. */
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
{
	struct thread_info *ti = task_thread_info(tsk);
	unsigned char i;

	/*
	 * We need interrupts hard-disabled here, not just soft-disabled,
	 * so that a PMU interrupt can't occur, which might try to access
	 * user memory (to get a stack trace) and possible cause an SLB miss
	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
	 */
	hard_irq_disable();
	isync();
	if (stress_slb()) {
		__slb_flush_and_restore_bolted(false);
		isync();
		get_paca()->slb_cache_ptr = 0;
		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;

	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
		 * associated lookaside structures, which matches what
		 * switch_slb wants. So ARCH_300 does not use the slb
		 * cache.
		 */
		asm volatile(PPC_SLBIA(3));

	} else {
		unsigned long offset = get_paca()->slb_cache_ptr;

		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
		    offset <= SLB_CACHE_ENTRIES) {
			/*
			 * Could assert_slb_presence(true) here, but
			 * hypervisor or machine check could have come
			 * in and removed the entry at this point.
			 */

			for (i = 0; i < offset; i++)
				slb_cache_slbie_user(i);

			/* Workaround POWER5 < DD2.1 issue */
			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
				slb_cache_slbie_user(0);

		} else {
			/* Flush but retain kernel lookaside information */
			__slb_flush_and_restore_bolted(true);
			isync();

			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
		}

		get_paca()->slb_cache_ptr = 0;
	}
	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;

	copy_mm_to_paca(mm);

	/*
	 * We gradually age out SLBs after a number of context switches to
	 * reduce reload overhead of unused entries (like we do with FP/VEC
	 * reload). Each time we wrap 256 switches, take an entry out of the
	 * SLB preload cache.
	 */
	tsk->thread.load_slb++;
	if (!tsk->thread.load_slb) {
		unsigned long pc = KSTK_EIP(tsk);

		preload_age(ti);
		preload_add(ti, pc);
	}

	for (i = 0; i < ti->slb_preload_nr; i++) {
		unsigned char idx;
		unsigned long ea;

		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;

		slb_allocate_user(mm, ea);
	}

	/*
	 * Synchronize slbmte preloads with possible subsequent user memory
	 * address accesses by the kernel (user mode won't happen until
	 * rfid, which is safe).
	 */
	isync();
}

void slb_set_size(u16 size)
{
	mmu_slb_size = size;
}

void slb_initialize(void)
{
	unsigned long linear_llp, vmalloc_llp, io_llp;
	unsigned long lflags;
	static int slb_encoding_inited;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
	unsigned long vmemmap_llp;
#endif

	/* Prepare our SLB miss handler based on our page size */
	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
#endif
	if (!slb_encoding_inited) {
		slb_encoding_inited = 1;
		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
#endif
	}

	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;

	lflags = SLB_VSID_KERNEL | linear_llp;

	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
	asm volatile("isync":::"memory");
	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
	asm volatile("isync; slbia; isync":::"memory");
	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);

	/*
	 * For the boot cpu, we're running on the stack in init_thread_union,
	 * which is in the first segment of the linear mapping, and also
	 * get_paca()->kstack hasn't been initialized yet.
	 * For secondary cpus, we need to bolt the kernel stack entry now.
	 */
	slb_shadow_clear(KSTACK_INDEX);
	if (raw_smp_processor_id() != boot_cpuid &&
	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
		create_shadowed_slbe(get_paca()->kstack,
				     mmu_kernel_ssize, lflags, KSTACK_INDEX);

	asm volatile("isync":::"memory");
}

static void slb_cache_update(unsigned long esid_data)
{
	int slb_cache_index;

	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return; /* ISAv3.0B and later does not use slb_cache */

	if (stress_slb())
		return;

	/*
	 * Now update slb cache entries
	 */
	slb_cache_index = local_paca->slb_cache_ptr;
	if (slb_cache_index < SLB_CACHE_ENTRIES) {
		/*
		 * We have space in slb cache for optimized switch_slb().
		 * Top 36 bits from esid_data as per ISA
		 */
		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
		local_paca->slb_cache_ptr++;
	} else {
		/*
		 * Our cache is full and the current cache content strictly
		 * doesn't indicate the active SLB contents. Bump the ptr
		 * so that switch_slb() will ignore the cache.
		 */
		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
	}
}

static enum slb_index alloc_slb_index(bool kernel)
{
	enum slb_index index;

	/*
	 * The allocation bitmaps can become out of synch with the SLB
	 * when the _switch code does slbie when bolting a new stack
	 * segment and it must not be anywhere else in the SLB. This leaves
	 * a kernel allocated entry that is unused in the SLB. With very
	 * large systems or small segment sizes, the bitmaps could slowly
	 * fill with these entries. They will eventually be cleared out
	 * by the round robin allocator in that case, so it's probably not
	 * worth accounting for.
	 */

	/*
	 * SLBs beyond 32 entries are allocated with stab_rr only
	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
	 * future CPU has more.
	 */
	if (local_paca->slb_used_bitmap != U32_MAX) {
		index = ffz(local_paca->slb_used_bitmap);
		local_paca->slb_used_bitmap |= 1U << index;
		if (kernel)
			local_paca->slb_kern_bitmap |= 1U << index;
	} else {
		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
		index = local_paca->stab_rr;
		if (index < (mmu_slb_size - 1))
			index++;
		else
			index = SLB_NUM_BOLTED;
		local_paca->stab_rr = index;
		if (index < 32) {
			if (kernel)
				local_paca->slb_kern_bitmap |= 1U << index;
			else
				local_paca->slb_kern_bitmap &= ~(1U << index);
		}
	}
	BUG_ON(index < SLB_NUM_BOLTED);

	return index;
}

static long slb_insert_entry(unsigned long ea, unsigned long context,
				unsigned long flags, int ssize, bool kernel)
{
	unsigned long vsid;
	unsigned long vsid_data, esid_data;
	enum slb_index index;

	vsid = get_vsid(context, ea, ssize);
	if (!vsid)
		return -EFAULT;

	/*
	 * There must not be a kernel SLB fault in alloc_slb_index or before
	 * slbmte here or the allocation bitmaps could get out of whack with
	 * the SLB.
	 *
	 * User SLB faults or preloads take this path which might get inlined
	 * into the caller, so add compiler barriers here to ensure unsafe
	 * memory accesses do not come between.
	 */
	barrier();

	index = alloc_slb_index(kernel);

	vsid_data = __mk_vsid_data(vsid, ssize, flags);
	esid_data = mk_esid_data(ea, ssize, index);

	/*
	 * No need for an isync before or after this slbmte. The exception
	 * we enter with and the rfid we exit with are context synchronizing.
	 * User preloads should add isync afterwards in case the kernel
	 * accesses user memory before it returns to userspace with rfid.
	 */
	assert_slb_presence(false, ea);
	if (stress_slb()) {
		int slb_cache_index = local_paca->slb_cache_ptr;

		/*
		 * stress_slb() does not use slb cache, repurpose as a
		 * cache of inserted (non-bolted) kernel SLB entries. All
		 * non-bolted kernel entries are flushed on any user fault,
		 * or if there are already 3 non-boled kernel entries.
		 */
		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
		if (!kernel || slb_cache_index == 3) {
			int i;

			for (i = 0; i < slb_cache_index; i++)
				slb_cache_slbie_kernel(i);
			slb_cache_index = 0;
		}

		if (kernel)
			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
		local_paca->slb_cache_ptr = slb_cache_index;
	}
	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));

	barrier();

	if (!kernel)
		slb_cache_update(esid_data);

	return 0;
}

static long slb_allocate_kernel(unsigned long ea, unsigned long id)
{
	unsigned long context;
	unsigned long flags;
	int ssize;

	if (id == LINEAR_MAP_REGION_ID) {

		/* We only support upto H_MAX_PHYSMEM_BITS */
		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
			return -EFAULT;

		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;

#ifdef CONFIG_SPARSEMEM_VMEMMAP
	} else if (id == VMEMMAP_REGION_ID) {

		if (ea >= H_VMEMMAP_END)
			return -EFAULT;

		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
#endif
	} else if (id == VMALLOC_REGION_ID) {

		if (ea >= H_VMALLOC_END)
			return -EFAULT;

		flags = local_paca->vmalloc_sllp;

	} else if (id == IO_REGION_ID) {

		if (ea >= H_KERN_IO_END)
			return -EFAULT;

		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;

	} else {
		return -EFAULT;
	}

	ssize = MMU_SEGSIZE_1T;
	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
		ssize = MMU_SEGSIZE_256M;

	context = get_kernel_context(ea);

	return slb_insert_entry(ea, context, flags, ssize, true);
}

static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
{
	unsigned long context;
	unsigned long flags;
	int bpsize;
	int ssize;

	/*
	 * consider this as bad access if we take a SLB miss
	 * on an address above addr limit.
	 */
	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
		return -EFAULT;

	context = get_user_context(&mm->context, ea);
	if (!context)
		return -EFAULT;

	if (unlikely(ea >= H_PGTABLE_RANGE)) {
		WARN_ON(1);
		return -EFAULT;
	}

	ssize = user_segment_size(ea);

	bpsize = get_slice_psize(mm, ea);
	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;

	return slb_insert_entry(ea, context, flags, ssize, false);
}

DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)
{
	unsigned long ea = regs->dar;
	unsigned long id = get_region_id(ea);

	/* IRQs are not reconciled here, so can't check irqs_disabled */
	VM_WARN_ON(mfmsr() & MSR_EE);

	if (regs_is_unrecoverable(regs))
		return -EINVAL;

	/*
	 * SLB kernel faults must be very careful not to touch anything that is
	 * not bolted. E.g., PACA and global variables are okay, mm->context
	 * stuff is not. SLB user faults may access all of memory (and induce
	 * one recursive SLB kernel fault), so the kernel fault must not
	 * trample on the user fault state at those points.
	 */

	/*
	 * This is a raw interrupt handler, for performance, so that
	 * fast_interrupt_return can be used. The handler must not touch local
	 * irq state, or schedule. We could test for usermode and upgrade to a
	 * normal process context (synchronous) interrupt for those, which
	 * would make them first-class kernel code and able to be traced and
	 * instrumented, although performance would suffer a bit, it would
	 * probably be a good tradeoff.
	 */
	if (id >= LINEAR_MAP_REGION_ID) {
		long err;
#ifdef CONFIG_DEBUG_VM
		/* Catch recursive kernel SLB faults. */
		BUG_ON(local_paca->in_kernel_slb_handler);
		local_paca->in_kernel_slb_handler = 1;
#endif
		err = slb_allocate_kernel(ea, id);
#ifdef CONFIG_DEBUG_VM
		local_paca->in_kernel_slb_handler = 0;
#endif
		return err;
	} else {
		struct mm_struct *mm = current->mm;
		long err;

		if (unlikely(!mm))
			return -EFAULT;

		err = slb_allocate_user(mm, ea);
		if (!err)
			preload_add(current_thread_info(), ea);

		return err;
	}
}