summaryrefslogtreecommitdiff
path: root/lib/Analysis
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp6
-rw-r--r--lib/Analysis/BlockFrequencyInfo.cpp5
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp21
-rw-r--r--lib/Analysis/LoopAccessAnalysis.cpp45
-rw-r--r--lib/Analysis/ModuleSummaryAnalysis.cpp9
-rw-r--r--lib/Analysis/TypeBasedAliasAnalysis.cpp178
-rw-r--r--lib/Analysis/ValueTracking.cpp13
7 files changed, 177 insertions, 100 deletions
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index 4a6abae8e971..fb9ece2bd206 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -1672,9 +1672,9 @@ AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
// If both pointers are pointing into the same object and one of them
// accesses the entire object, then the accesses must overlap in some way.
if (O1 == O2)
- if ((V1Size != MemoryLocation::UnknownSize &&
- isObjectSize(O1, V1Size, DL, TLI)) ||
- (V2Size != MemoryLocation::UnknownSize &&
+ if (V1Size != MemoryLocation::UnknownSize &&
+ V2Size != MemoryLocation::UnknownSize &&
+ (isObjectSize(O1, V1Size, DL, TLI) ||
isObjectSize(O2, V2Size, DL, TLI)))
return AliasCache[Locs] = PartialAlias;
diff --git a/lib/Analysis/BlockFrequencyInfo.cpp b/lib/Analysis/BlockFrequencyInfo.cpp
index 5d2170dcf155..41c295895213 100644
--- a/lib/Analysis/BlockFrequencyInfo.cpp
+++ b/lib/Analysis/BlockFrequencyInfo.cpp
@@ -218,6 +218,11 @@ BlockFrequencyInfo::getProfileCountFromFreq(uint64_t Freq) const {
return BFI->getProfileCountFromFreq(*getFunction(), Freq);
}
+bool BlockFrequencyInfo::isIrrLoopHeader(const BasicBlock *BB) {
+ assert(BFI && "Expected analysis to be available");
+ return BFI->isIrrLoopHeader(BB);
+}
+
void BlockFrequencyInfo::setBlockFreq(const BasicBlock *BB, uint64_t Freq) {
assert(BFI && "Expected analysis to be available");
BFI->setBlockFreq(BB, Freq);
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
index 1030407b766d..7e323022d9ce 100644
--- a/lib/Analysis/BlockFrequencyInfoImpl.cpp
+++ b/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -271,6 +271,7 @@ void BlockFrequencyInfoImplBase::clear() {
// Swap with a default-constructed std::vector, since std::vector<>::clear()
// does not actually clear heap storage.
std::vector<FrequencyData>().swap(Freqs);
+ IsIrrLoopHeader.clear();
std::vector<WorkingData>().swap(Working);
Loops.clear();
}
@@ -280,8 +281,10 @@ void BlockFrequencyInfoImplBase::clear() {
/// Releases all memory not used downstream. In particular, saves Freqs.
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
+ SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
BFI.clear();
BFI.Freqs = std::move(SavedFreqs);
+ BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
}
bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
@@ -572,6 +575,13 @@ BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
return BlockCount.getLimitedValue();
}
+bool
+BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
+ if (!Node.isValid())
+ return false;
+ return IsIrrLoopHeader.test(Node.Index);
+}
+
Scaled64
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
if (!Node.isValid())
@@ -819,3 +829,14 @@ void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
}
}
+
+void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
+ BlockMass LoopMass = BlockMass::getFull();
+ DitheringDistributer D(Dist, LoopMass);
+ for (const Weight &W : Dist.Weights) {
+ BlockMass Taken = D.takeMass(W.Amount);
+ assert(W.Type == Weight::Local && "all weights should be local");
+ Working[W.TargetNode.Index].getMass() = Taken;
+ DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
+ }
+}
diff --git a/lib/Analysis/LoopAccessAnalysis.cpp b/lib/Analysis/LoopAccessAnalysis.cpp
index 19889658b13c..e141d6c58b65 100644
--- a/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/lib/Analysis/LoopAccessAnalysis.cpp
@@ -2136,8 +2136,51 @@ void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
if (!Stride)
return;
- DEBUG(dbgs() << "LAA: Found a strided access that we can version");
+ DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
+ "versioning:");
DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
+
+ // Avoid adding the "Stride == 1" predicate when we know that
+ // Stride >= Trip-Count. Such a predicate will effectively optimize a single
+ // or zero iteration loop, as Trip-Count <= Stride == 1.
+ //
+ // TODO: We are currently not making a very informed decision on when it is
+ // beneficial to apply stride versioning. It might make more sense that the
+ // users of this analysis (such as the vectorizer) will trigger it, based on
+ // their specific cost considerations; For example, in cases where stride
+ // versioning does not help resolving memory accesses/dependences, the
+ // vectorizer should evaluate the cost of the runtime test, and the benefit
+ // of various possible stride specializations, considering the alternatives
+ // of using gather/scatters (if available).
+
+ const SCEV *StrideExpr = PSE->getSCEV(Stride);
+ const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
+
+ // Match the types so we can compare the stride and the BETakenCount.
+ // The Stride can be positive/negative, so we sign extend Stride;
+ // The backdgeTakenCount is non-negative, so we zero extend BETakenCount.
+ const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
+ uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
+ uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
+ const SCEV *CastedStride = StrideExpr;
+ const SCEV *CastedBECount = BETakenCount;
+ ScalarEvolution *SE = PSE->getSE();
+ if (BETypeSize >= StrideTypeSize)
+ CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
+ else
+ CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
+ const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
+ // Since TripCount == BackEdgeTakenCount + 1, checking:
+ // "Stride >= TripCount" is equivalent to checking:
+ // Stride - BETakenCount > 0
+ if (SE->isKnownPositive(StrideMinusBETaken)) {
+ DEBUG(dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
+ "Stride==1 predicate will imply that the loop executes "
+ "at most once.\n");
+ return;
+ }
+ DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
+
SymbolicStrides[Ptr] = Stride;
StrideSet.insert(Stride);
}
diff --git a/lib/Analysis/ModuleSummaryAnalysis.cpp b/lib/Analysis/ModuleSummaryAnalysis.cpp
index afd575e7273c..82db09ca97b0 100644
--- a/lib/Analysis/ModuleSummaryAnalysis.cpp
+++ b/lib/Analysis/ModuleSummaryAnalysis.cpp
@@ -303,7 +303,7 @@ computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
// FIXME: refactor this to use the same code that inliner is using.
F.isVarArg();
GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
- /* Live = */ false);
+ /* Live = */ false, F.isDSOLocal());
FunctionSummary::FFlags FunFlags{
F.hasFnAttribute(Attribute::ReadNone),
F.hasFnAttribute(Attribute::ReadOnly),
@@ -329,7 +329,7 @@ computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V,
findRefEdges(Index, &V, RefEdges, Visited);
bool NonRenamableLocal = isNonRenamableLocal(V);
GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
- /* Live = */ false);
+ /* Live = */ false, V.isDSOLocal());
auto GVarSummary =
llvm::make_unique<GlobalVarSummary>(Flags, RefEdges.takeVector());
if (NonRenamableLocal)
@@ -342,7 +342,7 @@ computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
DenseSet<GlobalValue::GUID> &CantBePromoted) {
bool NonRenamableLocal = isNonRenamableLocal(A);
GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
- /* Live = */ false);
+ /* Live = */ false, A.isDSOLocal());
auto AS = llvm::make_unique<AliasSummary>(Flags);
auto *Aliasee = A.getBaseObject();
auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee);
@@ -410,7 +410,8 @@ ModuleSummaryIndex llvm::buildModuleSummaryIndex(
assert(GV->isDeclaration() && "Def in module asm already has definition");
GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
/* NotEligibleToImport = */ true,
- /* Live = */ true);
+ /* Live = */ true,
+ /* Local */ GV->isDSOLocal());
CantBePromoted.insert(GlobalValue::getGUID(Name));
// Create the appropriate summary type.
if (Function *F = dyn_cast<Function>(GV)) {
diff --git a/lib/Analysis/TypeBasedAliasAnalysis.cpp b/lib/Analysis/TypeBasedAliasAnalysis.cpp
index 3a3a7ad39554..1e36e314b864 100644
--- a/lib/Analysis/TypeBasedAliasAnalysis.cpp
+++ b/lib/Analysis/TypeBasedAliasAnalysis.cpp
@@ -314,17 +314,8 @@ AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
if (!EnableTBAA)
return AAResultBase::alias(LocA, LocB);
- // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
- // be conservative.
- const MDNode *AM = LocA.AATags.TBAA;
- if (!AM)
- return AAResultBase::alias(LocA, LocB);
- const MDNode *BM = LocB.AATags.TBAA;
- if (!BM)
- return AAResultBase::alias(LocA, LocB);
-
- // If they may alias, chain to the next AliasAnalysis.
- if (Aliases(AM, BM))
+ // If accesses may alias, chain to the next AliasAnalysis.
+ if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
return AAResultBase::alias(LocA, LocB);
// Otherwise return a definitive result.
@@ -424,25 +415,24 @@ bool MDNode::isTBAAVtableAccess() const {
return false;
}
+static bool matchAccessTags(const MDNode *A, const MDNode *B,
+ const MDNode **GenericTag = nullptr);
+
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
+ const MDNode *GenericTag;
+ matchAccessTags(A, B, &GenericTag);
+ return const_cast<MDNode*>(GenericTag);
+}
+
+static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
if (!A || !B)
return nullptr;
if (A == B)
return A;
- // For struct-path aware TBAA, we use the access type of the tag.
- assert(isStructPathTBAA(A) && isStructPathTBAA(B) &&
- "Auto upgrade should have taken care of this!");
- A = cast_or_null<MDNode>(MutableTBAAStructTagNode(A).getAccessType());
- if (!A)
- return nullptr;
- B = cast_or_null<MDNode>(MutableTBAAStructTagNode(B).getAccessType());
- if (!B)
- return nullptr;
-
- SmallSetVector<MDNode *, 4> PathA;
- MutableTBAANode TA(A);
+ SmallSetVector<const MDNode *, 4> PathA;
+ TBAANode TA(A);
while (TA.getNode()) {
if (PathA.count(TA.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
@@ -450,8 +440,8 @@ MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
TA = TA.getParent();
}
- SmallSetVector<MDNode *, 4> PathB;
- MutableTBAANode TB(B);
+ SmallSetVector<const MDNode *, 4> PathB;
+ TBAANode TB(B);
while (TB.getNode()) {
if (PathB.count(TB.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
@@ -462,7 +452,7 @@ MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
- MDNode *Ret = nullptr;
+ const MDNode *Ret = nullptr;
while (IA >= 0 && IB >= 0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
@@ -472,17 +462,7 @@ MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
--IB;
}
- // We either did not find a match, or the only common base "type" is
- // the root node. In either case, we don't have any useful TBAA
- // metadata to attach.
- if (!Ret || Ret->getNumOperands() < 2)
- return nullptr;
-
- // We need to convert from a type node to a tag node.
- Type *Int64 = IntegerType::get(A->getContext(), 64);
- Metadata *Ops[3] = {Ret, Ret,
- ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
- return MDNode::get(A->getContext(), Ops);
+ return Ret;
}
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
@@ -505,70 +485,96 @@ void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
}
-/// Aliases - Test whether the type represented by A may alias the
-/// type represented by B.
-bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
- // Verify that both input nodes are struct-path aware. Auto-upgrade should
- // have taken care of this.
- assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
- assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
+static bool findAccessType(TBAAStructTagNode BaseTag,
+ const MDNode *AccessTypeNode,
+ uint64_t &OffsetInBase) {
+ // Start from the base type, follow the edge with the correct offset in
+ // the type DAG and adjust the offset until we reach the access type or
+ // until we reach a root node.
+ TBAAStructTypeNode BaseType(BaseTag.getBaseType());
+ OffsetInBase = BaseTag.getOffset();
+
+ while (const MDNode *BaseTypeNode = BaseType.getNode()) {
+ if (BaseTypeNode == AccessTypeNode)
+ return true;
- // Keep track of the root node for A and B.
- TBAAStructTypeNode RootA, RootB;
- TBAAStructTagNode TagA(A), TagB(B);
+ // Follow the edge with the correct offset, Offset will be adjusted to
+ // be relative to the field type.
+ BaseType = BaseType.getParent(OffsetInBase);
+ }
+ return false;
+}
- // TODO: We need to check if AccessType of TagA encloses AccessType of
- // TagB to support aggregate AccessType. If yes, return true.
+static const MDNode *createAccessTag(const MDNode *AccessType) {
+ // If there is no access type or the access type is the root node, then
+ // we don't have any useful access tag to return.
+ if (!AccessType || AccessType->getNumOperands() < 2)
+ return nullptr;
- // Start from the base type of A, follow the edge with the correct offset in
- // the type DAG and adjust the offset until we reach the base type of B or
- // until we reach the Root node.
- // Compare the adjusted offset once we have the same base.
+ Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
+ auto *ImmutabilityFlag = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
+ Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
+ const_cast<MDNode*>(AccessType), ImmutabilityFlag};
+ return MDNode::get(AccessType->getContext(), Ops);
+}
- // Climb the type DAG from base type of A to see if we reach base type of B.
- const MDNode *BaseA = TagA.getBaseType();
- const MDNode *BaseB = TagB.getBaseType();
- uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
- for (TBAAStructTypeNode T(BaseA);;) {
- if (T.getNode() == BaseB)
- // Base type of A encloses base type of B, check if the offsets match.
- return OffsetA == OffsetB;
-
- RootA = T;
- // Follow the edge with the correct offset, OffsetA will be adjusted to
- // be relative to the field type.
- T = T.getParent(OffsetA);
- if (!T.getNode())
- break;
+/// matchTags - Return true if the given couple of accesses are allowed to
+/// overlap. If \arg GenericTag is not null, then on return it points to the
+/// most generic access descriptor for the given two.
+static bool matchAccessTags(const MDNode *A, const MDNode *B,
+ const MDNode **GenericTag) {
+ if (A == B) {
+ if (GenericTag)
+ *GenericTag = A;
+ return true;
}
- // Reset OffsetA and climb the type DAG from base type of B to see if we reach
- // base type of A.
- OffsetA = TagA.getOffset();
- for (TBAAStructTypeNode T(BaseB);;) {
- if (T.getNode() == BaseA)
- // Base type of B encloses base type of A, check if the offsets match.
- return OffsetA == OffsetB;
-
- RootB = T;
- // Follow the edge with the correct offset, OffsetB will be adjusted to
- // be relative to the field type.
- T = T.getParent(OffsetB);
- if (!T.getNode())
- break;
+ // Accesses with no TBAA information may alias with any other accesses.
+ if (!A || !B) {
+ if (GenericTag)
+ *GenericTag = nullptr;
+ return true;
}
- // Neither node is an ancestor of the other.
+ // Verify that both input nodes are struct-path aware. Auto-upgrade should
+ // have taken care of this.
+ assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
+ assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
+
+ TBAAStructTagNode TagA(A), TagB(B);
+ const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
+ TagB.getAccessType());
+ if (GenericTag)
+ *GenericTag = createAccessTag(CommonType);
- // If they have different roots, they're part of different potentially
- // unrelated type systems, so we must be conservative.
- if (RootA.getNode() != RootB.getNode())
+ // TODO: We need to check if AccessType of TagA encloses AccessType of
+ // TagB to support aggregate AccessType. If yes, return true.
+
+ // Climb the type DAG from base type of A to see if we reach base type of B.
+ uint64_t OffsetA;
+ if (findAccessType(TagA, TagB.getBaseType(), OffsetA))
+ return OffsetA == TagB.getOffset();
+
+ // Climb the type DAG from base type of B to see if we reach base type of A.
+ uint64_t OffsetB;
+ if (findAccessType(TagB, TagA.getBaseType(), OffsetB))
+ return OffsetB == TagA.getOffset();
+
+ // If the final access types have different roots, they're part of different
+ // potentially unrelated type systems, so we must be conservative.
+ if (!CommonType)
return true;
// If they have the same root, then we've proved there's no alias.
return false;
}
+/// Aliases - Test whether the access represented by tag A may alias the
+/// access represented by tag B.
+bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
+ return matchAccessTags(A, B);
+}
+
AnalysisKey TypeBasedAA::Key;
TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 3f53fc517e39..2010858139a6 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -2579,9 +2579,7 @@ Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
case LibFunc_sqrt:
case LibFunc_sqrtf:
case LibFunc_sqrtl:
- if (ICS->hasNoNaNs())
- return Intrinsic::sqrt;
- return Intrinsic::not_intrinsic;
+ return Intrinsic::sqrt;
}
return Intrinsic::not_intrinsic;
@@ -4140,7 +4138,8 @@ static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
// Is the sign bit set?
// (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
// (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
- if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
+ if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
+ C2->isMaxSignedValue())
return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
// Is the sign bit clear?
@@ -4272,13 +4271,15 @@ static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
// ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
// NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
- if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
+ if (Pred == ICmpInst::ICMP_SGT &&
+ (C1->isNullValue() || C1->isAllOnesValue())) {
return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
}
// ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
// NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
- if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
+ if (Pred == ICmpInst::ICMP_SLT &&
+ (C1->isNullValue() || C1->isOneValue())) {
return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
}
}