summaryrefslogtreecommitdiff
path: root/mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir
diff options
context:
space:
mode:
authorwren romano <2998727+wrengr@users.noreply.github.com>2023-05-17 13:09:53 -0700
committerwren romano <2998727+wrengr@users.noreply.github.com>2023-05-17 14:24:09 -0700
commita0615d020a02e252196383439e2c8143c6525e05 (patch)
treeaa308ef0e4c62d7dba3450f0eb4f8f1dffc0f57c /mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir
parent4dc205f016e3dd2eb1182886a77676f24e39e329 (diff)
downloadllvm-a0615d020a02e252196383439e2c8143c6525e05.tar.gz
[mlir][sparse] Renaming the STEA field `dimLevelType` to `lvlTypes`
This commit is part of the migration of towards the new STEA syntax/design. In particular, this commit includes the following changes: * Renaming compiler-internal functions/methods: * `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}` * `Merger::{getDimLevelType => getLvlType}` (for consistency) * `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods) * Renaming external facets to match: * the STEA parser and printer * the C and Python bindings * PyTACO However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D150330
Diffstat (limited to 'mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir')
-rw-r--r--mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir6
1 files changed, 3 insertions, 3 deletions
diff --git a/mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir b/mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir
index 745b0a8f376d..8cf8c6c89b63 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_extract_slice.mlir
@@ -1,11 +1,11 @@
// RUN: mlir-opt %s --sparse-tensor-codegen --cse | FileCheck %s
#CSR = #sparse_tensor.encoding<{
- dimLevelType = [ "dense", "compressed" ]
+ lvlTypes = [ "dense", "compressed" ]
}>
#CSR_SLICE = #sparse_tensor.encoding<{
- dimLevelType = [ "dense", "compressed" ],
+ lvlTypes = [ "dense", "compressed" ],
slice = [ (0, 4, 1), (0, 8, 1) ]
}>
@@ -13,7 +13,7 @@
// CHECK-SAME: %[[VAL_0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[VAL_1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[VAL_2:.*2]]: memref<?xf64>,
-// CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier<#sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>>)
+// CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier<#sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>>)
// CHECK: %[[VAL_4:.*]] = sparse_tensor.storage_specifier.init with %[[VAL_3]]
// CHECK: %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_6:.*]] = arith.constant 4 : index