summaryrefslogtreecommitdiff
path: root/polly/lib/External/ppcg/gpu.c
diff options
context:
space:
mode:
Diffstat (limited to 'polly/lib/External/ppcg/gpu.c')
-rw-r--r--polly/lib/External/ppcg/gpu.c5849
1 files changed, 0 insertions, 5849 deletions
diff --git a/polly/lib/External/ppcg/gpu.c b/polly/lib/External/ppcg/gpu.c
deleted file mode 100644
index cfd998f1c315..000000000000
--- a/polly/lib/External/ppcg/gpu.c
+++ /dev/null
@@ -1,5849 +0,0 @@
-/*
- * Copyright 2010-2011 INRIA Saclay
- * Copyright 2012-2013 Ecole Normale Superieure
- * Copyright 2015-2016 Sven Verdoolaege
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
- * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
- * 91893 Orsay, France
- * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
- */
-
-#include <assert.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include <isl/polynomial.h>
-#include <isl/union_set.h>
-#include <isl/aff.h>
-#include <isl/ilp.h>
-#include <isl/flow.h>
-#include <isl/schedule.h>
-#include <isl/schedule_node.h>
-#include <isl/options.h>
-#include <isl/ast_build.h>
-
-#include "cpu.h"
-#include "gpu.h"
-#include "gpu_array_tile.h"
-#include "gpu_group.h"
-#include "gpu_hybrid.h"
-#include "gpu_tree.h"
-#include "hybrid.h"
-#include "schedule.h"
-#include "ppcg_options.h"
-#include "print.h"
-#include "util.h"
-
-struct gpu_array_info;
-
-/* Return the name of the outer array (of structs) accessed by "access".
- */
-static const char *get_outer_array_name(__isl_keep isl_map *access)
-{
- isl_space *space;
- const char *name;
-
- space = isl_space_range(isl_map_get_space(access));
- while (space && isl_space_is_wrapping(space))
- space = isl_space_domain(isl_space_unwrap(space));
- name = isl_space_get_tuple_name(space, isl_dim_set);
- isl_space_free(space);
-
- return name;
-}
-
-/* Collect all references to the given array and store pointers to them
- * in array->refs.
- */
-void collect_references(struct gpu_prog *prog,
- struct gpu_array_info *array)
-{
- int i;
- int n;
-
- n = 0;
- for (i = 0; i < prog->n_stmts; ++i) {
- struct gpu_stmt *stmt = &prog->stmts[i];
- struct gpu_stmt_access *access;
-
- for (access = stmt->accesses; access; access = access->next) {
- const char *name;
- name = get_outer_array_name(access->access);
- if (name && !strcmp(array->name, name))
- n++;
- }
- }
-
- array->n_ref = n;
- array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
- assert(array->refs);
-
- n = 0;
- for (i = 0; i < prog->n_stmts; ++i) {
- struct gpu_stmt *stmt = &prog->stmts[i];
- struct gpu_stmt_access *access;
-
- for (access = stmt->accesses; access; access = access->next) {
- const char *name;
- name = get_outer_array_name(access->access);
- if (!name || strcmp(array->name, name))
- continue;
-
- array->refs[n++] = access;
- }
- }
-}
-
-/* Compute and return the extent of "array", taking into account the set of
- * accessed elements.
- *
- * In particular, the extent in the outer dimension is taken
- * from "accessed", while the extents in the remaining dimensions
- * are taken from array->extent.
- *
- * The extent in the outer dimension cannot be taken from array->extent
- * because that may be unbounded. Furthermore, even if it is bounded,
- * it may be larger than the piece of the array that is being accessed.
- */
-static __isl_give isl_set *compute_extent(struct pet_array *array,
- __isl_keep isl_set *accessed)
-{
- int n_index;
- isl_id *id;
- isl_set *outer;
- isl_set *extent;
-
- extent = isl_set_copy(array->extent);
-
- n_index = isl_set_dim(accessed, isl_dim_set);
- if (n_index == 0)
- return extent;
-
- extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
- outer = isl_set_copy(accessed);
- outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
- extent = isl_set_flat_product(outer, extent);
- id = isl_set_get_tuple_id(accessed);
- extent = isl_set_set_tuple_id(extent, id);
-
- return extent;
-}
-
-/* Is the array "array" being extracted a read-only scalar?
- *
- * That is, is "array" a scalar that is never possibly written to.
- * An array containing structures is never considered to be a scalar.
- */
-static int is_read_only_scalar(struct gpu_array_info *array,
- struct gpu_prog *prog)
-{
- isl_set *space;
- isl_union_map *write;
- int empty;
-
- if (array->has_compound_element)
- return 0;
- if (array->n_index != 0)
- return 0;
-
- write = isl_union_map_copy(prog->may_write);
- space = isl_set_universe(isl_space_copy(array->space));
- write = isl_union_map_intersect_range(write,
- isl_union_set_from_set(space));
- empty = isl_union_map_is_empty(write);
- isl_union_map_free(write);
-
- return empty;
-}
-
-/* Is "array" only accessed as individual, fixed elements?
- * That is, does each access to "array" access a single, fixed element?
- */
-isl_bool only_fixed_element_accessed(struct gpu_array_info *array)
-{
- int i;
-
- for (i = 0; i < array->n_ref; ++i)
- if (!array->refs[i]->fixed_element)
- return isl_bool_false;
-
- return isl_bool_true;
-}
-
-/* Compute bounds on the host array "pa" based on the corresponding
- * accessed elements in "arrays"
- * and collect all references to the array.
- * Store the results in "info".
- *
- * If the array is zero-dimensional and does not contain structures,
- * i.e., if the array is a scalar, we check whether it is read-only.
- * We also check whether the array is accessed at all.
- */
-static int extract_array_info(struct gpu_prog *prog,
- struct gpu_array_info *info, struct pet_array *pa,
- __isl_keep isl_union_set *arrays)
-{
- int empty;
- const char *name;
- int n_index;
- isl_multi_pw_aff *bounds;
- isl_set *accessed, *extent;
-
- n_index = isl_set_dim(pa->extent, isl_dim_set);
- name = isl_set_get_tuple_name(pa->extent);
-
- info->space = isl_set_get_space(pa->extent);
- info->name = strdup(name);
- info->n_index = n_index;
- info->linearize = prog->scop->options->linearize_device_arrays;
-
- info->type = strdup(pa->element_type);
- info->size = pa->element_size;
- info->local = pa->declared && !pa->exposed;
- info->has_compound_element = pa->element_is_record;
- info->read_only_scalar = is_read_only_scalar(info, prog);
-
- info->declared_extent = isl_set_copy(pa->extent);
- accessed = isl_union_set_extract_set(arrays,
- isl_space_copy(info->space));
- empty = isl_set_is_empty(accessed);
- extent = compute_extent(pa, accessed);
- isl_set_free(accessed);
- info->extent = extent;
- if (empty < 0)
- return -1;
- info->accessed = !empty;
- bounds = ppcg_size_from_extent(isl_set_copy(extent));
- bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
- if (!bounds)
- return -1;
- if (!isl_multi_pw_aff_is_cst(bounds))
- info->linearize = 1;
- info->bound = bounds;
-
- collect_references(prog, info);
- info->only_fixed_element = only_fixed_element_accessed(info);
-
- return 0;
-}
-
-/* Remove independence from the order constraints "order" on array "array".
- * Since the pairs of iterations in the filter relation of an independence
- * are guaranteed to be completely independent by the user, there is
- * no need to ensure that live ranges are ordered along those pairs.
- * We make an exception for local variables, though, as the independence
- * guarantee does not apply to those.
- *
- * The order constraints are used in two places.
- * Those on scalars are used in check_scalar_live_ranges to check if
- * we need to force the scalar to be private. Any non-local scalar
- * should not be forced scalar if it only appears in independent loops.
- * Those on non-scalars are added to the coincidence constraints
- * in compute_schedule because we do not support any array expansion.
- * Accesses to non-local arrays should not prevent a loop from being
- * considered coincident so we should indeed remove those constraints
- * from the order constraints.
- */
-static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
- struct gpu_array_info *array, __isl_take isl_union_map *order)
-{
- // We do not have independence information in Polly. Hence, make this
- // function a no-op.
- return order;
- int i;
-
- for (i = 0; i < prog->scop->pet->n_independence; ++i) {
- struct pet_independence *pi = prog->scop->pet->independences[i];
- if (isl_union_set_contains(pi->local, array->space))
- continue;
-
- order = isl_union_map_subtract(order,
- isl_union_map_copy(pi->filter));
- }
-
- return order;
-}
-
-/* For each array in "prog", store the (untagged) order dependences
- * derived from the array in array->dep_order.
- * In particular, consider all references that access the given array
- * and take the order dependences that have one of these references
- * as source. (Since an order dependence relates two references to
- * the same array, the target of these order dependences will also
- * be one of these references.)
- * Additionally, store the union of these array->dep_order relations
- * for all arrays that cannot be mapped to private memory in prog->array_order.
- */
-void collect_order_dependences(struct gpu_prog *prog)
-{
- int i;
- isl_space *space;
- isl_union_map *accesses;
-
- space = isl_union_map_get_space(prog->read);
- prog->array_order = isl_union_map_empty(space);
-
- accesses = isl_union_map_copy(prog->scop->tagged_reads);
- accesses = isl_union_map_union(accesses,
- isl_union_map_copy(prog->scop->tagged_may_writes));
- accesses = isl_union_map_universe(accesses);
- accesses = isl_union_map_apply_range(accesses,
- isl_union_map_copy(prog->to_outer));
-
- for (i = 0; i < prog->n_array; ++i) {
- struct gpu_array_info *array = &prog->array[i];
- isl_set *set;
- isl_union_set *uset;
- isl_union_map *order;
-
- set = isl_set_universe(isl_space_copy(array->space));
- uset = isl_union_set_from_set(set);
- uset = isl_union_map_domain(
- isl_union_map_intersect_range(isl_union_map_copy(accesses),
- uset));
- order = isl_union_map_copy(prog->scop->tagged_dep_order);
- order = isl_union_map_intersect_domain(order, uset);
- order = isl_union_map_zip(order);
- order = isl_union_set_unwrap(isl_union_map_domain(order));
- order = remove_independences(prog, array, order);
- array->dep_order = order;
-
- if (gpu_array_can_be_private(array))
- continue;
-
- prog->array_order = isl_union_map_union(prog->array_order,
- isl_union_map_copy(array->dep_order));
- }
-
- isl_union_map_free(accesses);
-}
-
-/* Construct a gpu_array_info for each array referenced by prog->scop and
- * collect them in prog->array.
- *
- * The sizes are based on the extents and the set of possibly accessed
- * elements by "prog".
- * If there are any member accesses involved, then they are first mapped
- * to the outer arrays of structs.
- * Only extract gpu_array_info entries for these outer arrays.
- *
- * If we are allowing live range reordering, then also set
- * the dep_order field. Otherwise leave it NULL.
- */
-static int collect_array_info(struct gpu_prog *prog)
-{
- int i;
- int r = 0;
- isl_union_set *arrays;
-
- arrays = isl_union_map_range(isl_union_map_copy(prog->read));
- arrays = isl_union_set_union(arrays,
- isl_union_map_range(isl_union_map_copy(prog->may_write)));
-
- arrays = isl_union_set_apply(arrays,
- isl_union_map_copy(prog->to_outer));
-
- arrays = isl_union_set_coalesce(arrays);
-
- prog->n_array = prog->scop->pet->n_array;
- prog->array = isl_calloc_array(prog->ctx,
- struct gpu_array_info, prog->n_array);
- assert(prog->array);
- prog->n_array = 0;
- for (i = 0; i < prog->scop->pet->n_array; ++i) {
- isl_bool field;
-
- field = isl_set_is_wrapping(prog->scop->pet->arrays[i]->extent);
- if (field < 0)
- break;
- if (field)
- continue;
- if (extract_array_info(prog, &prog->array[prog->n_array++],
- prog->scop->pet->arrays[i], arrays) < 0)
- r = -1;
- }
- if (i < prog->scop->pet->n_array)
- r = -1;
-
- isl_union_set_free(arrays);
-
- if (prog->scop->options->live_range_reordering)
- collect_order_dependences(prog);
-
- return r;
-}
-
-static void free_array_info(struct gpu_prog *prog)
-{
- int i;
-
- for (i = 0; i < prog->n_array; ++i) {
- free(prog->array[i].type);
- free(prog->array[i].name);
- isl_multi_pw_aff_free(prog->array[i].bound);
- isl_ast_expr_free(prog->array[i].bound_expr);
- isl_space_free(prog->array[i].space);
- isl_set_free(prog->array[i].declared_extent);
- isl_set_free(prog->array[i].extent);
- isl_ast_expr_free(prog->array[i].declared_size);
- free(prog->array[i].refs);
- isl_union_map_free(prog->array[i].dep_order);
- }
- free(prog->array);
-}
-
-/* Check if a gpu array is a scalar. A scalar is a value that is not stored
- * as an array or through a pointer reference, but as a single data element.
- * At the moment, scalars are represented as zero-dimensional arrays.
- * Note that the single data element may be an entire structure.
- */
-int gpu_array_is_scalar(struct gpu_array_info *array)
-{
- return array->n_index == 0;
-}
-
-/* Can "array" be mapped to private memory?
- * That is, is it only accessed as individual elements with
- * constant index expressions?
- */
-isl_bool gpu_array_can_be_private(struct gpu_array_info *array)
-{
- if (!array)
- return isl_bool_error;
- return array->only_fixed_element;
-}
-
-/* Is "array" a read-only scalar?
- */
-int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
-{
- return array->read_only_scalar;
-}
-
-/* Does "array" need to be allocated on the device?
- * If it is a read-only scalar, then it will be passed as an argument
- * to the kernel and therefore does not require any allocation.
- * If this device memory is not accessed at all, then it does not
- * need to be allocated either.
- */
-int gpu_array_requires_device_allocation(struct gpu_array_info *array)
-{
- if (gpu_array_is_read_only_scalar(array))
- return 0;
- if (!array->global)
- return 0;
- return 1;
-}
-
-/* Return the set of parameter values for which the array has a positive
- * size in all dimensions.
- * If the sizes are only valid for some parameter values, then those
- * constraints are also taken into account.
- */
-__isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
-{
- int i;
- isl_space *space;
- isl_set *guard;
-
- if (!array)
- return NULL;
-
- space = isl_space_params(isl_space_copy(array->space));
- guard = isl_set_universe(space);
-
- for (i = 0; i < array->n_index; ++i) {
- isl_pw_aff *bound;
- isl_set *guard_i, *zero;
-
- bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
- guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
- zero = isl_pw_aff_zero_set(bound);
- guard_i = isl_set_subtract(guard_i, zero);
- guard = isl_set_intersect(guard, guard_i);
- }
-
- return guard;
-}
-
-/* Internal data structure for extract_size_of_type.
- * "type" specifies the name of the space that we want to extract.
- * "res" is used to store the subset of that space.
- */
-struct ppcg_extract_size_data {
- const char *type;
- isl_set *res;
-};
-
-/* This function is called for each set in a union_set.
- * If the name of the set matches data->type, we store the
- * set in data->res.
- */
-static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
-{
- struct ppcg_extract_size_data *data = user;
- const char *name;
-
- name = isl_set_get_tuple_name(size);
- if (name && !strcmp(name, data->type)) {
- data->res = size;
- return isl_stat_error;
- }
-
- isl_set_free(size);
- return isl_stat_ok;
-}
-
-/* Given a union map { kernel[i] -> *[...] },
- * return the range in the space called "type" for the kernel with
- * sequence number "id".
- */
-static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
- const char *type, int id)
-{
- isl_space *space;
- isl_set *dom;
- isl_union_set *local_sizes;
- struct ppcg_extract_size_data data = { type, NULL };
-
- if (!sizes)
- return NULL;
-
- space = isl_union_map_get_space(sizes);
- space = isl_space_set_from_params(space);
- space = isl_space_add_dims(space, isl_dim_set, 1);
- space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
- dom = isl_set_universe(space);
- dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
-
- local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
- isl_union_map_copy(sizes));
- isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
- isl_union_set_free(local_sizes);
- return data.res;
-}
-
-/* Given a singleton set, extract the first (at most *len) elements
- * of the single integer tuple into *sizes and update *len if needed.
- */
-static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
-{
- int i;
- int dim;
-
- if (!set)
- return;
-
- dim = isl_set_dim(set, isl_dim_set);
- if (dim < *len)
- *len = dim;
-
- for (i = 0; i < *len; ++i) {
- isl_val *v;
-
- v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
- assert(v);
-
- sizes[i] = isl_val_get_num_si(v);
- isl_val_free(v);
- }
-
- isl_set_free(set);
-}
-
-/* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
- * if the option debug->dump_sizes is set.
- */
-static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
- int *sizes, int len)
-{
- int i;
- isl_space *space;
- isl_map *map;
-
- if (!gen->options->debug->dump_sizes)
- return;
-
- space = isl_union_map_get_space(gen->used_sizes);
- space = isl_space_set_from_params(space);
- space = isl_space_add_dims(space, isl_dim_set, 1);
- space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
- space = isl_space_from_domain(space);
- space = isl_space_add_dims(space, isl_dim_out, len);
- space = isl_space_set_tuple_name(space, isl_dim_out, type);
-
- map = isl_map_universe(space);
- map = isl_map_fix_si(map, isl_dim_in, 0, id);
- for (i = 0; i < len; ++i)
- map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
-
- gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
-}
-
-/* Extract user specified "tile" sizes from the "sizes" command line option,
- * defaulting to option->tile_size in each dimension.
- * *tile_len contains the maximum number of tile sizes needed.
- * Update *tile_len to the number of specified tile sizes, if any, and
- * return a pointer to the tile sizes (or NULL on error).
- * Add the effectively used sizes to gen->used_sizes.
- */
-static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
-{
- int n;
- int *tile_size;
- isl_set *size;
-
- tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
- if (!tile_size)
- return NULL;
- for (n = 0; n < *tile_len; ++n)
- tile_size[n] = gen->options->tile_size;
-
- size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
- read_sizes_from_set(size, tile_size, tile_len);
- set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
-
- return tile_size;
-}
-
-/* Extract user specified "block" sizes from the "sizes" command line option,
- * after filling in some potentially useful defaults.
- */
-static void read_block_sizes(struct ppcg_kernel *kernel,
- __isl_keep isl_union_map *sizes)
-{
- isl_set *size;
-
- if (kernel->n_block > 3)
- kernel->n_block = 3;
- switch (kernel->n_block) {
- case 1:
- kernel->block_dim[0] = 512;
- break;
- case 2:
- kernel->block_dim[0] = 32;
- kernel->block_dim[1] = 16;
- break;
- default:
- kernel->block_dim[0] = 32;
- kernel->block_dim[1] = 4;
- kernel->block_dim[2] = 4;
- break;
- }
-
- size = extract_sizes(sizes, "block", kernel->id);
- read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
-}
-
-/* Extract user specified "grid" sizes from the "sizes" command line option,
- * after filling in some potentially useful defaults.
- */
-static void read_grid_sizes(struct ppcg_kernel *kernel,
- __isl_keep isl_union_map *sizes)
-{
- isl_set *size;
-
- if (kernel->n_grid > 2)
- kernel->n_grid = 2;
- switch (kernel->n_grid) {
- case 1:
- kernel->grid_dim[0] = 32768;
- break;
- default:
- kernel->grid_dim[0] = 256;
- kernel->grid_dim[1] = 256;
- break;
- }
-
- size = extract_sizes(sizes, "grid", kernel->id);
- read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
-}
-
-/* Extract user specified grid and block sizes from the gen->sizes
- * command line option after filling in some potentially useful defaults.
- * Store the extracted sizes in "kernel".
- * Add the effectively used sizes to gen->used_sizes.
- */
-static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
- struct gpu_gen *gen)
-{
- read_block_sizes(kernel, gen->sizes);
- read_grid_sizes(kernel, gen->sizes);
- set_used_sizes(gen, "block", kernel->id,
- kernel->block_dim, kernel->n_block);
- set_used_sizes(gen, "grid", kernel->id,
- kernel->grid_dim, kernel->n_grid);
-}
-
-static void *free_stmts(struct gpu_stmt *stmts, int n)
-{
- int i;
-
- if (!stmts)
- return NULL;
-
- for (i = 0; i < n; ++i) {
- struct gpu_stmt_access *access, *next;
-
- for (access = stmts[i].accesses; access; access = next) {
- next = access->next;
- isl_id_free(access->ref_id);
- isl_map_free(access->access);
- isl_map_free(access->tagged_access);
- free(access);
- }
-
- isl_id_free(stmts[i].id);
- }
- free(stmts);
-
- return NULL;
-}
-
-/* Add parameters p[i] with identifiers "ids" to "set",
- * with bounds to 0 <= p[i] < size[i].
- */
-__isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
- int *size, __isl_keep isl_id_list *ids)
-{
- int i, len;
- unsigned nparam;
-
- len = isl_id_list_n_id(ids);
- nparam = isl_set_dim(set, isl_dim_param);
- set = isl_set_add_dims(set, isl_dim_param, len);
-
- for (i = 0; i < len; ++i) {
- isl_id *id;
-
- id = isl_id_list_get_id(ids, i);
- set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
- set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
- set = isl_set_upper_bound_si(set, isl_dim_param,
- nparam + i, size[i] - 1);
- }
-
- return set;
-}
-
-/* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
- * with
- *
- * { : 0 <= p[i] < size[i] }
- *
- * or an overapproximation.
- */
-static __isl_give isl_set *add_bounded_parameters_dynamic(
- __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
- __isl_keep isl_id_list *ids)
-{
- int i, len;
- unsigned nparam;
- isl_space *space;
- isl_local_space *ls;
-
- len = isl_multi_pw_aff_dim(size, isl_dim_out);
- nparam = isl_set_dim(set, isl_dim_param);
- set = isl_set_add_dims(set, isl_dim_param, len);
-
- for (i = 0; i < len; ++i) {
- isl_id *id;
-
- id = isl_id_list_get_id(ids, i);
- set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
- }
-
- space = isl_space_params(isl_set_get_space(set));
- ls = isl_local_space_from_space(space);
- for (i = 0; i < len; ++i) {
- isl_pw_aff *param, *size_i, *zero;
- isl_set *bound;
-
- param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
- isl_dim_param, nparam + i);
-
- size_i = isl_multi_pw_aff_get_pw_aff(size, i);
- bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
- bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
- set = isl_set_intersect_params(set, bound);
-
- zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
- bound = isl_pw_aff_ge_set(param, zero);
- set = isl_set_intersect_params(set, bound);
- }
- isl_local_space_free(ls);
-
- return set;
-}
-
-/* Return the union of all tagged access relations in the group.
- */
-static __isl_give isl_union_map *group_tagged_access_relation(
- struct gpu_array_ref_group *group)
-{
- int i;
- isl_union_map *access;
-
- access = isl_union_map_empty(isl_map_get_space(group->access));
- for (i = 0; i < group->n_ref; ++i) {
- isl_map *map_i;
-
- map_i = isl_map_copy(group->refs[i]->tagged_access);
- access = isl_union_map_union(access,
- isl_union_map_from_map(map_i));
- }
-
- return access;
-}
-
-/* Return the extent of "array", recomputed from the bounds.
- * The recomputed extent may be simpler than the original extent.
- */
-static __isl_give isl_set *array_extent(struct gpu_array_info *array)
-{
- int i;
- isl_id *id;
- isl_space *space;
- isl_local_space *ls;
- isl_set *extent;
-
- id = isl_set_get_tuple_id(array->extent);
- space = isl_set_get_space(array->extent);
- extent = isl_set_universe(isl_space_copy(space));
- ls = isl_local_space_from_space(space);
- for (i = 0; i < array->n_index; ++i) {
- isl_pw_aff *bound;
- isl_aff *aff;
- isl_pw_aff *index;
- isl_set *lt;
-
- extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
-
- aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
- isl_dim_set, i);
- index = isl_pw_aff_from_aff(aff);
- bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
- bound = isl_pw_aff_from_range(bound);
- bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
- bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
- isl_id_copy(id));
- lt = isl_pw_aff_lt_set(index, bound);
- extent = isl_set_intersect(extent, lt);
- }
- isl_local_space_free(ls);
- isl_id_free(id);
-
- return extent;
-}
-
-/* Return a map from the first group->shared_tile->depth dimensions
- * of the computed schedule to the array tile in
- * global memory that corresponds to the shared memory copy.
- *
- * In particular, return a map
- *
- * { D[i] -> A[a] }
- *
- * with constraints
- *
- * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
- *
- * and
- *
- * 0 <= a <= array_size - 1 (2)
- *
- * Note that if some stride has been detected (i.e., when
- * group->shared_tile->bound[i].shift is set), then a in (1) refers
- * to the shifted and scaled down version.
- *
- * Constraints (1) are obtained by mapping the size constraints on the
- * shared/private memory tile back to the access relation.
- * Constraints (2) are obtained from the (recomputed) extent.
- */
-static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
-{
- int i;
- int n_index = group->array->n_index;
- isl_map *tile;
- isl_space *space;
- isl_set *local;
- isl_set *extent;
-
- space = isl_multi_aff_get_space(group->shared_tile->tiling);
- space = isl_space_range(space);
- local = isl_set_universe(space);
- for (i = 0; i < n_index; ++i) {
- isl_val *bound;
-
- local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
- bound = isl_val_copy(group->shared_tile->bound[i].size);
- bound = isl_val_sub_ui(bound, 1);
- local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
- }
- local = isl_set_preimage_multi_aff(local,
- isl_multi_aff_copy(group->shared_tile->tiling));
- tile = isl_set_unwrap(local);
- extent = array_extent(group->array);
- tile = isl_map_intersect_range(tile, extent);
-
- return tile;
-}
-
-/* Given a mapping "iterator_map" from the AST schedule to a domain,
- * return the corresponding mapping from the AST schedule to
- * to the outer kernel->copy_schedule_dim dimensions of
- * the schedule computed by PPCG for this kernel.
- *
- * Note that kernel->copy_schedule_dim is at least as large as
- * the largest depth of any array reference group associated to the kernel.
- * This is needed as the returned schedule is used to extract a mapping
- * to the outer tile->depth dimensions in transform_index.
- */
-static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
- struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
-{
- isl_union_pw_multi_aff *upma;
- isl_pw_multi_aff *pma;
- isl_space *space;
-
- space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
- space = isl_space_from_domain(space);
- space = isl_space_add_dims(space, isl_dim_out,
- kernel->copy_schedule_dim);
-
- upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
- pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
- isl_union_pw_multi_aff_free(upma);
-
- return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
-}
-
-/* If max_shared_memory is not set to infinity (-1), then make
- * sure that the total amount of shared memory required by the
- * array reference groups mapped to shared memory by "kernel"
- * is no larger than this maximum.
- *
- * We apply a greedy approach and discard (keep in global memory)
- * those groups that would result in a total memory size that
- * is larger than the maximum.
- *
- * This function should be called after any function that may
- * affect the decision on whether to place a reference group
- * in private, shared or global memory.
- */
-static void check_shared_memory_bound(struct ppcg_kernel *kernel)
-{
- int i, j;
- isl_val *left, *size;
-
- if (kernel->options->max_shared_memory < 0)
- return;
-
- left = isl_val_int_from_si(kernel->ctx,
- kernel->options->max_shared_memory);
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *local = &kernel->array[i];
-
- for (j = 0; j < local->n_group; ++j) {
- struct gpu_array_ref_group *group;
- enum ppcg_group_access_type type;
-
- group = local->groups[j];
- type = gpu_array_ref_group_type(group);
- if (type != ppcg_access_shared)
- continue;
-
- size = gpu_array_tile_size(group->shared_tile);
- size = isl_val_mul_ui(size, local->array->size);
-
- if (isl_val_le(size, left)) {
- left = isl_val_sub(left, size);
- continue;
- }
- isl_val_free(size);
-
- group->shared_tile =
- gpu_array_tile_free(group->shared_tile);
- }
- }
-
- isl_val_free(left);
-}
-
-/* Mark all arrays of "kernel" that have an array reference group
- * that is not mapped to private or shared memory as
- * accessing the corresponding global device memory.
- */
-static void mark_global_arrays(struct ppcg_kernel *kernel)
-{
- int i, j;
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *local = &kernel->array[i];
-
- if (local->global)
- continue;
- for (j = 0; j < local->n_group; ++j) {
- if (gpu_array_ref_group_tile(local->groups[j]))
- continue;
-
- local->global = 1;
- local->array->global = 1;
- break;
- }
- }
-}
-
-/* Compute a tiling for all the array reference groups in "kernel".
- */
-static void compute_group_tilings(struct ppcg_kernel *kernel)
-{
- int i, j;
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j)
- gpu_array_ref_group_compute_tiling(array->groups[j]);
- }
-}
-
-/* Compute the effective grid size as a list of the sizes in each dimension.
- *
- * The grid size specified by the user or set by default
- * in read_grid_sizes() and applied by the block filter,
- * may be too large for the given code in the sense that
- * it may contain blocks that don't need to execute anything.
- * We therefore don't return this grid size, but instead the
- * smallest grid size that ensures that all blocks that actually
- * execute code are included in the grid.
- *
- * We first extract a description of the grid, i.e., the possible values
- * of the block ids, from the domain elements in "domain" and
- * kernel->block_filter.
- * The block ids are parameters in kernel->block_filter.
- * We simply need to change them into set dimensions.
- *
- * Then, for each block dimension, we compute the maximal value of the block id
- * and add one.
- */
-static __isl_give isl_multi_pw_aff *extract_grid_size(
- struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
-{
- int i;
- isl_set *grid;
- isl_set *context;
- isl_multi_pw_aff *size;
-
- domain = isl_union_set_intersect(domain,
- isl_union_set_copy(kernel->block_filter));
- grid = isl_union_set_params(domain);
- grid = isl_set_from_params(grid);
- grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
- for (i = 0; i < kernel->n_grid; ++i) {
- int pos;
- isl_id *id;
-
- id = isl_id_list_get_id(kernel->block_ids, i);
- pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
- isl_id_free(id);
- assert(pos >= 0);
- grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
- grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
- }
-
- grid = isl_set_coalesce(grid);
- size = ppcg_size_from_extent(grid);
- context = isl_set_params(isl_set_copy(kernel->context));
- return isl_multi_pw_aff_gist(size, context);
-}
-
-/* Compute the size of a fixed bounding box around the origin and "set",
- * where "set" is assumed to contain only non-negative elements,
- * and store the results in "size".
- * In particular, compute the maximal value of "set" in each direction
- * and add one.
- */
-static void extract_fixed_size(__isl_take isl_set *set, int *size)
-{
- int i, n;
- isl_local_space *ls;
- isl_aff *obj;
-
- n = isl_set_dim(set, isl_dim_set);
- ls = isl_local_space_from_space(isl_set_get_space(set));
- obj = isl_aff_zero_on_domain(ls);
- for (i = 0; i < n; ++i) {
- isl_val *max;
-
- obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
- max = isl_set_max_val(set, obj);
- size[i] = isl_val_get_num_si(max) + 1;
- isl_val_free(max);
- obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
- }
- isl_aff_free(obj);
- isl_set_free(set);
-}
-
-/* Compute the effective block size as a list of the sizes in each dimension
- * and store the sizes in kernel->block_dim.
- *
- * The block size specified by the user or set by default
- * in read_block_sizes() and applied by the thread filter,
- * may be too large for the given code in the sense that
- * it may contain threads that don't need to execute anything.
- * We therefore update this block size in kernel->block_dim
- * to the smallest block size that ensures that all threads
- * that actually execute code are included in the block.
- *
- * The set of possible values of the thread ids is obtained from
- * the domain elements "domain" and kernel->thread_filter.
- * The current implementation eliminates all parameters, ensuring
- * that the size is a fixed constant in each dimension.
- * In principle we could also compute parametric sizes.
- * We would have to make sure to project out all b%d and t%d parameters,
- * however.
- */
-static isl_stat extract_block_size(struct ppcg_kernel *kernel,
- __isl_take isl_union_set *domain)
-{
- int i;
- int nparam;
- isl_set *block;
-
- domain = isl_union_set_intersect(domain,
- isl_union_set_copy(kernel->thread_filter));
- block = isl_union_set_params(domain);
- block = isl_set_from_params(block);
- block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
- for (i = 0; i < kernel->n_block; ++i) {
- int pos;
- isl_id *id;
-
- if (!block)
- return isl_stat_error;
-
- id = isl_id_list_get_id(kernel->thread_ids, i);
- pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
- isl_id_free(id);
- if (pos < 0)
- isl_die(isl_set_get_ctx(block), isl_error_internal,
- "missing constraints on thread identifier",
- block = isl_set_free(block));
- block = isl_set_equate(block, isl_dim_param, pos,
- isl_dim_set, i);
- }
- nparam = isl_set_dim(block, isl_dim_param);
- block = isl_set_project_out(block, isl_dim_param, 0, nparam);
-
- if (!block)
- return isl_stat_error;
-
- extract_fixed_size(block, kernel->block_dim);
-
- return isl_stat_ok;
-}
-
-struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
-{
- int i, j;
-
- if (!kernel)
- return NULL;
-
- isl_id_list_free(kernel->block_ids);
- isl_id_list_free(kernel->thread_ids);
- isl_multi_pw_aff_free(kernel->grid_size);
- isl_ast_expr_free(kernel->grid_size_expr);
- isl_set_free(kernel->context);
- isl_union_set_free(kernel->core);
- isl_union_set_free(kernel->arrays);
- isl_union_pw_multi_aff_free(kernel->contraction);
- isl_union_set_free(kernel->expanded_domain);
- isl_space_free(kernel->space);
- isl_ast_node_free(kernel->tree);
- isl_union_set_free(kernel->block_filter);
- isl_union_set_free(kernel->thread_filter);
- isl_union_pw_multi_aff_free(kernel->copy_schedule);
- isl_union_set_free(kernel->sync_writes);
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j)
- gpu_array_ref_group_free(array->groups[j]);
- free(array->groups);
-
- isl_multi_pw_aff_free(array->bound);
- isl_ast_expr_free(array->bound_expr);
- }
- free(kernel->array);
-
- for (i = 0; i < kernel->n_var; ++i) {
- free(kernel->var[i].name);
- isl_vec_free(kernel->var[i].size);
- }
- free(kernel->var);
-
- free(kernel);
-
- return NULL;
-}
-
-/* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
- */
-static void ppcg_kernel_free_wrap(void *user)
-{
- struct ppcg_kernel *kernel = user;
-
- ppcg_kernel_free(kernel);
-}
-
-static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
- struct ppcg_kernel_var *var)
-{
- int j;
- struct gpu_array_tile *tile;
- isl_printer *p;
-
- var->array = group->array;
-
- var->type = gpu_array_ref_group_type(group);
- tile = gpu_array_ref_group_tile(group);
-
- p = isl_printer_to_str(ctx);
- p = gpu_array_ref_group_print_name(group, p);
- var->name = isl_printer_get_str(p);
- isl_printer_free(p);
-
- var->size = isl_vec_alloc(ctx, group->array->n_index);
-
- for (j = 0; j < group->array->n_index; ++j)
- var->size = isl_vec_set_element_val(var->size, j,
- isl_val_copy(tile->bound[j].size));
-}
-
-static int create_kernel_vars(struct ppcg_kernel *kernel)
-{
- int i, j, n;
-
- n = 0;
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j) {
- struct gpu_array_ref_group *group = array->groups[j];
- enum ppcg_group_access_type type;
-
- type = gpu_array_ref_group_type(group);
- if (type != ppcg_access_global)
- ++n;
- }
- }
-
- kernel->n_var = n;
- kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
- if (!kernel->var)
- return -1;
-
- n = 0;
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j) {
- struct gpu_array_ref_group *group = array->groups[j];
- enum ppcg_group_access_type type;
-
- type = gpu_array_ref_group_type(group);
- if (type == ppcg_access_global)
- continue;
- create_kernel_var(kernel->ctx, group, &kernel->var[n]);
- ++n;
- }
- }
-
- return 0;
-}
-
-/* Replace "pa" by the zero function defined over the universe domain
- * in the space of "pa".
- */
-static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
-{
- isl_space *space;
- isl_aff *zero;
-
- space = isl_space_domain(isl_pw_aff_get_space(pa));
- isl_pw_aff_free(pa);
- zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
-
- return isl_pw_aff_from_aff(zero);
-}
-
-/* The sizes of the arrays on the host that have been computed by
- * extract_array_info may depend on the parameters. Use the extra
- * constraints on the parameters that are valid at "host_domain"
- * to simplify these expressions and store the results in kernel->array.
- *
- * We only need these localized bounds for arrays that are accessed
- * by the current kernel. If we have found at least one reference group
- * then the array is accessed by the kernel.
- *
- * The resulting sizes may be functions that are nowhere defined
- * in case the access function cannot possibly access anything inside
- * the kernel for some reason. If so, they are replaced by the zero
- * function. Since the access function cannot actually access anything,
- * there is no harm in printing the array sizes as zero.
- */
-static void localize_bounds(struct ppcg_kernel *kernel,
- __isl_keep isl_set *host_domain)
-{
- int i, j;
- isl_set *context;
-
- context = isl_set_copy(host_domain);
- context = isl_set_params(context);
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *local = &kernel->array[i];
- isl_multi_pw_aff *bound;
- int n_index;
-
- if (local->n_group == 0)
- continue;
-
- n_index = local->array->n_index;
- bound = isl_multi_pw_aff_copy(local->array->bound);
-
- for (j = 0; j < n_index; ++j) {
- isl_pw_aff *pwaff;
- int empty;
-
- pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
- pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
- empty = isl_pw_aff_is_empty(pwaff);
- if (empty < 0)
- pwaff = isl_pw_aff_free(pwaff);
- else if (empty)
- pwaff = set_universally_zero(pwaff);
- bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
- }
-
- local->n_index = n_index;
- local->bound = bound;
- }
- isl_set_free(context);
-}
-
-/* Create the array of gpu_local_array_info structures "array"
- * inside "kernel". The number of elements in this array is
- * the same as the number of arrays in "prog".
- * Initialize the "array" field of each local array to point
- * to the corresponding array in "prog".
- */
-static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
- struct ppcg_kernel *kernel, struct gpu_prog *prog)
-{
- int i;
- isl_ctx *ctx;
-
- ctx = isl_set_get_ctx(prog->context);
- kernel->array = isl_calloc_array(ctx,
- struct gpu_local_array_info, prog->n_array);
- if (!kernel->array)
- return ppcg_kernel_free(kernel);
- kernel->n_array = prog->n_array;
-
- for (i = 0; i < prog->n_array; ++i)
- kernel->array[i].array = &prog->array[i];
-
- return kernel;
-}
-
-/* Does "kernel" need to be passed an argument corresponding to array "i"?
- *
- * The argument is only needed if the kernel accesses this device memory.
- */
-int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
-{
- return kernel->array[i].global;
-}
-
-/* Find the element in gen->stmt that has the given "id".
- * Return NULL if no such gpu_stmt can be found.
- */
-static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
-{
- int i;
-
- for (i = 0; i < prog->n_stmts; ++i) {
- if (id == prog->stmts[i].id)
- break;
- }
-
- return i < prog->n_stmts ? &prog->stmts[i] : NULL;
-}
-
-void ppcg_kernel_stmt_free(void *user)
-{
- struct ppcg_kernel_stmt *stmt = user;
-
- if (!stmt)
- return;
-
- switch (stmt->type) {
- case ppcg_kernel_copy:
- isl_ast_expr_free(stmt->u.c.index);
- isl_ast_expr_free(stmt->u.c.local_index);
- break;
- case ppcg_kernel_domain:
- isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
- break;
- case ppcg_kernel_sync:
- break;
- }
-
- free(stmt);
-}
-
-/* Return the gpu_stmt_access in the list "accesses" that corresponds
- * to "ref_id".
- */
-static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
- __isl_keep isl_id *ref_id)
-{
- struct gpu_stmt_access *access;
-
- for (access = accesses; access; access = access->next)
- if (access->ref_id == ref_id)
- return access;
-
- return NULL;
-}
-
-/* Return the index of the array called "name" in the list of arrays.
- */
-static int find_array_index(struct ppcg_kernel *kernel, const char *name)
-{
- int i;
-
- for (i = 0; i < kernel->n_array; ++i)
- if (!strcmp(name, kernel->array[i].array->name))
- return i;
-
- return -1;
-}
-
-/* Internal data structure for the index and AST expression transformation
- * callbacks for pet_stmt_build_ast_exprs.
- *
- * "kernel" is the kernel for which are computing AST expressions and
- * may be NULL if we are not inside a kernel.
- * "accesses" is the list of gpu_stmt_access in the statement.
- * "iterator_map" expresses the statement iterators in terms of
- * the AST loop iterators.
- * "sched2copy" expresses the outer copy_schedule_dim dimensions of
- * the kernel schedule in terms of the AST loop iterators and
- * may be NULL if we are not inside a kernel.
- *
- * The following fields are set in transform_index and used in transform_expr.
- * "array" is the array that is being accessed.
- * "global" is set if the global array is accessed (rather than
- * shared/private memory).
- * "local_array" refers to information on the array specialized
- * to the current kernel.
- */
-struct ppcg_transform_data {
- struct ppcg_options *options;
- struct ppcg_kernel *kernel;
- struct gpu_stmt_access *accesses;
- isl_pw_multi_aff *iterator_map;
- isl_pw_multi_aff *sched2copy;
-
- struct gpu_array_info *array;
- int global;
- struct gpu_local_array_info *local_array;
-};
-
-/* Return a pointer to the gpu_array_ref_group in "local"
- * that contains the reference "access".
- * Return NULL if no such group can be found.
- */
-static struct gpu_array_ref_group *find_ref_group(
- struct gpu_local_array_info *local, struct gpu_stmt_access *access)
-{
- int i, j;
-
- for (i = 0; i < local->n_group; ++i) {
- struct gpu_array_ref_group *group = local->groups[i];
-
- for (j = 0; j < group->n_ref; ++j)
- if (group->refs[j] == access)
- return group;
- }
-
- return NULL;
-}
-
-/* Given an index expression "index" of the form
- *
- * L -> F(A),
- *
- * with F(A) either A or some subfield of A and L the AST loop iterators,
- * and a tiling "tiling" of the form
- *
- * [L -> A] -> T
- *
- * apply the tiling to the outer array in the index expression to obtain
- *
- * L -> T(A)
- *
- * If F(A) is some subfield of A, then separate the member access
- * into the base index expression and the field index expression,
- * apply the tiling to the base index expression and combine the result
- * with the field index expression.
- *
- * If F(A) is A, then modify index to keep track of the iterators
- *
- * L -> [L -> A]
- *
- * and combine the result with the tiling to obtain a tiled index expression
- * in terms of the AST loop iterators
- *
- * L -> T
- */
-static __isl_give isl_multi_pw_aff *tile_outer(
- __isl_take isl_multi_pw_aff *index, __isl_take isl_multi_pw_aff *tiling)
-{
- isl_bool is_wrapping;
- isl_space *space;
- isl_multi_pw_aff *mpa;
-
- is_wrapping = isl_multi_pw_aff_range_is_wrapping(index);
- if (is_wrapping < 0)
- goto error;
- if (is_wrapping) {
- isl_multi_pw_aff *field;
-
- field = isl_multi_pw_aff_copy(index);
- field = isl_multi_pw_aff_range_factor_range(field);
- index = isl_multi_pw_aff_range_factor_domain(index);
- index = tile_outer(index, tiling);
- return isl_multi_pw_aff_range_product(index, field);
- }
-
- space = isl_space_domain(isl_multi_pw_aff_get_space(index));
- space = isl_space_map_from_set(space);
- mpa = isl_multi_pw_aff_identity(space);
- index = isl_multi_pw_aff_range_product(mpa, index);
- index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
-
- return index;
-error:
- isl_multi_pw_aff_free(index);
- isl_multi_pw_aff_free(tiling);
- return NULL;
-}
-
-/* Index transformation callback for pet_stmt_build_ast_exprs.
- *
- * "index" expresses the array indices in terms of statement iterators
- *
- * We first reformulate "index" in terms of the AST loop iterators.
- * Then we check if we are accessing the global array or
- * a shared/private copy. In particular, if we are not inside a kernel
- * then we must be accessing a global array.
- * In the former case, we simply return
- * the updated index. If "index" is an affine expression rather
- * than an array access, then we also return the updated index here.
- *
- * If no reference groups have been computed for the array,
- * then we can only be accessing the global array.
- *
- * Otherwise, we apply the tiling to the index.
- * This tiling is of the form
- *
- * [D -> A] -> T
- *
- * where D corresponds to the outer tile->depth dimensions of
- * the kernel schedule.
- * The index is of the form
- *
- * L -> A
- *
- * We update the tiling to refer to the AST loop iterators
- *
- * [L -> A] -> T
- *
- * and combine it with the index to obtain a tiled index expression in terms
- * of the AST loop iterators
- *
- * L -> T
- *
- * Note that while the tiling applies directly to an outer array.
- * the index may refer to some subfield of this outer array.
- * In such cases, the result will refer to the same subfield of the tile.
- * That is, an index expression of the form L -> F(A) will be transformed
- * into an index expression of the form L -> F(T).
- */
-static __isl_give isl_multi_pw_aff *transform_index(
- __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
- void *user)
-{
- struct ppcg_transform_data *data = user;
- struct gpu_stmt_access *access;
- struct gpu_array_ref_group *group;
- struct gpu_array_tile *tile;
- isl_pw_multi_aff *iterator_map;
- int i;
- int dim;
- const char *name;
- isl_space *space;
- isl_multi_pw_aff *tiling;
- isl_pw_multi_aff *pma;
- isl_pw_multi_aff *sched2depth;
-
- data->array = NULL;
-
- iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
- index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
-
- if (!data->kernel)
- return index;
-
- access = find_access(data->accesses, ref_id);
- if (!access)
- return index;
- if (!isl_map_has_tuple_name(access->access, isl_dim_out))
- return index;
-
- name = get_outer_array_name(access->access);
- i = find_array_index(data->kernel, name);
- if (i < 0)
- isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
- "cannot find array",
- return isl_multi_pw_aff_free(index));
- data->local_array = &data->kernel->array[i];
- data->array = data->local_array->array;
-
- group = find_ref_group(data->local_array, access);
- if (!group) {
- data->global = 1;
- return index;
- }
-
- tile = gpu_array_ref_group_tile(group);
- data->global = !tile;
- if (!tile)
- return index;
-
- space = isl_space_domain(isl_multi_aff_get_space(tile->tiling));
- space = isl_space_range(isl_space_unwrap(space));
- space = isl_space_map_from_set(space);
- pma = isl_pw_multi_aff_identity(space);
- sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
- dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
- sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
- tile->depth, dim - tile->depth);
- pma = isl_pw_multi_aff_product(sched2depth, pma);
- tiling = isl_multi_pw_aff_from_multi_aff(
- isl_multi_aff_copy(tile->tiling));
- tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
-
- index = tile_outer(index, tiling);
-
- return index;
-}
-
-/* Dereference "expr" by adding an index [0].
- * The original "expr" is assumed not to have any indices.
- *
- * If "expr" is a member access, then the dereferencing needs
- * to be applied to the structure argument of this member access.
- */
-static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
-{
- isl_ctx *ctx;
- isl_ast_expr *arg0, *res;
- isl_ast_expr_list *list;
-
- arg0 = isl_ast_expr_get_op_arg(expr, 0);
- if (!arg0)
- return isl_ast_expr_free(expr);
- if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
- isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
- isl_ast_expr *arg;
-
- arg = isl_ast_expr_get_op_arg(arg0, 0);
- arg = dereference(arg);
- arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
- expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
-
- return expr;
- }
- isl_ast_expr_free(arg0);
-
- ctx = isl_ast_expr_get_ctx(expr);
- res = isl_ast_expr_from_val(isl_val_zero(ctx));
- list = isl_ast_expr_list_from_ast_expr(res);
- res = isl_ast_expr_get_op_arg(expr, 0);
- res = isl_ast_expr_access(res, list);
- isl_ast_expr_free(expr);
-
- return res;
-}
-
-/* Linearize the index expression "expr" based on the array bounds
- * of "array".
- *
- * That is, transform expression
- *
- * A[i_0][i_1]...[i_n]
- *
- * to
- *
- * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
- *
- * where b_0, b_1, ..., b_n are the bounds on the array.
- *
- * If the base of "expr" is a member access, then the linearization needs
- * to be applied to the structure argument of this member access.
- *
- * In the base case, if "expr" has no arguments (other than the name of
- * the array), then we are passing an entire array to a function.
- * In this case, there is nothing to linearize.
- * Note that at this point an expression with no arguments can
- * only be an entire array because the scalar case and
- * the case of single struct are handled by the caller.
- *
- * If the number of specified index expressions in "expr"
- * is smaller than the dimension of the accessed array,
- * then the missing i_j also do not appear in the linearized expression.
- * Furthermore, since such an expression does not refer to a single
- * element while the default linearized expression would refer to
- * a single element, we return the expression
- *
- * A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
- *
- * instead. Note that because of the special case handling above,
- * we can assume here that there is at least one index expression.
- */
-__isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
- struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
-{
- int i, n;
- isl_ast_expr *arg0;
- isl_ast_expr *res;
- isl_ast_expr_list *list;
-
- arg0 = isl_ast_expr_get_op_arg(expr, 0);
- if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
- isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
- isl_ast_expr *arg;
-
- arg = isl_ast_expr_get_op_arg(arg0, 0);
- arg = gpu_local_array_info_linearize_index(array, arg);
- arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
- expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
-
- return expr;
- }
- isl_ast_expr_free(arg0);
-
- if (isl_ast_expr_get_op_n_arg(expr) == 1)
- return expr;
-
- n = isl_ast_expr_get_op_n_arg(expr);
- res = isl_ast_expr_get_op_arg(expr, 1);
- for (i = 1; i < array->n_index; ++i) {
- isl_ast_expr *expr_i;
-
- expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
- res = isl_ast_expr_mul(res, expr_i);
-
- if (i + 1 >= n)
- continue;
- expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
- res = isl_ast_expr_add(res, expr_i);
- }
-
- if (1 + array->n_index > n) {
- res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
- } else {
- list = isl_ast_expr_list_from_ast_expr(res);
- res = isl_ast_expr_get_op_arg(expr, 0);
- res = isl_ast_expr_access(res, list);
- }
-
- isl_ast_expr_free(expr);
-
- return res;
-}
-
-/* AST expression transformation callback for pet_stmt_build_ast_exprs.
- *
- * If the AST expression refers to an array that is not accessed
- * at all, then this means the value of the expression is not used,
- * so we might as well print zero (NULL pointer) instead.
- *
- * If the AST expression refers to a global scalar that is not
- * a read-only scalar, then its address was passed to the kernel and
- * we need to dereference it.
- *
- * If the AST expression refers to an access to a global array,
- * then we linearize the access exploiting the bounds in data->local_array.
- */
-static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
- __isl_keep isl_id *id, void *user)
-{
- struct ppcg_transform_data *data = user;
-
- if (!data->array)
- return expr;
- if (!data->array->accessed) {
- isl_ctx *ctx;
-
- ctx = isl_ast_expr_get_ctx(expr);
- isl_ast_expr_free(expr);
- return isl_ast_expr_from_val(isl_val_zero(ctx));
- }
- if (gpu_array_is_read_only_scalar(data->array))
- return expr;
- if (!data->global)
- return expr;
- if (data->array->n_index == 0)
- return dereference(expr);
- if (!data->array->linearize)
- return expr;
-
- return gpu_local_array_info_linearize_index(data->local_array, expr);
-}
-
-/* This function is called for each instance of a user statement
- * in the kernel "kernel", identified by "gpu_stmt".
- * "kernel" may be NULL if we are not inside a kernel.
- *
- * We attach a struct ppcg_kernel_stmt to the "node", containing
- * a computed AST expression for each access, through an annotation
- * with name "user".
- * These AST expressions are computed from iterator_map,
- * which expresses the domain
- * elements in terms of the generated loops, and sched2copy,
- * which expresses the outer copy_schedule_dim dimensions of
- * the kernel schedule computed by PPCG in terms of the generated loops.
- */
-static __isl_give isl_ast_node *create_domain_leaf(
- struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
- __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt,
- struct gpu_gen *gen)
-{
- struct ppcg_transform_data data;
- struct ppcg_kernel_stmt *stmt;
- isl_ctx *ctx;
- isl_id *id;
- isl_pw_multi_aff *sched2copy;
- isl_map *map;
- isl_pw_multi_aff *iterator_map;
- isl_union_map *schedule;
-
- if (!node)
- return NULL;
- ctx = isl_ast_node_get_ctx(node);
-
- stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
- if (!stmt)
- return isl_ast_node_free(node);
-
- schedule = isl_ast_build_get_schedule(build);
- map = isl_map_reverse(isl_map_from_union_map(schedule));
- iterator_map = isl_pw_multi_aff_from_map(map);
- if (kernel)
- sched2copy = compute_sched_to_copy(kernel,
- isl_pw_multi_aff_copy(iterator_map));
- else
- sched2copy = NULL;
-
- stmt->type = ppcg_kernel_domain;
- stmt->u.d.stmt = gpu_stmt;
-
- data.kernel = kernel;
- data.accesses = stmt->u.d.stmt->accesses;
- data.iterator_map = iterator_map;
- data.sched2copy = sched2copy;
- stmt->u.d.ref2expr = gen->build_ast_expr(stmt->u.d.stmt->stmt,
- build, &transform_index, &data,
- &transform_expr, &data);
-
- isl_pw_multi_aff_free(iterator_map);
- isl_pw_multi_aff_free(sched2copy);
-
- id = isl_id_alloc(ctx, "user", stmt);
- id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
- return isl_ast_node_set_annotation(node, id);
-}
-
-/* This function is called for each statement node in the AST
- * for copying to or from shared/private memory.
- * Attach a pointer to a ppcg_kernel_stmt representing the copy
- * statement to the node.
- * The statement name is "read" or "write", depending on whether we are
- * reading from global memory or writing to global memory.
- *
- * The schedule is of the form
- *
- * type[D -> A] -> L
- *
- * where D corresponds to the outer tile->depth dimensions of
- * the kernel schedule, A to the global array and L to the outer
- * generated AST schedule.
- * We compute the inverse and strip off the type, resulting in
- *
- * L -> [D -> A]
- *
- * We combine this mapping with on the one hand the projection
- *
- * [D -> A] -> A
- *
- * and on the other hand the group tiling
- *
- * [D -> A] -> T
- *
- * resulting in
- *
- * L -> A and L -> T
- *
- * and store the corresponding expressions in stmt->index and stmt->local_index,
- * where stmt points to the ppcg_kernel_stmt that is attached to the node.
- * stmt->index is linearized if the global memory array is linearized.
- */
-static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
- struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
- __isl_keep isl_ast_build *build)
-{
- struct ppcg_kernel_stmt *stmt;
- struct gpu_array_tile *tile;
- isl_id *id;
- isl_ast_expr *expr;
- isl_space *space;
- isl_map *access;
- isl_pw_multi_aff *pma, *pma2;
- const char *type;
-
- stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
- if (!stmt)
- return isl_ast_node_free(node);
-
- access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
- type = isl_map_get_tuple_name(access, isl_dim_in);
- stmt->u.c.read = !strcmp(type, "read");
- access = isl_map_reverse(access);
- pma = isl_pw_multi_aff_from_map(access);
- pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
-
- space = isl_space_range(isl_pw_multi_aff_get_space(pma));
- space = isl_space_unwrap(space);
- pma2 = isl_pw_multi_aff_range_map(space);
- pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
- isl_pw_multi_aff_copy(pma));
- expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
- if (group->array->linearize)
- expr = gpu_local_array_info_linearize_index(group->local_array,
- expr);
- stmt->u.c.index = expr;
-
- tile = gpu_array_ref_group_tile(group);
- pma2 = isl_pw_multi_aff_from_multi_aff(
- isl_multi_aff_copy(tile->tiling));
- pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
- expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
- stmt->u.c.local_index = expr;
-
- stmt->u.c.array = group->array;
- stmt->u.c.local_array = group->local_array;
- stmt->type = ppcg_kernel_copy;
-
- id = isl_id_alloc(kernel->ctx, "copy", stmt);
- id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
- return isl_ast_node_set_annotation(node, id);
-}
-
-/* Create a synchronization ppcg_kernel_stmt and
- * attach it to the node "node" representing the synchronization.
- */
-static __isl_give isl_ast_node *create_sync_leaf(
- struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
- __isl_keep isl_ast_build *build)
-{
- struct ppcg_kernel_stmt *stmt;
- isl_id *id;
-
- stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
- if (!stmt)
- return isl_ast_node_free(node);
-
- stmt->type = ppcg_kernel_sync;
- id = isl_id_alloc(kernel->ctx, "sync", stmt);
- id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
- return isl_ast_node_set_annotation(node, id);
-}
-
-/* Build AST expressions for the device array sizes of all arrays in "prog"
- * that require allocation on the device using "build", as well as
- * for the original array sizes of all arrays that need to be declared
- * on the host.
- * "node" is freed in case of error.
- */
-static __isl_give isl_ast_node *build_array_bounds(
- __isl_take isl_ast_node *node, struct gpu_prog *prog,
- __isl_keep isl_ast_build *build)
-{
- int i;
-
- for (i = 0; i < prog->n_array; ++i) {
- struct gpu_array_info *array = &prog->array[i];
- isl_multi_pw_aff *size;
- isl_ast_expr *expr;
-
- if (!gpu_array_requires_device_allocation(array))
- continue;
-
- size = isl_multi_pw_aff_copy(array->bound);
- expr = ppcg_build_size_expr(size, build);
- array->bound_expr = expr;
- if (!expr)
- return isl_ast_node_free(node);
- }
-
- for (i = 0; i < prog->n_array; ++i) {
- struct gpu_array_info *array = &prog->array[i];
- isl_set *extent;
- isl_multi_pw_aff *size;
- isl_ast_expr *expr;
-
- if (!array->declare_local)
- continue;
- extent = isl_set_copy(array->declared_extent);
- size = ppcg_size_from_extent(extent);
- expr = ppcg_build_size_expr(size, build);
- array->declared_size = expr;
- if (!expr)
- return isl_ast_node_free(node);
- }
-
- return node;
-}
-
-/* Internal data structure for at_domain.
- *
- * "prog" represents the entire scop.
- * "kernel" points to the kernel to which the current schedule node
- * belongs. It is set by before_mark and reset by after_mark.
- * It may be NULL if we are outside any kernel.
- */
-struct ppcg_at_domain_data {
- struct gpu_prog *prog;
- struct gpu_gen *gen;
- struct ppcg_kernel *kernel;
-};
-
-/* This function is called for each instance of a user statement
- * in the kernel. This may be one of the original user statements
- * or a statement introduced by PPCG.
- *
- * We first check if the statement id corresponds to a gpu statement,
- * which indicates the statement is an original user statement. Any statement
- * that is not an original user statement has been introduced by PPCG and
- * requires special handling.
- *
- * If the user statement is one of the original user statements, then we call
- * create_domain_leaf. If it is "init_device", then we call
- * build_array_bounds. Otherwise, we check if it is a copy or synchronization
- * statement and call the appropriate functions. Statements that copy an array
- * to/from the device do not need any further treatment.
- * Neither does "clear_device".
- */
-static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
- __isl_keep isl_ast_build *build, void *user)
-{
- struct ppcg_at_domain_data *data = user;
- struct gpu_stmt *gpu_stmt;
- isl_ast_expr *expr, *arg;
- isl_id *id;
- int is_sync;
- const char *name;
- void *p;
-
- expr = isl_ast_node_user_get_expr(node);
- arg = isl_ast_expr_get_op_arg(expr, 0);
- id = isl_ast_expr_get_id(arg);
- name = isl_id_get_name(id);
- p = isl_id_get_user(id);
- isl_ast_expr_free(expr);
- isl_ast_expr_free(arg);
-
- gpu_stmt = find_stmt(data->prog, id);
- is_sync = gpu_tree_id_is_sync(id, data->kernel);
- isl_id_free(id);
-
- if (gpu_stmt)
- return create_domain_leaf(data->kernel, node, build, gpu_stmt,
- data->gen);
-
- if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
- return node;
- if (!strcmp(name, "init_device"))
- return build_array_bounds(node, data->prog, build);
- if (!strcmp(name, "clear_device"))
- return node;
- if (is_sync < 0)
- return isl_ast_node_free(node);
- if (!strcmp(name, "read") || !strcmp(name, "write")) {
- struct gpu_array_ref_group *group = p;
- return create_access_leaf(data->kernel, group, node, build);
- }
- if (!is_sync)
- isl_die(data->prog->ctx, isl_error_internal,
- "unknown statement type",
- return isl_ast_node_free(node));
- return create_sync_leaf(data->kernel, node, build);
-}
-
-/* Given a set of wrapped references "ref", return the corresponding
- * access relations based on the tagged access relations "tagged".
- *
- * The elements of "ref" are of the form
- *
- * [D -> R]
- *
- * with D an iteration domains and R a reference.
- * The elements of "tagged" are of the form
- *
- * [D -> R] -> A
- *
- * with A an array.
- *
- * Extend "tagged" to include the iteration domain in the range, i.e.,
- *
- * [D -> R] -> [D -> A]
- *
- * apply the result to "ref" and then unwrap the resulting set
- * to obtain relations of the form
- *
- * D -> A
- */
-static __isl_give isl_union_map *wrapped_reference_to_access(
- __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
-{
- isl_union_map *tag2access;
-
- tag2access = isl_union_map_copy(tagged);
- tag2access = isl_union_map_universe(tag2access);
- tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
- tag2access = isl_union_map_domain_map(tag2access);
- tag2access = isl_union_map_range_product(tag2access, tagged);
-
- ref = isl_union_set_coalesce(ref);
- ref = isl_union_set_apply(ref, tag2access);
-
- return isl_union_set_unwrap(ref);
-}
-
-/* Given an access relation "access" from one or more array reference groups,
- * remove those reads if ("read" is 1) or writes (if "read" is 0)
- * that are only needed to communicate data within
- * the same iteration of "sched".
- * The domain of "sched" corresponds to the original statement instances,
- * i.e., those that appear in the domains of the access relations.
- * "tagged" contains all tagged access relations to all
- * the array reference groups accessed by "access" from statement
- * instances scheduled by "sched".
- *
- * If the access is a read then it is either an element of
- *
- * live_in union (range flow)
- *
- * where live_in and flow may be overapproximations, or
- * it reads an uninitialized value (that is not live-in because
- * there is an intermediate kill) or it reads a value that was
- * written within the same (compound) statement instance.
- * If the access is a write then it is either an element of
- *
- * live_out union (domain flow)
- *
- * or it writes a value that is never read (and is not live-out
- * because of an intermediate kill) or only
- * within the same (compound) statement instance.
- * In both cases, the access relation is also a subset of
- * the group access relation.
- *
- * The cases where an uninitialized value is read or a value is written
- * that is never read or where the dataflow occurs within a statement
- * instance are also considered local and may also be removed.
- *
- * Essentially, we compute the intersection of "access" with either
- *
- * live_in union (range non-local-flow)
- *
- * or
- *
- * live_out union (domain non-local-flow)
- *
- * We first construct a relation "local"
- *
- * [[D -> R] -> [D' -> R']]
- *
- * of pairs of domain iterations accessing the reference group
- * and references in the group that are coscheduled by "sched".
- *
- * If this relation does not intersect the dataflow dependences,
- * then there is nothing we can possibly remove, unless the dataflow
- * dependences themselves only relate a subset of the accesses.
- * In particular, the accesses may not be involved in any dataflow
- * dependences, either because they are uninitialized reads/dead writes
- * or because the dataflow occurs inside a statement instance.
- *
- * Since the computation below may break up the access relation
- * into smaller pieces, we only perform the intersection with
- * the non-local dependent accesses if the local pairs
- * intersect the dataflow dependences. Otherwise, we intersect
- * with the universe of the non-local dependent accesses.
- * This should at least remove accesses from statements that
- * do not participate in any dependences.
- *
- * In particular, we remove the "local" dataflow dependences from
- * the set of all dataflow dependences, or at least those
- * that may contribute to a domain/range that intersects
- * the domain of "access".
- * Note that if the potential dataflow dependences are an overapproximation
- * of the actual dataflow dependences, then the result remains an
- * overapproximation of the non-local dataflow dependences.
- * Copying to/from global memory is only needed for the references
- * in the domain/range of the result or for accesses that are live out/in
- * for the entire scop.
- *
- * We therefore map the domain/range of the "external" relation
- * to the corresponding access relation and take the union with
- * the live out/in relation.
- */
-static __isl_give isl_union_map *remove_local_accesses(
- struct gpu_prog *prog, __isl_take isl_union_map *tagged,
- __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
- int read)
-{
- int empty;
- isl_union_pw_multi_aff *tagger;
- isl_union_set *domain, *access_domain;
- isl_union_map *local, *external, *universe;
- isl_union_set *tag_set;
-
- if (isl_union_map_is_empty(access)) {
- isl_union_map_free(sched);
- isl_union_map_free(tagged);
- return access;
- }
-
- tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
- domain = isl_union_map_domain(isl_union_map_copy(tagged));
- tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
- isl_union_set_copy(domain));
- sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
-
- local = isl_union_map_apply_range(sched,
- isl_union_map_reverse(isl_union_map_copy(sched)));
- local = isl_union_map_intersect(local,
- isl_union_map_copy(prog->scop->tagged_dep_flow));
-
- empty = isl_union_map_is_empty(local);
-
- external = isl_union_map_copy(prog->scop->tagged_dep_flow);
- universe = isl_union_map_universe(isl_union_map_copy(access));
- access_domain = isl_union_map_domain(universe);
- domain = isl_union_set_universe(domain);
- universe = isl_union_set_unwrap(domain);
- universe = isl_union_map_intersect_domain(universe, access_domain);
- domain = isl_union_map_wrap(universe);
- if (read)
- external = isl_union_map_intersect_range(external, domain);
- else
- external = isl_union_map_intersect_domain(external, domain);
- external = isl_union_map_intersect_params(external,
- isl_set_copy(prog->scop->context));
- external = isl_union_map_subtract(external, local);
-
- if (read) {
- tag_set = isl_union_map_range(external);
- external = wrapped_reference_to_access(tag_set, tagged);
- external = isl_union_map_union(external,
- isl_union_map_copy(prog->scop->live_in));
- } else {
- tag_set = isl_union_map_domain(external);
- external = wrapped_reference_to_access(tag_set, tagged);
- external = isl_union_map_union(external,
- isl_union_map_copy(prog->scop->live_out));
- }
-
- if (empty < 0)
- external = isl_union_map_free(external);
- else if (empty)
- external = isl_union_map_universe(external);
-
- access = isl_union_map_intersect(access, external);
-
- return access;
-}
-
-/* Given an access relation "access" from "group", remove those reads
- * if ("read" is 1) or writes (if "read" is 0) that are only needed to
- * communicate data within the same iteration of the schedule "prefix"
- * at the position where the copying of the group is inserted.
- * That is, the output dimension of "prefix"
- * is equal to tile->depth.
- * The domain of "prefix" corresponds to the original statement instances,
- * i.e., those that appear in the domains of the access relations.
- *
- * Extract the tagged access relation of "group" and
- * then call remove_local_accesses.
- */
-static __isl_give isl_union_map *remove_local_accesses_group(
- struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
- __isl_take isl_union_map *access, __isl_keep isl_union_map *prefix,
- int read)
-{
- isl_union_map *sched, *tagged;
-
- if (isl_union_map_is_empty(access))
- return access;
-
- tagged = group_tagged_access_relation(group);
- sched = isl_union_map_copy(prefix);
-
- return remove_local_accesses(kernel->prog, tagged, access, sched, read);
-}
-
-/* Build an access AST expression for the effective grid size using "build".
- * Store the result in kernel->grid_size_expr.
- */
-static isl_stat build_grid_size(struct ppcg_kernel *kernel,
- __isl_keep isl_ast_build *build)
-{
- isl_multi_pw_aff *size;
-
- size = isl_multi_pw_aff_copy(kernel->grid_size);
- size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
- kernel->grid_size_expr = ppcg_build_size_expr(size, build);
-
- if (!kernel->grid_size_expr)
- return isl_stat_error;
- return isl_stat_ok;
-}
-
-/* Build access AST expressions for the localized array sizes using "build".
- * Store the result in local->bound_expr.
- * Only do this for arrays for which localized bounds have been computed.
- */
-static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
- __isl_keep isl_ast_build *build)
-{
- int i;
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *local = &kernel->array[i];
- isl_multi_pw_aff *size;
-
- if (local->n_group == 0)
- continue;
- size = isl_multi_pw_aff_copy(local->bound);
- local->bound_expr = ppcg_build_size_expr(size, build);
- if (!local->bound_expr)
- return isl_stat_error;
- }
-
- return isl_stat_ok;
-}
-
-/* Build access AST expressions for the effective grid size and
- * the localized array sizes using "build".
- */
-static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
- __isl_keep isl_ast_build *build)
-{
- if (build_grid_size(kernel, build) < 0)
- return isl_stat_error;
- if (build_local_array_sizes(kernel, build) < 0)
- return isl_stat_error;
- return isl_stat_ok;
-}
-
-/* This function is called before the AST generator starts traversing
- * the schedule subtree of a node with mark "mark".
- *
- * If the mark is called "kernel", store the kernel pointer in data->kernel
- * for use in at_domain and build AST expressions for the grid size and
- * the localized array sizes.
- */
-static isl_stat before_mark(__isl_keep isl_id *mark,
- __isl_keep isl_ast_build *build, void *user)
-{
- struct ppcg_at_domain_data *data = user;
-
- if (!mark)
- return isl_stat_error;
- if (!strcmp(isl_id_get_name(mark), "kernel")) {
- data->kernel = isl_id_get_user(mark);
- if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
-}
-
-/* This function is called after the AST generator has finished traversing
- * the schedule subtree of a mark node. "node" points to the corresponding
- * mark AST node.
- *
- * If the mark is called "kernel", then replace "node" by a user node
- * that "calls" the kernel, representing the launch of the kernel.
- * The original "node" is stored inside the kernel object so that
- * it can be used to print the device code.
- * Note that this assumes that a kernel is only launched once.
- * Also clear data->kernel.
- */
-static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
- __isl_keep isl_ast_build *build, void *user)
-{
- isl_ctx *ctx;
- isl_id *id;
- isl_ast_expr *expr;
- isl_ast_expr_list *list;
- struct ppcg_kernel *kernel;
- struct ppcg_at_domain_data *data = user;
-
- ctx = isl_ast_node_get_ctx(node);
- id = isl_ast_node_mark_get_id(node);
- if (!id)
- return isl_ast_node_free(node);
- if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
- isl_id_free(id);
- return node;
- }
- kernel = data->kernel;
- data->kernel = NULL;
- kernel->space = isl_ast_build_get_schedule_space(build);
- kernel->tree = isl_ast_node_mark_get_node(node);
- isl_ast_node_free(node);
-
- expr = isl_ast_expr_from_id(isl_id_copy(id));
- list = isl_ast_expr_list_alloc(ctx, 0);
- expr = isl_ast_expr_call(expr, list);
- node = isl_ast_node_alloc_user(expr);
- node = isl_ast_node_set_annotation(node, id);
-
- return node;
-}
-
-static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
-{
- int *depth = user;
- int node_depth;
-
- if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
- return isl_bool_true;
- node_depth = isl_schedule_node_get_schedule_depth(node);
- if (node_depth > *depth)
- *depth = node_depth;
-
- return isl_bool_false;
-}
-
-/* Use isl to generate code for both the host and the device
- * from "schedule".
- * The device code is marked by "kernel" mark nodes in the schedule tree,
- * containing a pointer to a ppcg_kernel object.
- * The returned AST only contains the AST for the host code.
- * The ASTs for the device code are embedded in ppcg_kernel objects
- * attached to the leaf nodes that call "kernel".
- */
-__isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
- __isl_take isl_schedule *schedule)
-{
- struct ppcg_at_domain_data data;
- isl_ast_build *build;
- isl_ast_node *tree;
- isl_id_list *iterators;
- int depth;
-
- data.prog = gen->prog;
- data.gen = gen;
- data.kernel = NULL;
-
- depth = 0;
- if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
- &depth) < 0)
- return NULL;
- build = isl_ast_build_alloc(gen->prog->ctx);
- iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
- build = isl_ast_build_set_iterators(build, iterators);
- build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
- build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
- build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
- if (gen->prog->scop->options->debug->dump_final_schedule)
- isl_schedule_dump(schedule);
- tree = isl_ast_build_node_from_schedule(build, schedule);
- isl_ast_build_free(build);
-
- return tree;
-}
-
-__isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
-{
- if (!str)
- return NULL;
- return isl_union_map_read_from_str(ctx, str);
-}
-
-/* Can "node" be tiled and then mapped to block and thread identifiers?
- * That is, is it permutable with at least one coincident dimension?
- */
-static int is_permutable(__isl_keep isl_schedule_node *node)
-{
- if (!node)
- return -1;
-
- if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
- return 0;
- if (!isl_schedule_node_band_get_permutable(node))
- return 0;
- if (isl_schedule_node_band_n_member(node) < 1)
- return 0;
- if (!isl_schedule_node_band_member_get_coincident(node, 0))
- return 0;
-
- return 1;
-}
-
-/* A isl_schedule_foreach_schedule_node_top_down callback
- * for setting *any_permutable and aborting the search
- * if "node" is a permutable band with coincident dimensions.
- * Otherwise, continue searching.
- */
-static isl_bool set_permutable(__isl_keep isl_schedule_node *node, void *user)
-{
- int *any_permutable = user;
- int permutable;
-
- permutable = is_permutable(node);
- if (permutable < 0)
- return isl_bool_error;
- if (!permutable)
- return isl_bool_true;
-
- *any_permutable = 1;
-
- return isl_bool_error;
-}
-
-/* Does the subtree rooted at "node" have any suitably permutable band nodes?
- * That is, does it have any nodes that are permutable and that
- * have a least one coincident dimension?
- */
-static int subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
-{
- int any_parallelism = 0;
-
- if (isl_schedule_node_foreach_descendant_top_down(node, &set_permutable,
- &any_parallelism) < 0 &&
- !any_parallelism)
- return -1;
-
- return any_parallelism;
-}
-
-/* Does "schedule" contain any permutable band with at least one coincident
- * member?
- */
-int has_any_permutable_node(__isl_keep isl_schedule *schedule)
-{
- isl_schedule_node *root;
- int any_permutable;
-
- root = isl_schedule_get_root(schedule);
- any_permutable = subtree_has_permutable_bands(root);
- isl_schedule_node_free(root);
-
- return any_permutable;
-}
-
-/* Is "node" a candidate for mapping to block and thread identifiers?
- * In particular, is it permutable with at least one coincident dimension?
- * Alternatively, does the subtree rooted at "node" not contain
- * any such permutable node? Filter nodes are skipped in this case,
- * because a band node will be inserted in front of the returned
- * node and this is not possible for filter nodes that are children
- * of set or sequence nodes.
- */
-static int is_candidate(__isl_keep isl_schedule_node *node)
-{
- int permutable;
-
- if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
- return 1;
- permutable = is_permutable(node);
- if (permutable < 0 || permutable)
- return permutable;
- if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
- return 0;
- permutable = subtree_has_permutable_bands(node);
- if (permutable < 0)
- return -1;
- return !permutable;
-}
-
-/* Is "node" the outermost node in its branch that can be tiled
- * and then mapped to block and thread identifiers?
- * If there are no such nodes in the subtree at "node" and
- * if "node" is not a filter node, then it is accepted too.
- */
-static int is_outer_tilable(__isl_keep isl_schedule_node *node)
-{
- int tilable;
- isl_schedule_node *ancestor;
-
- tilable = is_candidate(node);
- if (tilable < 0)
- return -1;
- if (!tilable)
- return 0;
-
- tilable = 0;
- ancestor = isl_schedule_node_copy(node);
- while (isl_schedule_node_has_parent(ancestor)) {
- ancestor = isl_schedule_node_parent(ancestor);
-
- tilable = is_candidate(ancestor);
- if (tilable < 0 || tilable)
- break;
- }
-
- isl_schedule_node_free(ancestor);
- return tilable < 0 ? -1 : !tilable;
-}
-
-/* Collect the references to all writes in "group".
- * Each reference is represented by a universe set in a space
- *
- * [S[i,j] -> R[]]
- *
- * with S[i,j] the statement instance space and R[] the array reference.
- */
-static __isl_give isl_union_set *group_tagged_writes(
- struct gpu_array_ref_group *group)
-{
- int i;
- isl_space *space;
- isl_union_set *writes;
-
- space = isl_map_get_space(group->access);
- writes = isl_union_set_empty(space);
- for (i = 0; i < group->n_ref; ++i) {
- isl_space *space;
- isl_set *writes_i;
-
- if (!group->refs[i]->write)
- continue;
-
- space = isl_map_get_space(group->refs[i]->tagged_access);
- space = isl_space_domain(space);
- writes_i = isl_set_universe(space);
- writes = isl_union_set_add_set(writes, writes_i);
- }
-
- return writes;
-}
-
-/* Is there any write access in "group" that requires synchronization
- * on a write to global memory?
- * We currently take into account all writes that would require
- * synchronization at the thread level depth, but if the copying
- * for this group is performed at an outer level, then we do not
- * actually need to take into account dependences at intermediate levels.
- */
-static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
- struct gpu_array_ref_group *group)
-{
- isl_union_set *writes;
- int empty, disjoint;
-
- empty = isl_union_set_is_empty(kernel->sync_writes);
- if (empty < 0)
- return -1;
- if (empty)
- return 0;
-
- writes = group_tagged_writes(group);
- disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
- isl_union_set_free(writes);
-
- return disjoint < 0 ? -1 : !disjoint;
-}
-
-/* Collect the references to all writes in "kernel" that write directly
- * to global or shared memory, i.e., that are not mapped to private memory.
- * Each reference is represented by a universe set in a space
- *
- * [S[i,j] -> R[]]
- *
- * with S[i,j] the statement instance space and R[] the array reference.
- */
-static __isl_give isl_union_set *collect_non_private_tagged_writes(
- struct ppcg_kernel *kernel)
-{
- isl_union_set *writes;
- int i, j;
-
- writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j) {
- struct gpu_array_ref_group *group = array->groups[j];
- enum ppcg_group_access_type type;
- isl_union_set *writes_ij;
-
- if (!group->write)
- continue;
- type = gpu_array_ref_group_type(group);
- if (type == ppcg_access_private)
- continue;
- writes_ij = group_tagged_writes(group);
- writes = isl_union_set_union(writes, writes_ij);
- }
- }
-
- return writes;
-}
-
-/* Are there any direct writes to global memory that require
- * synchronization?
- */
-static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
-{
- isl_union_set *writes;
- int empty, disjoint;
-
- empty = isl_union_set_is_empty(kernel->sync_writes);
- if (empty < 0)
- return -1;
- if (empty)
- return 0;
-
- writes = collect_non_private_tagged_writes(kernel);
- disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
- isl_union_set_free(writes);
-
- return disjoint < 0 ? -1 : !disjoint;
-}
-
-/* Construct an isl_multi_val for use as tile sizes for tiling "node"
- * from the elements in "tile_size".
- */
-static __isl_give isl_multi_val *construct_band_tiles_sizes(
- __isl_keep isl_schedule_node *node, int *tile_size)
-{
- isl_space *space;
-
- if (!node)
- return NULL;
-
- space = isl_schedule_node_band_get_space(node);
- return ppcg_multi_val_from_int_list(space, tile_size);
-}
-
-/* Replace the partial schedule S of the band node "node" by
- *
- * floor(S/f)
- *
- * or
- *
- * f * floor(S/f)
- *
- * if scale_tile_loops is set, with f the integers in "factor".
- * The list that "factor" points to is assumed to contain at least
- * as many elements as the number of members in the band.
- */
-static __isl_give isl_schedule_node *snap_band_to_sizes(
- __isl_take isl_schedule_node *node, int *factor,
- struct ppcg_options *options)
-{
- isl_multi_val *mv;
-
- mv = construct_band_tiles_sizes(node, factor);
- node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
- if (options->scale_tile_loops)
- node = isl_schedule_node_band_scale(node,
- isl_multi_val_copy(mv));
- isl_multi_val_free(mv);
-
- return node;
-}
-
-/* Tile "band" with tile size specified by "sizes".
- *
- * Since the tile loops will be mapped to block ids, we forcibly
- * turn off tile loop scaling. We may want to enable tile loop scaling
- * at some later point, but then we would have to support the detection
- * of strides during the mapping to block ids.
- * Similarly, since the point loops will be mapped to thread ids,
- * we forcibly shift the point loops so that they start at zero.
- */
-static __isl_give isl_schedule_node *tile_band(
- __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
-{
- isl_ctx *ctx = isl_schedule_node_get_ctx(node);
- int scale_tile;
- int shift_point;
-
- scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
- isl_options_set_tile_scale_tile_loops(ctx, 0);
- shift_point = isl_options_get_tile_shift_point_loops(ctx);
- isl_options_set_tile_shift_point_loops(ctx, 1);
-
- node = isl_schedule_node_band_tile(node, sizes);
-
- isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
- isl_options_set_tile_shift_point_loops(ctx, shift_point);
-
- return node;
-}
-
-/* Extract the set of parameter values and outer schedule dimensions
- * for which any statement instance
- * in the kernel inserted at "node" needs to be executed.
- * Intersect the set of parameter values derived from the host schedule
- * relation with the context of "prog".
- */
-static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
- struct gpu_prog *prog)
-{
- isl_union_map *schedule;
- isl_union_set *schedule_domain;
- isl_set *context;
- int empty;
-
- schedule = isl_schedule_node_get_prefix_schedule_relation(node);
- schedule_domain = isl_union_map_range(schedule);
- empty = isl_union_set_is_empty(schedule_domain);
- if (empty < 0) {
- isl_union_set_free(schedule_domain);
- return NULL;
- }
- if (empty) {
- int depth;
- isl_space *space;
-
- space = isl_union_set_get_space(schedule_domain);
- isl_union_set_free(schedule_domain);
- space = isl_space_set_from_params(space);
- depth = isl_schedule_node_get_schedule_depth(node);
- space = isl_space_add_dims(space, isl_dim_set, depth);
- context = isl_set_empty(space);
- } else {
- context = isl_set_from_union_set(schedule_domain);
- }
- context = isl_set_intersect_params(context,
- isl_set_copy(prog->context));
-
- return context;
-}
-
-/* Return the set of outer array elements accessed by
- * by the statement instances in "domain" in "prog".
- * The instances in "domain" are those that appear
- * in the domains of the access relations in "prog".
- */
-static __isl_give isl_union_set *accessed_by_domain(
- __isl_take isl_union_set *domain, struct gpu_prog *prog)
-{
- isl_union_map *access;
- isl_union_set *arrays;
-
- access = isl_union_map_union(isl_union_map_copy(prog->read),
- isl_union_map_copy(prog->may_write));
- access = isl_union_map_intersect_domain(access, domain);
- arrays = isl_union_map_range(access);
- arrays = isl_union_set_apply(arrays,
- isl_union_map_copy(prog->to_outer));
-
- return arrays;
-}
-
-/* Return the number of outer band members of the band node "node"
- * that are marked coincident.
- */
-static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
-{
- int i, n;
-
- n = isl_schedule_node_band_n_member(node);
-
- for (i = 0; i < n; ++i)
- if (!isl_schedule_node_band_member_get_coincident(node, i))
- break;
-
- return i;
-}
-
-/* If the band node "node" has more than "n" members, then split off
- * the first "n" of them.
- */
-static __isl_give isl_schedule_node *split_band(
- __isl_take isl_schedule_node *node, int n)
-{
- int dim;
-
- dim = isl_schedule_node_band_n_member(node);
- if (n < dim)
- node = isl_schedule_node_band_split(node, n);
-
- return node;
-}
-
-/* Scale a band node that may have been split by split_band.
- * "sizes" are the scaling factors for the original node.
- * "node" either points to the original band node, or the outer
- * of the two pieces after splitting.
- *
- * If the number of elements in "node" is smaller than the number of
- * elements in "sizes", then some splitting has occurred and we split
- * "sizes" in the same way.
- */
-static __isl_give isl_schedule_node *scale_band(
- __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
-{
- int n, dim;
-
- n = isl_multi_val_dim(sizes, isl_dim_set);
- dim = isl_schedule_node_band_n_member(node);
- if (n > dim) {
- isl_multi_val *sizes2;
-
- sizes2 = isl_multi_val_copy(sizes);
- sizes = isl_multi_val_drop_dims(sizes,
- isl_dim_set, dim, n - dim);
- sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
- node = isl_schedule_node_child(node, 0);
- node = isl_schedule_node_band_scale(node, sizes2);
- node = isl_schedule_node_parent(node);
- }
-
- return isl_schedule_node_band_scale(node, sizes);
-}
-
-/* Return an isl_multi_aff, with as elements the parameters in "space"
- * that have the names specified by the elements in "names".
- * If (some of) these parameters do not already appear in "space",
- * then they are added first.
- */
-static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
- __isl_keep isl_id_list *names)
-{
- int i, n;
- isl_local_space *ls;
- isl_multi_aff *ma;
-
- if (!names)
- space = isl_space_free(space);
-
- n = isl_id_list_n_id(names);
- for (i = 0; i < n; ++i) {
- int pos;
- isl_id *id;
-
- id = isl_id_list_get_id(names, i);
- pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
- if (pos >= 0) {
- isl_id_free(id);
- continue;
- }
- pos = isl_space_dim(space, isl_dim_param);
- space = isl_space_add_dims(space, isl_dim_param, 1);
- space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
- }
- ma = isl_multi_aff_zero(isl_space_copy(space));
- ls = isl_local_space_from_space(isl_space_domain(space));
- for (i = 0; i < n; ++i) {
- int pos;
- isl_id *id;
- isl_aff *aff;
-
- id = isl_id_list_get_id(names, i);
- pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
- isl_id_free(id);
- aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
- isl_dim_param, pos);
- ma = isl_multi_aff_set_aff(ma, i, aff);
- }
- isl_local_space_free(ls);
-
- return ma;
-}
-
-/* Return constraints on the domain elements that equate a sequence of
- * parameters called "names", to the partial schedule
- * of "node" modulo the integers in "size".
- * The number of elements in the array "size" should be equal
- * to the number of elements in "names".
- * The number of members of the band node "node" should be smaller
- * than or equal to this number. If it is smaller, then the first
- * elements of "names" are equated to zero.
- */
-static __isl_give isl_union_set *set_schedule_modulo(
- __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
- int *size)
-{
- int n, n_zero;
- isl_space *space;
- isl_multi_aff *ma;
- isl_multi_union_pw_aff *mupa, *mupa2;
- isl_multi_val *mv;
- isl_union_set *domain;
-
- if (!node)
- return NULL;
- n = isl_id_list_n_id(names);
- if (n == 0)
- return isl_schedule_node_get_universe_domain(node);
- n_zero = n - isl_schedule_node_band_n_member(node);
-
- mupa = isl_schedule_node_band_get_partial_schedule(node);
- mv = construct_band_tiles_sizes(node, size + n_zero);
- mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
-
- space = isl_multi_union_pw_aff_get_space(mupa);
- space = isl_space_params(space);
- space = isl_space_set_from_params(space);
- space = isl_space_add_dims(space, isl_dim_set, n_zero);
- ma = isl_multi_aff_zero(space);
-
- domain = isl_schedule_node_get_universe_domain(node);
- mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
- isl_union_set_copy(domain), ma);
- mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
-
- space = isl_multi_union_pw_aff_get_space(mupa);
- ma = parameter_vector(space, names);
-
- mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
- mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
-
- return isl_multi_union_pw_aff_zero_union_set(mupa);
-}
-
-/* Insert a context node at "node" introducing the block and thread
- * identifiers along with their bounds, which are stored in kernel->grid_size
- * and kernel->block_dim.
- * Note that the bounds on the block identifiers may implicitly impose
- * constraints on the parameters. A guard needs to be inserted
- * in the schedule tree to ensure that those bounds hold at "node".
- * This guard is inserted in insert_guard.
- */
-static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
- __isl_take isl_schedule_node *node)
-{
- isl_set *context;
-
- context = isl_set_universe(isl_set_get_space(kernel->context));
-
- context = add_bounded_parameters_dynamic(context,
- kernel->grid_size, kernel->block_ids);
- context = add_bounded_parameters(context,
- kernel->block_dim, kernel->thread_ids);
-
- node = isl_schedule_node_insert_context(node, context);
-
- return node;
-}
-
-/* Insert a guard that eliminates kernel launches where the kernel
- * obviously does not have any work to do.
- *
- * In particular, eliminate kernel launches where there are obviously
- * zero blocks.
- * Use the same block size constraints that are used to create the context
- * to ensure that all constraints implicit in the constructed context
- * are imposed by the guard.
- *
- * Additionally, add other constraints that are valid
- * for each executed instance ("context"), as long as this does not result
- * in a disjunction.
- */
-static __isl_give isl_schedule_node *insert_guard(
- __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
- __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
-{
- unsigned nparam, n;
- isl_set *guard;
- isl_id_list *ids;
-
- guard = isl_set_copy(context);
- guard = isl_set_compute_divs(guard);
- guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
-
- nparam = isl_set_dim(guard, isl_dim_param);
- n = isl_multi_pw_aff_dim(size, isl_dim_out);
- ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
- guard = add_bounded_parameters_dynamic(guard, size, ids);
- isl_id_list_free(ids);
- guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
-
- node = isl_schedule_node_insert_guard(node, guard);
-
- return node;
-}
-
-/* Does any array reference group mapping require the band that is mapped
- * to threads to be unrolled?
- */
-static int kernel_requires_unroll(struct ppcg_kernel *kernel)
-{
- int i, j;
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j) {
- struct gpu_array_ref_group *group = array->groups[j];
- if (gpu_array_ref_group_requires_unroll(group))
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Mark the given band node "node" for unrolling by the AST generator and
- * then sink it to the leaves of the schedule tree.
- * All dimensions of "node" are assumed to be coincident, such that this
- * sinking is a valid operation.
- */
-static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
-{
- node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
-
- node = isl_schedule_node_band_sink(node);
-
- return node;
-}
-
-/* Insert a synchronization node in the schedule tree of "node"
- * after the core computation of "kernel" at the level of the band
- * that is mapped to threads, except if that level is equal to
- * that of the band that is mapped to blocks or if there are no writes
- * to global or shared memory in the core computation that require
- * synchronization.
- * If there are any writes to shared memory and the shared memory
- * copying is performed at the same level, then synchronization
- * is needed between the core and the copying anyway, so we might
- * as well add it here. If the copying is performed at a higher
- * level, then different iterations of intermediate schedule dimensions
- * may have a different mapping from between shared memory elements and
- * threads, such that synchronization is required after the core.
- * "node" is assumed to point to the kernel node.
- *
- * If the shared and the thread mark point to the same node, then make
- * sure the synchronization is inserted outside of the shared mark.
- */
-static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
- __isl_take isl_schedule_node *node)
-{
- int depth;
- int need_sync;
-
- need_sync = any_global_or_shared_sync_writes(kernel);
- if (need_sync < 0)
- return isl_schedule_node_free(node);
- if (!need_sync)
- return node;
-
- node = gpu_tree_move_down_to_thread(node, kernel->core);
- depth = isl_schedule_node_get_schedule_depth(node);
- node = gpu_tree_move_up_to_kernel(node);
- if (depth == isl_schedule_node_get_schedule_depth(node))
- return node;
-
- node = gpu_tree_move_down_to_depth(node, depth, kernel->core);
- node = gpu_tree_ensure_following_sync(node, kernel);
-
- node = gpu_tree_move_up_to_kernel(node);
-
- return node;
-}
-
-/* Return a read ("read" is 1) or write access relation for "group"
- * with those accesses removed that are only needed to communicate data
- * within the subtree of the schedule rooted at "node".
- * Furthermore, include the prefix schedule at "node".
- * That is, return a relation of the form
- *
- * S -> [D -> A]
- *
- * with D the outer schedule dimensions at "node".
- */
-static __isl_give isl_union_map *anchored_non_local_accesses(
- struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
- __isl_take isl_schedule_node *node, int read)
-{
- isl_union_map *access;
- isl_union_map *prefix;
-
- prefix = isl_schedule_node_get_prefix_schedule_relation(node);
- prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
- isl_union_pw_multi_aff_copy(kernel->contraction));
- access = gpu_array_ref_group_access_relation(group, read, !read);
- access = remove_local_accesses_group(kernel, group, access, prefix,
- read);
- access = isl_union_map_range_product(prefix, access);
-
- return access;
-}
-
-/* Given an array reference group "group", create a mapping
- *
- * read[D -> A] -> [D -> A]
- *
- * if "read" is set or
- *
- * write[D -> A] -> [D -> A]
- *
- * if "read" is not set.
- * D corresponds to the outer tile->depth dimensions of
- * the kernel schedule.
- */
-static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
- struct gpu_array_ref_group *group, int read)
-{
- struct gpu_array_tile *tile;
- isl_space *space;
- isl_id *id;
-
- tile = gpu_array_ref_group_tile(group);
- space = isl_space_copy(group->array->space);
- space = isl_space_from_range(space);
- space = isl_space_add_dims(space, isl_dim_in, tile->depth);
- space = isl_space_wrap(space);
- space = isl_space_map_from_set(space);
-
- id = isl_id_alloc(ctx, read ? "read" : "write", group);
- space = isl_space_set_tuple_id(space, isl_dim_in, id);
-
- return isl_multi_aff_identity(space);
-}
-
-/* If any writes in "group" require synchronization, then make sure
- * that there is a synchronization node for "kernel" after the node
- * following "node" in a sequence.
- *
- * If "shared" is set and no synchronization is needed for
- * the writes to global memory, then add synchronization before
- * the kernel to protect shared memory from being overwritten
- * by the next iteration of the core computation.
- * No additional synchronization is needed to protect against
- * the next copy into shared memory because each element of
- * the shared memory tile is always copied by the same thread.
- */
-static __isl_give isl_schedule_node *add_group_write_sync(
- __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
- struct gpu_array_ref_group *group, int shared)
-{
- int need_sync;
-
- need_sync = any_sync_writes_in_group(kernel, group);
- if (need_sync < 0)
- return isl_schedule_node_free(node);
- if (need_sync) {
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_next_sibling(node);
- node = isl_schedule_node_child(node, 0);
- node = gpu_tree_ensure_following_sync(node, kernel);
- } else if (shared) {
- struct gpu_array_tile *tile;
-
- tile = gpu_array_ref_group_tile(group);
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_parent(node);
- node = gpu_tree_move_down_to_depth(node, tile->depth,
- kernel->core);
- node = gpu_tree_move_left_to_sync(node, kernel);
- }
-
- return node;
-}
-
-/* Add copy statements to the schedule tree of "node"
- * for reading from global memory to private memory (if "read" is set) or
- * for writing back from private memory to global memory
- * (if "read" is not set) for the array reference group "group" that
- * is mapped to private memory.
- * On input, "node" points to the kernel node, and it is moved
- * back there on output.
- *
- * The copies are performed in the order of the array elements.
- * The copy statement instances include a reference to the outer
- * tile->depth dimensions of the kernel schedule for ease of
- * combining them with the group tiling.
- *
- * That is, the extra schedule is of the form
- *
- * type[D -> A] -> A
- *
- * where D corresponds to the outer tile->depth dimensions of
- * the kernel schedule and A to the global array.
- * This schedule is unrolled because registers are not addressable.
- *
- * The copying is inserted in the schedule tree through an extension
- * of the form
- *
- * D -> type[D -> A]
- *
- * where the extra domain elements type[D -> A] are those accessed
- * by the group.
- * A filter is inserted on type[D -> A] to ensure that the element
- * is read/written by the same thread that needs the element.
- * This filter is obtained by applying
- *
- * S -> type[D -> A]
- *
- * to the thread filter for the core statements.
- *
- * The extension is inserted before the core computation in case of a read
- * and after the core computation in case of a write.
- * In the latter case, we also make sure that there is a synchronization
- * node after the write to global memory, unless this write is performed
- * at the outer level of the kernel.
- * In principle, this synchronization could be inserted higher
- * in the schedule tree depending on where the corresponding reads
- * from global memory are performed.
- */
-static __isl_give isl_schedule_node *add_copies_group_private(
- struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
- __isl_take isl_schedule_node *node, int read)
-{
- struct gpu_array_tile *tile;
- isl_union_map *access;
- isl_union_set *domain;
- isl_space *space;
- isl_multi_aff *from_access;
- isl_multi_pw_aff *mpa;
- isl_multi_union_pw_aff *mupa;
- isl_union_pw_multi_aff *contraction;
- isl_schedule_node *graft;
- isl_union_set *filter;
- int kernel_depth;
- int empty;
-
- kernel_depth = isl_schedule_node_get_schedule_depth(node);
- tile = gpu_array_ref_group_tile(group);
- node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
-
- access = anchored_non_local_accesses(kernel, group, node, read);
- empty = isl_union_map_is_empty(access);
- if (empty < 0 || empty) {
- isl_union_map_free(access);
- if (empty < 0)
- return isl_schedule_node_free(node);
- return gpu_tree_move_up_to_kernel(node);
- }
-
- group->array->global = 1;
- group->local_array->global = 1;
-
- from_access = create_from_access(kernel->ctx, group, read);
- space = isl_space_domain(isl_multi_aff_get_space(from_access));
- access = isl_union_map_preimage_range_multi_aff(access, from_access);
-
- filter = isl_union_set_copy(kernel->thread_filter);
- contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
- filter = isl_union_set_preimage_union_pw_multi_aff(filter, contraction);
- filter = isl_union_set_apply(filter, isl_union_map_copy(access));
- filter = isl_union_set_detect_equalities(filter);
- filter = isl_union_set_coalesce(filter);
-
- domain = isl_union_map_range(access);
- access = isl_union_set_wrapped_domain_map(domain);
- access = isl_union_map_reverse(access);
- access = isl_union_map_coalesce(access);
- graft = isl_schedule_node_from_extension(access);
-
- space = isl_space_map_from_set(space);
- mpa = isl_multi_pw_aff_identity(space);
- mpa = isl_multi_pw_aff_range_factor_range(mpa);
- mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
-
- graft = isl_schedule_node_child(graft, 0);
- graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
- graft = unroll(graft);
-
- graft = isl_schedule_node_insert_filter(graft, filter);
-
- graft = isl_schedule_node_parent(graft);
-
- if (read)
- node = isl_schedule_node_graft_before(node, graft);
- else {
- node = isl_schedule_node_graft_after(node, graft);
- if (kernel_depth < tile->depth)
- node = add_group_write_sync(node, kernel, group, 0);
- }
-
- node = gpu_tree_move_up_to_kernel(node);
-
- return node;
-}
-
-/* Add copy statements to the schedule tree of "node"
- * for reading from global memory to shared memory (if "read" is set) or
- * for writing back from shared memory to global memory
- * (if "read" is not set) for the array reference group "group" that
- * is mapped to shared memory.
- * On input, "node" points to the kernel node, and it is moved
- * back there on output.
- *
- * The copies are performed in the order of the corresponding shared
- * memory tile.
- * The copy statement instances include a reference to the outer
- * tile->depth dimensions of the kernel schedule for ease of
- * combining them with the group tiling.
- *
- * If we are performing a read from global memory to shared memory and
- * if the array involved is not a scalar, then we copy
- * the entire tile to shared memory. This may result in some extra
- * elements getting copied, but it should lead to simpler code
- * (which means that fewer registers may be needed) and less divergence.
- *
- * Otherwise, we only copy the elements that will be read or have been written
- * in the kernel.
- *
- * That is, the extra schedule is of the form
- *
- * type[D -> A] -> T
- *
- * where D corresponds to the outer tile->depth dimensions of
- * the kernel schedule, A to the global array and T is the corresponding
- * shared memory tile.
- *
- * The copying is inserted in the schedule tree through an extension
- * of the form
- *
- * D -> type[D -> A]
- *
- * where the extra domain elements type[D -> A] are those accessed
- * by the group. In the case of read from a non-scalar, this set
- * is replaced by the entire shared memory tile.
- *
- * If the "unroll_copy_shared" option is set, then the AST generator
- * is instructed to unroll the copying code.
- *
- * A filter is inserted on type[D -> A] to map the copy instances
- * to the threads. In particular, the thread identifiers are
- * equated to the position inside the shared memory tile (T)
- * modulo the block size.
- * We try to align the innermost tile dimension with the innermost
- * thread identifier (x) as a heuristic to improve coalescing.
- * In particular, if the dimension of the tile is greater than
- * the dimension of the block, then the schedule mapping to the tile
- * is broken up into two pieces and the filter is applied to the inner part.
- * If, on the other hand, the dimension of the tile is smaller than
- * the dimension of the block, then the initial thread identifiers
- * are equated to zero and the remaining thread identifiers are
- * matched to the memory tile.
- *
- * The extension is inserted before the core computation in case of a read
- * and after the core computation in case of a write.
- * In the case of a read, we first need to make sure there is some
- * synchronization before the core computation such that we can put the read
- * from global memory to shared memory before that synchronization.
- * This ensures that all threads have finished copying into shared memory
- * before the shared memory is used.
- * We also need to make sure that there is a synchronization node after
- * the core computation to ensure that the next load into shared memory
- * only happens after all data has been used. There is no need for
- * this synchronization if we are at the outer level since then there
- * won't be a next load.
- * In the case of a write, we need to make sure there is some synchronization
- * after the core computation such taht we can put the write from shared
- * memory to global memory after that synchronization.
- * Unless we are at the outer level, we also need a synchronization node
- * after the write to ensure the data is saved to global memory
- * before the next iteration write to the same shared memory.
- * It also makes sure the data has arrived in global memory before
- * it is read in a subsequent iteration.
- */
-static __isl_give isl_schedule_node *add_copies_group_shared(
- struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
- __isl_take isl_schedule_node *node, int read)
-{
- struct gpu_array_tile *tile;
- isl_union_map *access;
- isl_union_set *domain;
- isl_multi_aff *ma;
- isl_multi_aff *from_access;
- isl_multi_pw_aff *mpa;
- isl_multi_union_pw_aff *mupa;
- isl_schedule_node *graft;
- isl_union_set *filter;
- int skip;
- int kernel_depth;
- int empty;
-
- tile = gpu_array_ref_group_tile(group);
- kernel_depth = isl_schedule_node_get_schedule_depth(node);
- node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
-
- access = anchored_non_local_accesses(kernel, group, node, read);
- empty = isl_union_map_is_empty(access);
- if (empty < 0 || empty) {
- isl_union_map_free(access);
- if (empty < 0)
- return isl_schedule_node_free(node);
- return gpu_tree_move_up_to_kernel(node);
- }
-
- group->array->global = 1;
- group->local_array->global = 1;
-
- from_access = create_from_access(kernel->ctx, group, read);
-
- ma = isl_multi_aff_copy(tile->tiling);
- ma = isl_multi_aff_pullback_multi_aff(ma,
- isl_multi_aff_copy(from_access));
- mpa = isl_multi_pw_aff_from_multi_aff(ma);
- mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
-
- domain = isl_union_map_range(access);
-
- if (read && !gpu_array_is_scalar(group->array)) {
- isl_map *map;
- isl_union_set_free(domain);
- map = group_tile(group);
- domain = isl_union_set_from_set(isl_map_wrap(map));
- }
-
- domain = isl_union_set_preimage_multi_aff(domain, from_access);
- access = isl_union_set_wrapped_domain_map(domain);
- access = isl_union_map_reverse(access);
- access = isl_union_map_coalesce(access);
- graft = isl_schedule_node_from_extension(access);
-
- graft = isl_schedule_node_child(graft, 0);
-
- graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
- if (kernel->options->unroll_copy_shared)
- graft = ppcg_set_schedule_node_type(graft, isl_ast_loop_unroll);
-
- if (tile->n > kernel->n_block && kernel->n_block > 0) {
- graft = isl_schedule_node_band_split(graft,
- tile->n - kernel->n_block);
- graft = isl_schedule_node_child(graft, 0);
- }
- if (tile->n < kernel->n_block)
- skip = kernel->n_block - tile->n;
- else
- skip = 0;
- filter = set_schedule_modulo(graft, kernel->thread_ids,
- kernel->block_dim);
- if (!kernel->options->wrap)
- graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
- kernel->options);
- if (tile->n > kernel->n_block && kernel->n_block > 0)
- graft = isl_schedule_node_parent(graft);
- graft = isl_schedule_node_insert_filter(graft, filter);
-
- while (graft && isl_schedule_node_has_parent(graft))
- graft = isl_schedule_node_parent(graft);
-
- if (read) {
- if (kernel_depth < tile->depth)
- node = gpu_tree_ensure_sync_after_core(node, kernel);
- node = gpu_tree_move_left_to_sync(node, kernel);
- node = isl_schedule_node_graft_before(node, graft);
- } else {
- node = gpu_tree_move_right_to_sync(node, kernel);
- node = isl_schedule_node_graft_after(node, graft);
- if (kernel_depth < tile->depth)
- node = add_group_write_sync(node, kernel, group, 1);
- }
-
- node = gpu_tree_move_up_to_kernel(node);
-
- return node;
-}
-
-/* Check whether the array reference group "group" is mapped to
- * private or shared memory and, if so,
- * add copy statements to the schedule tree of "node"
- * for reading from global memory to private or shared memory
- * (if "read" is set) or for writing back from private or shared memory
- * to global memory (if "read" is not set) for this group.
- * On input, "node" points to the kernel node, and it is moved
- * back there on output.
- */
-static __isl_give isl_schedule_node *add_copies_group(
- struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
- __isl_take isl_schedule_node *node, int read)
-{
- enum ppcg_group_access_type type;
-
- type = gpu_array_ref_group_type(group);
- if (type == ppcg_access_private)
- return add_copies_group_private(kernel, group, node, read);
- if (type == ppcg_access_shared)
- return add_copies_group_shared(kernel, group, node, read);
- return node;
-}
-
-/* For each array reference group that is mapped to private or shared memory,
- * add copy statements to the schedule tree of "node"
- * for reading from global memory to private or shared memory
- * and for writing back.
- * On input, "node" points to the kernel node, and it is moved
- * back there on output.
- */
-static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
- __isl_take isl_schedule_node *node)
-{
- int i, j;
-
- for (i = 0; i < kernel->n_array; ++i) {
- struct gpu_local_array_info *array = &kernel->array[i];
-
- for (j = 0; j < array->n_group; ++j) {
- struct gpu_array_ref_group *group = array->groups[j];
-
- node = add_copies_group(kernel, group, node, 1);
- if (!node)
- return NULL;
- node = add_copies_group(kernel, group, node, 0);
- if (!node)
- return NULL;
- }
- }
-
- return node;
-}
-
-/* Mark all dimensions in the current band node atomic.
- */
-static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
-{
- return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
-}
-
-/* Mark "node" atomic, if it is a band node.
- * Do the same for all ancestors.
- * Return a pointer to "node" (in the updated schedule tree).
- */
-static __isl_give isl_schedule_node *atomic_ancestors(
- __isl_take isl_schedule_node *node)
-{
- int pos;
-
- if (!node)
- return NULL;
- if (!isl_schedule_node_has_parent(node))
- return node;
-
- pos = isl_schedule_node_get_child_position(node);
- node = isl_schedule_node_parent(node);
- if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
- node = atomic(node);
- node = atomic_ancestors(node);
- node = isl_schedule_node_child(node, pos);
-
- return node;
-}
-
-/* Collect all write references that require synchronization.
- * "node" is assumed to point to the kernel node.
- * Each reference is represented by a universe set in a space
- *
- * [S[i,j] -> R[]]
- *
- * with S[i,j] the statement instance space and R[] the array reference.
- *
- * This function should be called before block and thread filters are added.
- *
- * Synchronization is needed after a write if there is a subsequent read
- * within the same block that may not be performed by the same thread.
- * There should not be any dependences between different blocks,
- * so we start with the flow dependences within the same kernel invocation
- * and we subtract from these those dependences that are mapped
- * to the same iteration of the bands where synchronization is inserted.
- * We do not remove pairs of instances that are known to map to
- * the same thread across different iterations of the intermediate
- * bands because the read may be performed by a different thread
- * than the one that needs the value if shared memory is involved.
- *
- * We also consider all pairs of possible writes that access the same
- * memory location and that may be mapped to the same block but not
- * to the same iteration of the intermediate bands.
- * In theory, it would be possible for one thread to still be in
- * a previous iteration of a loop in these bands.
- * A write to global memory in this delayed thread could then overwrite
- * a write from another thread that has already moved on to
- * the next iteration.
- *
- * After computing the above writes paired off with reads or writes
- * that depend on them, we project onto the domain writes.
- * Sychronization is needed after writes to global memory
- * through these references.
- */
-static __isl_give isl_union_set *compute_sync_writes(
- struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
-{
- isl_union_map *local;
- isl_union_map *may_writes, *shared_access;
- isl_union_map *kernel_prefix, *thread_prefix;
- isl_union_map *equal;
- isl_union_set *wrap;
- isl_union_set *domain;
- isl_union_pw_multi_aff *contraction;
-
- kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
- node = isl_schedule_node_copy(node);
- node = gpu_tree_move_down_to_thread(node, kernel->core);
- thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
- isl_schedule_node_free(node);
-
- contraction = kernel->contraction;
- kernel_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
- kernel_prefix, isl_union_pw_multi_aff_copy(contraction));
- thread_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
- thread_prefix, isl_union_pw_multi_aff_copy(contraction));
- domain = isl_union_set_copy(kernel->expanded_domain);
- domain = isl_union_set_universe(domain);
-
- may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
- may_writes = isl_union_map_curry(may_writes);
- may_writes = isl_union_map_intersect_domain(may_writes, domain);
- may_writes = isl_union_map_uncurry(may_writes);
- shared_access = isl_union_map_copy(may_writes);
- shared_access = isl_union_map_apply_range(shared_access,
- isl_union_map_reverse(may_writes));
-
- local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
- local = isl_union_map_union(local, shared_access);
- local = isl_union_map_zip(local);
-
- equal = isl_union_map_apply_range(kernel_prefix,
- isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
- wrap = isl_union_map_wrap(equal);
- local = isl_union_map_intersect_domain(local, wrap);
- equal = isl_union_map_apply_range(thread_prefix,
- isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
- wrap = isl_union_map_wrap(equal);
- local = isl_union_map_subtract_domain(local, wrap);
-
- local = isl_union_map_zip(local);
- local = isl_union_map_universe(local);
-
- return isl_union_map_domain(local);
-}
-
-/* Group the domain elements into a single space, named kernelX,
- * with X the kernel sequence number "kernel_id".
- */
-static __isl_give isl_schedule_node *group_statements(
- __isl_take isl_schedule_node *node, int kernel_id)
-{
- char buffer[20];
- isl_id *id;
-
- if (!node)
- return NULL;
-
- snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
- id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
- return isl_schedule_node_group(node, id);
-}
-
-/* Create a ppcg_kernel representing the domain instances that reach "node"
- * and insert a mark node pointing to the ppcg_kernel before "node".
- * The band that "node" points to is the band that needs to be mapped
- * to block identifiers. The band that needs to be mapped to thread
- * identifiers should be marked by a "thread" mark by the caller.
- * The linear branch between the current node and the "thread" mark
- * may also have a "shared" mark. If present, the mapping to shared
- * memory is computed at that point.
- * Both marks are removed by this function.
- * If "scale" is set, then the band that "node" points to is scaled
- * by "sizes".
- *
- * Mark all outer band nodes as atomic to ensure each kernel is only
- * scheduled once.
- * If the domain elements that reach "node" live in more than one space,
- * then group the domain elements into a single space, named kernelX,
- * with X the kernel sequence number.
- *
- * Insert a guard node governing the kernel node to ensure that
- * no kernels with zero blocks are launched.
- *
- * Insert a context node describing the block and thread
- * identifiers inside the kernel mark.
- * The context node needs to be inserted after the effective block size
- * has been determined such that the bounds on the thread identifiers
- * would reflect the effective block size.
- * Insert a filter node inside the context node mapping the statement
- * instances to block identifiers. In particular, the block identifiers
- * are equated to the partial schedule of band that was marked for mapping
- * to blocks modulo the grid size.
- * Insert a filter node inside the "thread" mark mapping the statement
- * instances to thread identifiers. In particular, the thread identifiers
- * are equated to the partial schedule of band that was marked for mapping
- * to threads modulo the block size.
- *
- * Compute array reference groups for all arrays, set the local
- * array bounds based on the set of domain instances that reach
- * the kernel node, check the total amount of shared memory used
- * and compute all group tilings.
- * The array reference groups are computed after the block filter
- * has been inserted because it affects the mapping to shared or
- * private memory. This computation also requires the thread filter
- * (in the ppcg_kernel object), but this thread filter should not
- * have been added to the schedule tree yet since the computation
- * requires the schedule of the band that needs to be mapped to
- * threads before the privatization is applied.
- *
- * If any array reference group requires the band mapped to threads
- * to be unrolled, then we perform the required unrolling.
- *
- * We save a copy of the schedule that may influence the mappings
- * to shared or private memory in kernel->copy_schedule.
- *
- * Finally, we add synchronization and copy statements to the schedule tree,
- * remove the "thread" mark and create representations for the local
- * variables in the kernel.
- *
- * We keep a copy of the isl_id that points to the kernel to ensure
- * that the kernel does not get destroyed if the schedule node
- * is freed due to some error condition.
- */
-__isl_give isl_schedule_node *gpu_create_kernel(struct gpu_gen *gen,
- __isl_take isl_schedule_node *node, int scale,
- __isl_keep isl_multi_val *sizes)
-{
- struct ppcg_kernel *kernel;
- isl_id *id;
- isl_schedule_node *node_thread;
- isl_union_map *host_schedule;
- isl_union_pw_multi_aff *contraction;
- isl_set *host_domain;
- isl_union_set *domain, *expanded;
- int single_statement;
-
- node = gpu_tree_insert_shared_before_thread(node);
- if (!node)
- return NULL;
-
- kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
- kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
- if (!kernel)
- return isl_schedule_node_free(node);
-
- domain = isl_schedule_node_get_domain(node);
- single_statement = isl_union_set_n_set(domain) == 1;
-
- kernel->ctx = gen->ctx;
- kernel->prog = gen->prog;
- kernel->options = gen->options;
- kernel->context = extract_context(node, gen->prog);
- kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
- contraction = isl_schedule_node_get_subtree_contraction(node);
- kernel->contraction = isl_union_pw_multi_aff_copy(contraction);
- expanded = isl_union_set_copy(domain);
- expanded = isl_union_set_preimage_union_pw_multi_aff(expanded,
- contraction);
- kernel->expanded_domain = isl_union_set_copy(expanded);
- kernel->arrays = accessed_by_domain(expanded, gen->prog);
- kernel->n_grid = n_outer_coincidence(node);
- node_thread = isl_schedule_node_copy(node);
- node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
- node_thread = isl_schedule_node_child(node_thread, 0);
- kernel->n_block = n_outer_coincidence(node_thread);
- isl_schedule_node_free(node_thread);
- kernel->id = gen->kernel_id++;
- read_grid_and_block_sizes(kernel, gen);
-
- kernel->sync_writes = compute_sync_writes(kernel, node);
-
- host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
- host_domain = isl_set_from_union_set(isl_union_map_range(
- host_schedule));
-
- node = atomic_ancestors(node);
-
- id = isl_id_alloc(gen->ctx, "kernel", kernel);
- id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
- node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
-
- if (!single_statement)
- node = group_statements(node, kernel->id);
-
- node = isl_schedule_node_child(node, 0);
- node = split_band(node, kernel->n_grid);
- kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
- kernel->n_grid, "b");
- kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
- kernel->grid_dim);
- kernel->grid_size = extract_grid_size(kernel,
- isl_union_set_copy(domain));
- if (!kernel->options->wrap)
- node = snap_band_to_sizes(node, kernel->grid_dim,
- kernel->options);
- if (scale)
- node = scale_band(node, isl_multi_val_copy(sizes));
- node = isl_schedule_node_parent(node);
- if (!single_statement)
- node = isl_schedule_node_parent(node);
- node = insert_guard(node, kernel->context, kernel->grid_size,
- gen->prog->scop);
- node = gpu_tree_move_down_to_thread(node, kernel->core);
- node = isl_schedule_node_child(node, 0);
- node = split_band(node, kernel->n_block);
- kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
- kernel->n_block, "t");
- kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
- kernel->block_dim);
- if (extract_block_size(kernel, domain) < 0)
- node = isl_schedule_node_free(node);
-
- node = gpu_tree_move_up_to_kernel(node);
- node = isl_schedule_node_child(node, 0);
- node = insert_context(kernel, node);
- node = isl_schedule_node_child(node, 0);
- node = isl_schedule_node_insert_filter(node,
- isl_union_set_copy(kernel->block_filter));
-
- node = gpu_tree_move_up_to_kernel(node);
-
- if (gpu_group_references(kernel, node) < 0)
- node = isl_schedule_node_free(node);
- localize_bounds(kernel, host_domain);
- isl_set_free(host_domain);
-
- check_shared_memory_bound(kernel);
- mark_global_arrays(kernel);
- compute_group_tilings(kernel);
-
- node = gpu_tree_move_down_to_thread(node, kernel->core);
- node = isl_schedule_node_child(node, 0);
- if (!kernel->options->wrap)
- node = snap_band_to_sizes(node, kernel->block_dim,
- kernel->options);
- node = isl_schedule_node_insert_filter(node,
- isl_union_set_copy(kernel->thread_filter));
- if (kernel_requires_unroll(kernel)) {
- node = isl_schedule_node_child(node, 0);
- node = unroll(node);
- }
-
- node = gpu_tree_move_up_to_thread(node);
- kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
- kernel->copy_schedule =
- isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
- contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
- kernel->copy_schedule =
- isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
- kernel->copy_schedule, contraction);
-
- node = gpu_tree_move_up_to_kernel(node);
-
- node = add_sync(kernel, node);
- node = add_copies(kernel, node);
-
- node = gpu_tree_move_down_to_shared(node, kernel->core);
- node = isl_schedule_node_delete(node);
-
- node = gpu_tree_move_down_to_thread(node, kernel->core);
- node = isl_schedule_node_delete(node);
-
- node = gpu_tree_move_up_to_kernel(node);
-
- if (create_kernel_vars(kernel) < 0)
- node = isl_schedule_node_free(node);
-
- if (!single_statement)
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_parent(node);
-
- isl_id_free(id);
- return node;
-}
-
-/* Insert a zero-dimensional permutable band at "node".
- */
-static __isl_give isl_schedule_node *insert_empty_permutable_band(
- __isl_take isl_schedule_node *node)
-{
- isl_space *space;
- isl_schedule *schedule;
- isl_union_set *domain;
- isl_multi_union_pw_aff *mupa;
-
- schedule = isl_schedule_node_get_schedule(node);
- domain = isl_schedule_get_domain(schedule);
- space = isl_union_set_get_space(domain);
- isl_union_set_free(domain);
- isl_schedule_free(schedule);
-
- space = isl_space_set_from_params(space);
- mupa = isl_multi_union_pw_aff_zero(space);
- node = isl_schedule_node_insert_partial_schedule(node, mupa);
- node = isl_schedule_node_band_set_permutable(node, 1);
-
- return node;
-}
-
-/* See if hybrid tiling can be performed on "node" and its parent.
- * If so, apply hybrid tiling and return the updated schedule tree.
- * If not, return the original schedule tree.
- * Return NULL on error.
- *
- * First check if "node", together with its parent, meets
- * the basic requirements for hybrid tiling.
- * If so, compute the relative dependence distances of "node"
- * with respect to its parent and check if they are sufficiently bounded.
- * If so, apply hybrid tiling using user specified tile sizes.
- *
- * The tile sizes are read before the dependence distance bounds are
- * computed, because the user may have specified fewer dimensions
- * than are available. In this case, the remaining schedule dimensions
- * are split off and the dependence distances should be computed
- * after these dimensions have been split off.
- */
-static __isl_give isl_schedule_node *try_hybrid_tile(struct gpu_gen *gen,
- __isl_take isl_schedule_node *node)
-{
- int tile_len;
- int *tile_size;
- isl_bool ok;
- isl_schedule_node *orig = node;
- ppcg_ht_bounds *bounds;
-
- ok = ppcg_ht_parent_has_input_pattern(node);
- if (ok < 0)
- return isl_schedule_node_free(node);
- if (!ok)
- return orig;
-
- tile_len = 1 + isl_schedule_node_band_n_member(node);
- tile_size = read_tile_sizes(gen, &tile_len);
- if (!tile_size)
- return isl_schedule_node_free(node);
-
- node = isl_schedule_node_copy(node);
- node = split_band(node, tile_len - 1);
- node = isl_schedule_node_parent(node);
- bounds = ppcg_ht_compute_bounds(gen->prog->scop, node);
- node = isl_schedule_node_child(node, 0);
-
- ok = ppcg_ht_bounds_is_valid(bounds);
- if (ok >= 0 && ok)
- node = gpu_hybrid_tile(gen, node, bounds, tile_size);
- else
- ppcg_ht_bounds_free(bounds);
- free(tile_size);
-
- if (ok >= 0 && !ok) {
- isl_schedule_node_free(node);
- return orig;
- }
- isl_schedule_node_free(orig);
- if (ok < 0)
- return isl_schedule_node_free(node);
- return node;
-}
-
-/* If "node" is the outermost permutable band that can be mapped to block and
- * thread identifiers in its branch (or the root of a subtree with
- * no such outer bands),
- * then mark the band as such, attaching a ppcg_kernel to the mark.
- *
- * If hybrid tiling is allowed, then first try and apply it
- * to "node" and its parent.
- *
- * If "node" is the root of a subtree without permutable bands,
- * then insert a zero-dimensional permutable band such that
- * we can assume that "node" always points to a band node.
- * This includes the case where "node" already points to a band node,
- * but one without any coincident dimension. In this case,
- * the extra node ensures that this original node does not get tiled.
- *
- * Tile "node" using user specified tile sizes, after splitting the band
- * if the number of specified tile sizes is smaller than the dimension
- * of the band. Mark the point band of this tiling as the band that
- * needs to be mapped to threads and instruct the AST generator to unroll
- * the band if the "unroll_gpu_tile" option is set.
- * Create a kernel representing the domain instances that reach "node" and
- * insert a mark node pointing to the ppcg_kernel before the band node.
- */
-static __isl_give isl_schedule_node *mark_outer_permutable(
- __isl_take isl_schedule_node *node, void *user)
-{
- struct gpu_gen *gen = user;
- int outer;
- int scale;
- int tile_len;
- int *tile_size;
- isl_id *id;
- isl_multi_val *sizes;
-
- outer = is_outer_tilable(node);
- if (outer < 0)
- return isl_schedule_node_free(node);
- if (!outer)
- return node;
-
- if (gen->options->hybrid) {
- isl_schedule_node *saved = isl_schedule_node_copy(node);
- node = try_hybrid_tile(gen, node);
- isl_schedule_node_free(saved);
- if (node != saved)
- return node;
- }
-
- if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
- !isl_schedule_node_band_member_get_coincident(node, 0))
- node = insert_empty_permutable_band(node);
-
- tile_len = isl_schedule_node_band_n_member(node);
- tile_size = read_tile_sizes(gen, &tile_len);
- if (!tile_size)
- return isl_schedule_node_free(node);
- if (tile_len < isl_schedule_node_band_n_member(node))
- node = isl_schedule_node_band_split(node, tile_len);
- sizes = construct_band_tiles_sizes(node, tile_size);
- node = tile_band(node, isl_multi_val_copy(sizes));
- node = isl_schedule_node_child(node, 0);
- if (gen->options->unroll_gpu_tile)
- node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
- id = isl_id_alloc(gen->ctx, "thread", NULL);
- node = isl_schedule_node_insert_mark(node, id);
- node = isl_schedule_node_parent(node);
-
- scale = gen->options->scale_tile_loops;
- node = gpu_create_kernel(gen, node, scale, sizes);
- isl_multi_val_free(sizes);
- free(tile_size);
-
- return node;
-}
-
-/* Given a set or sequence node, return the union the filters of either all
- * (if "only_initial" is not set) or the initial (if "only_initial" is set)
- * direct subtrees that do not contain any suitably permutable bands
- * (according to subtree_has_permutable_bands).
- */
-static __isl_give isl_union_set *get_non_parallel_subtree_filters(
- __isl_keep isl_schedule_node *node, int only_initial)
-{
- isl_space *space;
- isl_union_set *filter;
- int i, n;
-
- n = isl_schedule_node_n_children(node);
- if (n < 0)
- return NULL;
-
- node = isl_schedule_node_copy(node);
- node = isl_schedule_node_child(node, 0);
- filter = isl_schedule_node_filter_get_filter(node);
- node = isl_schedule_node_parent(node);
- space = isl_union_set_get_space(filter);
- isl_union_set_free(filter);
- filter = isl_union_set_empty(space);
-
- for (i = 0; i < n; ++i) {
- int parallelism;
-
- node = isl_schedule_node_child(node, i);
- parallelism = subtree_has_permutable_bands(node);
- if (parallelism < 0) {
- filter = isl_union_set_free(filter);
- } else if (!parallelism) {
- isl_union_set *filter_i;
- filter_i = isl_schedule_node_filter_get_filter(node);
- filter = isl_union_set_union(filter, filter_i);
- } else if (only_initial)
- break;
- node = isl_schedule_node_parent(node);
- }
-
- isl_schedule_node_free(node);
-
- return filter;
-}
-
-/* Given a set or sequence node, return the union of the filters of
- * the direct subtrees that do not contain any suitably permutable bands
- * (according to subtree_has_permutable_bands).
- */
-static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
- __isl_keep isl_schedule_node *node)
-{
- return get_non_parallel_subtree_filters(node, 0);
-}
-
-/* Given a set or sequence node, return the union of the filters of
- * the initial direct subtrees that do not contain any suitably permutable
- * bands (according to subtree_has_permutable_bands).
- */
-static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
- __isl_keep isl_schedule_node *node)
-{
- return get_non_parallel_subtree_filters(node, 1);
-}
-
-/* Mark all variables that are accessed by the statement instances in "domain"
- * and that are local to "prog" as requiring a declaration in the host code.
- * The statement instances in "domain" correspond to (a subset of)
- * the active instances at "node".
- * "node" is not modified by this function, except that NULL is returned
- * in case of error.
- */
-static __isl_give isl_schedule_node *declare_accessed_local_variables(
- __isl_take isl_schedule_node *node, struct gpu_prog *prog,
- __isl_keep isl_union_set *domain)
-{
- isl_union_pw_multi_aff *contraction;
- isl_union_set *arrays;
- int i;
-
- if (!ppcg_scop_any_hidden_declarations(prog->scop))
- return node;
- contraction = isl_schedule_node_get_subtree_contraction(node);
- domain = isl_union_set_copy(domain);
- domain = isl_union_set_preimage_union_pw_multi_aff(domain, contraction);
- arrays = accessed_by_domain(domain, prog);
-
- for (i = 0; i < prog->n_array; ++i) {
- isl_space *space;
- isl_set *set;
- int empty;
-
- if (!prog->array[i].local)
- continue;
- space = isl_set_get_space(prog->array[i].extent);
- set = isl_union_set_extract_set(arrays, space);
- empty = isl_set_plain_is_empty(set);
- isl_set_free(set);
- if (empty < 0)
- goto error;
- if (!empty)
- prog->array[i].declare_local = 1;
- }
-
- isl_union_set_free(arrays);
- return node;
-error:
- isl_union_set_free(arrays);
- return isl_schedule_node_free(node);
-}
-
-/* If "node" points to a set node, then separate its children
- * into subtrees that have suitably permutable bands and
- * those that do not.
- * Adjust the schedule tree in order to execute the second group
- * after the first group and return a pointer to the first group,
- * assuming there are any such subtrees.
- * If "node" points to a sequence node, then separate the initial
- * children that do not have suitably permutable bands and
- * return a pointer to the subsequence of children that do have such bands,
- * assuming there are any such subtrees.
- *
- * In both cases, mark all local variables in "prog" that are accessed by
- * the group without permutable bands as requiring a declaration on the host.
- */
-static __isl_give isl_schedule_node *isolate_permutable_subtrees(
- __isl_take isl_schedule_node *node, struct gpu_prog *prog)
-{
- isl_union_set *filter;
- enum isl_schedule_node_type type;
-
- if (!node)
- return NULL;
- type = isl_schedule_node_get_type(node);
- if (type == isl_schedule_node_set) {
- filter = get_all_non_parallel_subtree_filters(node);
- node = declare_accessed_local_variables(node, prog, filter);
- node = isl_schedule_node_order_after(node, filter);
- } else if (type == isl_schedule_node_sequence) {
- filter = get_initial_non_parallel_subtree_filters(node);
- node = declare_accessed_local_variables(node, prog, filter);
- node = isl_schedule_node_order_before(node, filter);
- }
-
- return node;
-}
-
-/* Replace any reference to an array element in the range of "copy"
- * by a reference to all array elements (defined by the extent of the array).
- */
-static __isl_give isl_union_map *approximate_copy_out(
- __isl_take isl_union_map *copy, struct gpu_prog *prog)
-{
- int i;
- isl_union_map *res;
-
- res = isl_union_map_empty(isl_union_map_get_space(copy));
-
- for (i = 0; i < prog->n_array; ++i) {
- isl_space *space;
- isl_set *set;
- isl_union_map *copy_i;
- isl_union_set *extent, *domain;
-
- space = isl_space_copy(prog->array[i].space);
- extent = isl_union_set_from_set(isl_set_universe(space));
- copy_i = isl_union_map_copy(copy);
- copy_i = isl_union_map_intersect_range(copy_i, extent);
- set = isl_set_copy(prog->array[i].extent);
- extent = isl_union_set_from_set(set);
- domain = isl_union_map_domain(copy_i);
- copy_i = isl_union_map_from_domain_and_range(domain, extent);
- res = isl_union_map_union(res, copy_i);
- }
-
- isl_union_map_free(copy);
-
- return res;
-}
-
-/* Insert "kernel" marks that point to a ppcg_kernel structure
- * in front of all outermost tilable band that (by construction)
- * have at least one parallel loop.
- */
-static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
- __isl_take isl_schedule_node *node)
-{
- return isl_schedule_node_map_descendant_bottom_up(node,
- &mark_outer_permutable, gen);
-}
-
-/* Construct schedule constraints from the dependences in prog->scop and
- * the array order dependences in prog->array_order.
- *
- * If live range reordering is allowed, then we need to make sure
- * that live ranges on arrays are not run in parallel since doing
- * so would require array expansion. We therefore add the array
- * order dependences to the coincidence dependences. Non-zero array
- * order dependences will then prevent a schedule dimension from being
- * considered parallel.
- * Live ranges derived from scalars are allowed to be run in parallel
- * since we force the scalars to be mapped to private memory in
- * check_scalar_live_ranges.
- * If live range reordering is allowed, then the false dependences
- * are not added to the validity constraints as that would prevent
- * reordering. Instead, the external false dependences that enforce that reads
- * from potentially live-in data precede any later write and
- * that writes of potentially live-out data follow any other earlier write
- * are added to the validity and the coincidence constraints.
- * The false dependences are still added to the proximity constraints
- * for consistency with the case where live range reordering is not allowed.
- * The coincidence constraints then consist of flow dependences,
- * external false dependences and array order dependences.
- * The independences can be filtered out from the first two sets.
- * They have already been filtered out from the array order dependences
- * on a per array basis in collect_order_dependences.
- * There is no need for a per array handling of the other two sets
- * as there should be no flow or external false dependence on local
- * variables that can be filtered out.
- */
-static __isl_give isl_schedule_constraints *construct_schedule_constraints(
- struct gpu_prog *prog)
-{
- isl_union_set *domain;
- isl_union_map *dep_raw, *dep;
- isl_union_map *validity, *proximity, *coincidence;
- isl_schedule_constraints *sc;
-
- domain = isl_union_set_copy(prog->scop->domain);
- sc = isl_schedule_constraints_on_domain(domain);
- sc = isl_schedule_constraints_set_context(sc,
- isl_set_copy(prog->scop->context));
- if (prog->scop->options->live_range_reordering) {
- sc = isl_schedule_constraints_set_conditional_validity(sc,
- isl_union_map_copy(prog->scop->tagged_dep_flow),
- isl_union_map_copy(prog->scop->tagged_dep_order));
- proximity = isl_union_map_copy(prog->scop->dep_flow);
- validity = isl_union_map_copy(proximity);
- validity = isl_union_map_union(validity,
- isl_union_map_copy(prog->scop->dep_forced));
- proximity = isl_union_map_union(proximity,
- isl_union_map_copy(prog->scop->dep_false));
- coincidence = isl_union_map_copy(validity);
- coincidence = isl_union_map_subtract(coincidence,
- isl_union_map_copy(prog->scop->independence));
- coincidence = isl_union_map_union(coincidence,
- isl_union_map_copy(prog->array_order));
- } else {
- dep_raw = isl_union_map_copy(prog->scop->dep_flow);
- dep = isl_union_map_copy(prog->scop->dep_false);
- dep = isl_union_map_union(dep, dep_raw);
- dep = isl_union_map_coalesce(dep);
- proximity = isl_union_map_copy(dep);
- coincidence = isl_union_map_copy(dep);
- validity = dep;
- }
- sc = isl_schedule_constraints_set_validity(sc, validity);
- sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
- sc = isl_schedule_constraints_set_proximity(sc, proximity);
-
- if (prog->scop->options->debug->dump_schedule_constraints)
- isl_schedule_constraints_dump(sc);
- return sc;
-}
-
-/* Compute an appropriate schedule based on the accesses in
- * gen->read and gen->write.
- *
- * We derive schedule constraints from the dependences in gen->prog->scop
- * and then use isl to compute a schedule that has a parallel loop
- * in each tilable band.
- * During the schedule construction, some statement instances
- * may be grouped first based on the input schedule.
- */
-static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
-{
- isl_schedule_constraints *sc;
- isl_schedule *schedule;
-
- sc = construct_schedule_constraints(gen->prog);
- schedule = gen->prog->scop->schedule;
- schedule = ppcg_compute_schedule(sc, schedule, gen->options);
-
- return schedule;
-}
-
-/* If the band node "node" has exactly one member then mark it permutable.
- */
-static __isl_give isl_schedule_node *band_set_permutable(
- __isl_take isl_schedule_node *node,
- __isl_keep isl_schedule_constraints *sc)
-{
- if (isl_schedule_node_band_n_member(node) == 1)
- node = isl_schedule_node_band_set_permutable(node, 1);
-
- return node;
-}
-
-/* Return the coincidence constraints between pairs of instances
- * that are scheduled together by the ancestors of "node".
- * That is, select those coincidence constraints that relate
- * pairs of instances that have the same value for the prefix schedule.
- * If the schedule depth is zero, then the prefix schedule does not
- * contain any information, so we intersect domain and range
- * of the schedule constraints with the reaching domain elements instead.
- */
-static __isl_give isl_union_map *get_local_coincidence(
- __isl_keep isl_schedule_node *node,
- __isl_keep isl_schedule_constraints *sc)
-{
- isl_union_map *coincidence;
- isl_multi_union_pw_aff *prefix;
- isl_union_pw_multi_aff *contraction;
-
- coincidence = isl_schedule_constraints_get_coincidence(sc);
- contraction = isl_schedule_node_get_subtree_contraction(node);
- if (isl_schedule_node_get_schedule_depth(node) == 0) {
- isl_union_set *domain;
-
- domain = isl_schedule_node_get_domain(node);
- domain = isl_union_set_preimage_union_pw_multi_aff(domain,
- contraction);
- coincidence = isl_union_map_intersect_domain(coincidence,
- isl_union_set_copy(domain));
- coincidence = isl_union_map_intersect_range(coincidence,
- domain);
- return coincidence;
- }
-
- prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
- prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
- contraction);
- return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
-}
-
-/* For each member in the band node "node", determine whether
- * it is coincident with respect to the outer nodes and mark
- * it accordingly.
- *
- * That is, for each coincidence constraint between pairs
- * of instances that are scheduled together by the outer nodes,
- * check that domain and range are assigned the same value
- * by the band member. This test is performed by checking
- * that imposing the same value for the band member does not
- * remove any elements from the set of coincidence constraints.
- */
-static __isl_give isl_schedule_node *band_set_coincident(
- __isl_take isl_schedule_node *node,
- __isl_keep isl_schedule_constraints *sc)
-{
- isl_union_map *coincidence;
- isl_union_pw_multi_aff *contraction;
- isl_multi_union_pw_aff *partial;
- int i, n;
-
- coincidence = get_local_coincidence(node, sc);
-
- partial = isl_schedule_node_band_get_partial_schedule(node);
- contraction = isl_schedule_node_get_subtree_contraction(node);
- partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
- contraction);
- n = isl_schedule_node_band_n_member(node);
- for (i = 0; i < n; ++i) {
- isl_union_map *coincidence_i;
- isl_union_pw_aff *upa;
- isl_multi_union_pw_aff *partial_i;
- int subset;
-
- upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
- partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
- coincidence_i = isl_union_map_copy(coincidence);
- coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
- coincidence_i, partial_i);
- subset = isl_union_map_is_subset(coincidence, coincidence_i);
- isl_union_map_free(coincidence_i);
-
- if (subset < 0)
- break;
- node = isl_schedule_node_band_member_set_coincident(node, i,
- subset);
- }
- if (i < n)
- node = isl_schedule_node_free(node);
- isl_multi_union_pw_aff_free(partial);
- isl_union_map_free(coincidence);
-
- return node;
-}
-
-/* If "node" is a band, then set its properties.
- *
- * In particular, if the band has exactly one member, then mark it permutable.
- * Mark the band member coincident based on the coincidence constraints
- * of "sc".
- */
-static __isl_give isl_schedule_node *set_band_properties(
- __isl_take isl_schedule_node *node, void *user)
-{
- isl_schedule_constraints *sc = user;
-
- if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
- return node;
- if (isl_schedule_node_band_n_member(node) == 0)
- return node;
-
- node = band_set_permutable(node, sc);
- node = band_set_coincident(node, sc);
-
- return node;
-}
-
-/* Return the original schedule with all bands marked permutable and
- * all band members marked coincident based on the coincidence constraints.
- * The bands are explicitly marked permutable so that they will be considered
- * by mark_outer_permutable.
- */
-static __isl_give isl_schedule *determine_properties_original_schedule(
- struct gpu_gen *gen)
-{
- isl_schedule *schedule;
- isl_schedule_constraints *sc;
-
- schedule = isl_schedule_copy(gen->prog->scop->schedule);
- sc = construct_schedule_constraints(gen->prog);
- schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
- &set_band_properties, sc);
- isl_schedule_constraints_free(sc);
-
- return schedule;
-}
-
-/* Compute a schedule or determine the properties of the original schedule
- * depending on the value of the "reschedule" option.
- */
-static __isl_give isl_schedule *compute_or_set_properties(void *user)
-{
- struct gpu_gen *gen = user;
-
- if (gen->options->reschedule)
- return compute_schedule(gen);
- else
- return determine_properties_original_schedule(gen);
-}
-
-/* Obtain a schedule for the scop, by reading it from
- * a file, by computing one or by determining the properties
- * of the original schedule.
- */
-__isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
-{
- return ppcg_get_schedule(gen->ctx, gen->options,
- &compute_or_set_properties, gen);
-}
-
-/* Construct the string "<a>_<b>".
- */
-static char *concat(isl_ctx *ctx, const char *a, const char *b)
-{
- isl_printer *p;
- char *s;
-
- p = isl_printer_to_str(ctx);
- p = isl_printer_print_str(p, a);
- p = isl_printer_print_str(p, "_");
- p = isl_printer_print_str(p, b);
- s = isl_printer_get_str(p);
- isl_printer_free(p);
-
- return s;
-}
-
-/* For each array in "prog" of which an element appears in "accessed" and
- * that is not a read only scalar, create a zero-dimensional universe set
- * of which the tuple id has name "<prefix>_<name of array>" and a user
- * pointer pointing to the array (gpu_array_info).
- *
- * If the array is local to "prog", then make sure it will be declared
- * in the host code.
- *
- * Return the list of these universe sets.
- */
-static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
- const char *prefix, __isl_take isl_union_set *accessed)
-{
- int i;
- isl_ctx *ctx;
- isl_union_set_list *filters;
-
- ctx = prog->ctx;
- filters = isl_union_set_list_alloc(ctx, 0);
- for (i = 0; i < prog->n_array; ++i) {
- struct gpu_array_info *array = &prog->array[i];
- isl_space *space;
- isl_set *accessed_i;
- int empty;
- char *name;
- isl_id *id;
- isl_union_set *uset;
-
- if (gpu_array_is_read_only_scalar(array))
- continue;
-
- space = isl_space_copy(array->space);
- accessed_i = isl_union_set_extract_set(accessed, space);
- empty = isl_set_plain_is_empty(accessed_i);
- isl_set_free(accessed_i);
- if (empty < 0) {
- filters = isl_union_set_list_free(filters);
- break;
- }
- if (empty)
- continue;
-
- array->global = 1;
- if (array->local)
- array->declare_local = 1;
-
- name = concat(ctx, prefix, array->name);
- id = name ? isl_id_alloc(ctx, name, array) : NULL;
- free(name);
- space = isl_space_set_alloc(ctx, 0, 0);
- space = isl_space_set_tuple_id(space, isl_dim_set, id);
- uset = isl_union_set_from_set(isl_set_universe(space));
-
- filters = isl_union_set_list_add(filters, uset);
- }
- isl_union_set_free(accessed);
-
- return filters;
-}
-
-/* Make sure that code for the statements in "filters" that
- * copy arrays to or from the device is only generated when
- * the size of the corresponding array is positive.
- * That is, add a set node underneath "graft" with "filters" as children
- * and for each child add a guard that the selects the parameter
- * values for which the corresponding array has a positive size.
- * The array is available in the user pointer of the statement identifier.
- * "depth" is the schedule depth of the position where "graft"
- * will be added.
- */
-static __isl_give isl_schedule_node *insert_positive_size_guards(
- __isl_take isl_schedule_node *graft,
- __isl_take isl_union_set_list *filters, int depth)
-{
- int i, n;
-
- graft = isl_schedule_node_child(graft, 0);
- graft = isl_schedule_node_insert_set(graft, filters);
- n = isl_schedule_node_n_children(graft);
- for (i = 0; i < n; ++i) {
- isl_union_set *filter;
- isl_set *domain, *guard;
- isl_id *id;
- struct gpu_array_info *array;
-
- graft = isl_schedule_node_child(graft, i);
- filter = isl_schedule_node_filter_get_filter(graft);
- domain = isl_set_from_union_set(filter);
- id = isl_set_get_tuple_id(domain);
- array = isl_id_get_user(id);
- isl_id_free(id);
- isl_set_free(domain);
- guard = gpu_array_positive_size_guard(array);
- guard = isl_set_from_params(guard);
- guard = isl_set_add_dims(guard, isl_dim_set, depth);
- graft = isl_schedule_node_child(graft, 0);
- graft = isl_schedule_node_insert_guard(graft, guard);
- graft = isl_schedule_node_parent(graft);
- graft = isl_schedule_node_parent(graft);
- }
- graft = isl_schedule_node_parent(graft);
-
- return graft;
-}
-
-/* Create a graft for copying arrays to or from the device,
- * whenever the size of the array is strictly positive.
- * Each statement is called "<prefix>_<name of array>" and
- * the identifier has a user pointer pointing to the array.
- * The graft will be added at the position specified by "node".
- * "copy" contains the array elements that need to be copied.
- * Only arrays of which some elements need to be copied
- * will have a corresponding statement in the graph.
- * Note though that each such statement will copy the entire array.
- */
-static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
- __isl_keep isl_schedule_node *node, const char *prefix,
- __isl_take isl_union_set *copy)
-{
- int depth;
- isl_ctx *ctx;
- isl_space *space;
- isl_union_set *all, *domain;
- isl_union_set_list *filters;
- isl_union_map *extension;
- isl_schedule_node *graft;
-
- ctx = prog->ctx;
- depth = isl_schedule_node_get_schedule_depth(node);
- filters = create_copy_filters(prog, prefix, copy);
- all = isl_union_set_list_union(isl_union_set_list_copy(filters));
-
- space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
- domain = isl_union_set_from_set(isl_set_universe(space));
- extension = isl_union_map_from_domain_and_range(domain, all);
- graft = isl_schedule_node_from_extension(extension);
-
- if (!filters)
- return isl_schedule_node_free(graft);
- if (isl_union_set_list_n_union_set(filters) == 0) {
- isl_union_set_list_free(filters);
- return graft;
- }
-
- return insert_positive_size_guards(graft, filters, depth);
-}
-
-/* Return (the universe spaces of) the arrays that are declared
- * inside the scop corresponding to "prog" and for which all
- * potential writes inside the scop form a subset of "domain".
- */
-static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
- __isl_keep isl_union_set *domain)
-{
- int i;
- isl_union_set *local;
-
- local = isl_union_set_empty(isl_union_set_get_space(domain));
-
- for (i = 0; i < prog->n_array; ++i) {
- isl_set *set;
- isl_union_map *to_outer;
- isl_union_map *may_write;
- isl_union_set *write_domain;
- isl_union_set *fields;
- int subset;
-
- if (!prog->array[i].local)
- continue;
-
- set = isl_set_universe(isl_space_copy(prog->array[i].space));
- to_outer = isl_union_map_copy(prog->to_outer);
- to_outer = isl_union_map_intersect_range(to_outer,
- isl_union_set_from_set(isl_set_copy(set)));
- fields = isl_union_map_domain(to_outer);
- may_write = isl_union_map_copy(prog->may_write);
- may_write = isl_union_map_intersect_range(may_write, fields);
- write_domain = isl_union_map_domain(may_write);
- subset = isl_union_set_is_subset(write_domain, domain);
- isl_union_set_free(write_domain);
-
- if (subset < 0) {
- isl_set_free(set);
- return isl_union_set_free(local);
- } else if (subset) {
- local = isl_union_set_add_set(local, set);
- } else {
- isl_set_free(set);
- }
- }
-
- return local;
-}
-
-/* Internal data structure for node_may_persist.
- *
- * "tagger" maps tagged iteration domains to the corresponding untagged
- * iteration domain.
- *
- * "may_persist_flow" is the set of all tagged dataflow dependences
- * with those dependences removed that either precede or follow
- * the kernel launch in a sequence.
- * "inner_band_flow" is the set of all tagged dataflow dependences
- * that are local to a given iteration of the outer band nodes
- * with respect to the current node.
- * "local_flow" is equal to "inner_band_flow", except that the domain
- * and the range have been intersected with intermediate filters
- * on children of sets or sequences.
- */
-struct ppcg_may_persist_data {
- isl_union_pw_multi_aff *tagger;
-
- isl_union_map *local_flow;
- isl_union_map *inner_band_flow;
- isl_union_map *may_persist_flow;
-};
-
-/* Update the information in "data" based on the band ancestor "node".
- *
- * In particular, we restrict the dependences in data->local_flow
- * to those dependence where the source and the sink occur in
- * the same iteration of the given band node.
- * We also update data->inner_band_flow to the new value of
- * data->local_flow.
- */
-static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
- struct ppcg_may_persist_data *data)
-{
- isl_multi_union_pw_aff *partial;
- isl_union_pw_multi_aff *contraction;
- isl_union_map *flow;
-
- if (isl_schedule_node_band_n_member(node) == 0)
- return 0;
-
- partial = isl_schedule_node_band_get_partial_schedule(node);
- contraction = isl_schedule_node_get_subtree_contraction(node);
- partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
- contraction);
- partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
- isl_union_pw_multi_aff_copy(data->tagger));
-
- flow = data->local_flow;
- flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
- data->local_flow = flow;
-
- isl_union_map_free(data->inner_band_flow);
- data->inner_band_flow = isl_union_map_copy(data->local_flow);
-
- return 0;
-}
-
-/* Given a set of local reaching domain elements "domain",
- * expand them to the corresponding leaf domain elements using "contraction"
- * and insert the array references tags using data->tagger.
- */
-static __isl_give isl_union_set *expand_and_tag(
- __isl_take isl_union_set *domain,
- __isl_take isl_union_pw_multi_aff *contraction,
- struct ppcg_may_persist_data *data)
-{
- domain = isl_union_set_preimage_union_pw_multi_aff(domain,
- contraction);
- domain = isl_union_set_preimage_union_pw_multi_aff(domain,
- isl_union_pw_multi_aff_copy(data->tagger));
- return domain;
-}
-
-/* Given a filter node that is the child of a set or sequence node,
- * restrict data->local_flow to refer only to those elements
- * in the filter of the node.
- * "contraction" maps the leaf domain elements of the schedule tree
- * to the corresponding domain elements at (the parent of) "node".
- */
-static int filter_flow(__isl_keep isl_schedule_node *node,
- struct ppcg_may_persist_data *data,
- __isl_take isl_union_pw_multi_aff *contraction)
-{
- isl_union_set *filter;
- isl_union_map *flow;
-
- flow = data->local_flow;
- filter = isl_schedule_node_filter_get_filter(node);
- filter = expand_and_tag(filter, contraction, data);
- flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
- flow = isl_union_map_intersect_range(flow, filter);
- data->local_flow = flow;
-
- return 0;
-}
-
-/* Given a filter node "node", collect the filters on all preceding siblings
- * (which are also filter nodes), add them to "filters" and return the result.
- */
-static __isl_give isl_union_set *add_previous_filters(
- __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
-{
- isl_schedule_node *sibling;
-
- sibling = isl_schedule_node_copy(node);
- while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
- isl_union_set *filter;
-
- sibling = isl_schedule_node_previous_sibling(sibling);
- filter = isl_schedule_node_filter_get_filter(sibling);
- filters = isl_union_set_union(filters, filter);
- }
- isl_schedule_node_free(sibling);
- if (!sibling)
- return isl_union_set_free(filters);
-
- return filters;
-}
-
-/* Given a filter node "node", collect the filters on all following siblings
- * (which are also filter nodes), add them to "filters" and return the result.
- */
-static __isl_give isl_union_set *add_next_filters(
- __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
-{
- isl_schedule_node *sibling;
-
- sibling = isl_schedule_node_copy(node);
- while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
- isl_union_set *filter;
-
- sibling = isl_schedule_node_next_sibling(sibling);
- filter = isl_schedule_node_filter_get_filter(sibling);
- filters = isl_union_set_union(filters, filter);
- }
- isl_schedule_node_free(sibling);
- if (!sibling)
- return isl_union_set_free(filters);
-
- return filters;
-}
-
-/* Remove those flow dependences from data->may_persist_flow
- * that flow between elements of "domain" within the same iteration
- * of all outer band nodes.
- * "contraction" maps the leaf domain elements of the schedule tree
- * to the corresponding elements "domain".
- */
-static void remove_external_flow(struct ppcg_may_persist_data *data,
- __isl_take isl_union_set *domain,
- __isl_keep isl_union_pw_multi_aff *contraction)
-{
- isl_union_map *flow;
-
- contraction = isl_union_pw_multi_aff_copy(contraction);
- domain = expand_and_tag(domain, contraction, data);
- flow = isl_union_map_copy(data->local_flow);
- flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
- flow = isl_union_map_intersect_range(flow, domain);
-
- data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
- flow);
-}
-
-/* Update the information in "data" based on the filter ancestor "node".
- * We only need to modify anything if the filter is the child
- * of a set or sequence node.
- *
- * In the case of a sequence, we remove the dependences between
- * statement instances that are both executed either before or
- * after the subtree that will be mapped to a kernel, within
- * the same iteration of outer bands.
- *
- * In both cases, we restrict data->local_flow to the current child.
- */
-static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
- struct ppcg_may_persist_data *data)
-{
- enum isl_schedule_node_type type;
- isl_schedule_node *parent;
- isl_space *space;
- isl_union_pw_multi_aff *contraction;
- isl_union_set *before, *after, *filter;
-
- type = isl_schedule_node_get_parent_type(node);
- if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
- return 0;
-
- parent = isl_schedule_node_copy(node);
- parent = isl_schedule_node_parent(parent);
- contraction = isl_schedule_node_get_subtree_contraction(parent);
- isl_schedule_node_free(parent);
-
- if (type == isl_schedule_node_set)
- return filter_flow(node, data, contraction);
-
- filter = isl_schedule_node_filter_get_filter(node);
- space = isl_union_set_get_space(filter);
- isl_union_set_free(filter);
- before = isl_union_set_empty(space);
- after = isl_union_set_copy(before);
- before = add_previous_filters(before, node);
- after = add_next_filters(after, node);
-
- remove_external_flow(data, before, contraction);
- remove_external_flow(data, after, contraction);
-
- return filter_flow(node, data, contraction);
-}
-
-/* Update the information in "data" based on the ancestor "node".
- */
-static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
- void *user)
-{
- struct ppcg_may_persist_data *data = user;
-
- switch (isl_schedule_node_get_type(node)) {
- case isl_schedule_node_error:
- return isl_stat_error;
- case isl_schedule_node_context:
- case isl_schedule_node_domain:
- case isl_schedule_node_expansion:
- case isl_schedule_node_extension:
- case isl_schedule_node_guard:
- case isl_schedule_node_leaf:
- case isl_schedule_node_mark:
- case isl_schedule_node_sequence:
- case isl_schedule_node_set:
- break;
- case isl_schedule_node_band:
- if (update_may_persist_at_band(node, data) < 0)
- return isl_stat_error;
- break;
- case isl_schedule_node_filter:
- if (update_may_persist_at_filter(node, data) < 0)
- return isl_stat_error;
- break;
- }
-
- return isl_stat_ok;
-}
-
-/* Determine the set of array elements that may need to be perserved
- * by a kernel constructed from the subtree at "node".
- * This includes the set of array elements that may need to be preserved
- * by the entire scop (prog->may_persist) and the elements for which
- * there is a potential flow dependence that may cross a kernel launch.
- *
- * To determine the second set, we start from all flow dependences.
- * From this set of dependences, we remove those that cannot possibly
- * require data to be preserved by a kernel launch.
- * In particular, we consider the following sets of dependences.
- * - dependences of which the write occurs inside the kernel.
- * If the data is needed outside the kernel, then it will
- * be copied out immediately after the kernel launch, so there
- * is no need for any special care.
- * - dependences of which the read occurs inside the kernel and the
- * corresponding write occurs inside the same iteration of the
- * outer band nodes. This means that the data is needed in
- * the first kernel launch after the write, which is already
- * taken care of by the standard copy-in. That is, the data
- * do not need to be preserved by any intermediate call to
- * the same kernel.
- * - dependences of which the write and the read either both occur
- * before the kernel launch or both occur after the kernel launch,
- * within the same iteration of the outer band nodes with respect
- * to the sequence that determines the ordering of the dependence
- * and the kernel launch. Such flow dependences cannot cross
- * any kernel launch.
- *
- * For the remaining (tagged) dependences, we take the domain
- * (i.e., the tagged writes) and apply the tagged access relation
- * to obtain the accessed data elements.
- * These are then combined with the elements that may need to be
- * preserved by the entire scop.
- */
-static __isl_give isl_union_set *node_may_persist(
- __isl_keep isl_schedule_node *node, struct gpu_prog *prog)
-{
- struct ppcg_may_persist_data data;
- isl_union_pw_multi_aff *contraction;
- isl_union_set *domain;
- isl_union_set *persist;
- isl_union_map *flow, *local_flow;
-
- data.tagger = prog->scop->tagger;
-
- flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
- data.local_flow = isl_union_map_copy(flow);
- data.inner_band_flow = isl_union_map_copy(flow);
- data.may_persist_flow = flow;
- if (isl_schedule_node_foreach_ancestor_top_down(node,
- &update_may_persist_at, &data) < 0)
- data.may_persist_flow =
- isl_union_map_free(data.may_persist_flow);
- flow = data.may_persist_flow;
- isl_union_map_free(data.local_flow);
-
- domain = isl_schedule_node_get_domain(node);
- contraction = isl_schedule_node_get_subtree_contraction(node);
- domain = isl_union_set_preimage_union_pw_multi_aff(domain,
- contraction);
- domain = isl_union_set_preimage_union_pw_multi_aff(domain,
- isl_union_pw_multi_aff_copy(data.tagger));
- flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
- local_flow = data.inner_band_flow;
- local_flow = isl_union_map_intersect_range(local_flow, domain);
- flow = isl_union_map_subtract(flow, local_flow);
-
- persist = isl_union_map_domain(flow);
- persist = isl_union_set_apply(persist,
- isl_union_map_copy(prog->scop->tagged_may_writes));
- persist = isl_union_set_union(persist,
- isl_union_set_copy(prog->may_persist));
-
- return persist;
-}
-
-/* Add nodes for copying outer arrays in and out of the device
- * before and after the subtree "node", which contains one or more kernels.
- * "domain" contains the original statement instances, i.e.,
- * those that correspond to the domains of the access relations in "prog".
- * In particular, the domain has not been contracted in any way.
- * "prefix" contains the prefix schedule at that point, in terms
- * of the same original statement instances.
- *
- * We first compute the sets of outer array elements that need
- * to be copied in and out and then graft in the nodes for
- * performing this copying.
- *
- * In particular, for each array that is possibly written anywhere in
- * the subtree "node" and that may be used after "node"
- * or that may be visible outside the corresponding scop,
- * we copy out its entire extent.
- *
- * Any array elements that is read without first being written inside
- * the subtree "node" needs to be copied in.
- * Furthermore, if there are any array elements that
- * are copied out, but that may not be written inside "node, then
- * they also need to be copied in to ensure that the value after execution
- * is the same as the value before execution, at least for those array
- * elements that may have their values preserved by the scop or that
- * may be written before "node" and read after "node".
- * In case the array elements are structures, we need to take into
- * account that all members of the structures need to be written
- * by "node" before we can avoid copying the data structure in.
- *
- * Note that the may_write relation is intersected with the domain,
- * which has been intersected with the context.
- * This helps in those cases where the arrays are declared with a fixed size,
- * while the accesses are parametric and the context assigns a fixed value
- * to the parameters.
- *
- * If an element from a local array is read without first being written,
- * then there is no point in copying it in since it cannot have been
- * written prior to the scop. Warn about the uninitialized read instead.
- */
-static __isl_give isl_schedule_node *add_to_from_device(
- __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
- __isl_take isl_union_map *prefix, struct gpu_prog *prog)
-{
- isl_union_set *local;
- isl_union_set *may_persist;
- isl_union_map *may_write, *must_write, *copy_out, *not_written;
- isl_union_map *read, *copy_in;
- isl_union_map *tagged;
- isl_union_map *local_uninitialized;
- isl_schedule_node *graft;
-
- tagged = isl_union_map_copy(prog->scop->tagged_reads);
- tagged = isl_union_map_union(tagged,
- isl_union_map_copy(prog->scop->tagged_may_writes));
-
- may_write = isl_union_map_copy(prog->may_write);
- may_write = isl_union_map_intersect_domain(may_write,
- isl_union_set_copy(domain));
- may_write = remove_local_accesses(prog,
- isl_union_map_copy(tagged), may_write,
- isl_union_map_copy(prefix), 0);
- may_write = isl_union_map_apply_range(may_write,
- isl_union_map_copy(prog->to_outer));
- may_write = isl_union_map_apply_domain(may_write,
- isl_union_map_copy(prefix));
- may_write = approximate_copy_out(may_write, prog);
- copy_out = isl_union_map_copy(may_write);
- may_write = isl_union_map_apply_range(may_write,
- isl_union_map_copy(prog->to_inner));
- must_write = isl_union_map_copy(prog->must_write);
- must_write = isl_union_map_apply_domain(must_write,
- isl_union_map_copy(prefix));
- may_persist = node_may_persist(node, prog);
- may_write = isl_union_map_intersect_range(may_write, may_persist);
- not_written = isl_union_map_subtract(may_write, must_write);
-
- local = extract_local_accesses(prog, domain);
- read = isl_union_map_copy(prog->read);
- read = isl_union_map_intersect_domain(read, domain);
- read = remove_local_accesses(prog, tagged, read,
- isl_union_map_copy(prefix), 1);
- local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
- local_uninitialized = isl_union_map_copy(prog->scop->live_in);
- local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
- local);
- local_uninitialized = isl_union_map_intersect(local_uninitialized,
- isl_union_map_copy(read));
- if (!isl_union_map_is_empty(local_uninitialized)) {
- fprintf(stderr,
- "possibly uninitialized reads (not copied in):\n");
- isl_union_map_dump(local_uninitialized);
- }
- read = isl_union_map_subtract(read, local_uninitialized);
- read = isl_union_map_apply_domain(read, prefix);
- copy_in = isl_union_map_union(read, not_written);
- copy_in = isl_union_map_apply_range(copy_in,
- isl_union_map_copy(prog->to_outer));
-
- graft = create_copy_device(prog, node, "to_device",
- isl_union_map_range(copy_in));
- node = isl_schedule_node_graft_before(node, graft);
- graft = create_copy_device(prog, node, "from_device",
- isl_union_map_range(copy_out));
- node = isl_schedule_node_graft_after(node, graft);
-
- return node;
-}
-
-/* Add nodes for initializing ("init_device") and clearing ("clear_device")
- * the device before and after "node".
- */
-static __isl_give isl_schedule_node *add_init_clear_device(
- __isl_take isl_schedule_node *node)
-{
- isl_ctx *ctx;
- isl_space *space;
- isl_union_set *domain;
- isl_schedule_node *graft;
-
- ctx = isl_schedule_node_get_ctx(node);
-
- space = isl_space_set_alloc(ctx, 0, 0);
- space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
- domain = isl_union_set_from_set(isl_set_universe(space));
- graft = isl_schedule_node_from_domain(domain);
-
- node = isl_schedule_node_graft_before(node, graft);
-
- space = isl_space_set_alloc(ctx, 0, 0);
- space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
- domain = isl_union_set_from_set(isl_set_universe(space));
- graft = isl_schedule_node_from_domain(domain);
-
- node = isl_schedule_node_graft_after(node, graft);
-
- return node;
-}
-
-/* Update "schedule" for mapping to a GPU device.
- *
- * In particular, insert a context node, create kernels for
- * each outermost tilable band and introduce nodes for copying arrays
- * in and out of the device and for initializing and clearing the device.
- * If the child of the initial root points to a set node,
- * then children of this node that do not contain any tilable bands
- * are separated from the other children and are not mapped to
- * the device.
- *
- * The GPU code is generated in a context where at least one
- * statement instance is executed. The corresponding guard is inserted
- * around the entire schedule.
- */
-__isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
- __isl_take isl_schedule *schedule, int to_from_device)
-{
- isl_schedule_node *node;
- isl_set *context;
- isl_set *guard;
- isl_union_set *domain;
- isl_union_map *prefix;
- isl_union_pw_multi_aff *contraction;
- struct gpu_prog *prog;
-
- context = isl_set_copy(gen->prog->context);
- context = isl_set_from_params(context);
- schedule = isl_schedule_insert_context(schedule, context);
-
- prog = gen->prog;
- guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
- prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
- guard = isl_set_from_params(guard);
-
- node = isl_schedule_get_root(schedule);
- isl_schedule_free(schedule);
- node = isl_schedule_node_child(node, 0);
- node = isl_schedule_node_child(node, 0);
- node = isolate_permutable_subtrees(node, gen->prog);
- domain = isl_schedule_node_get_domain(node);
- contraction = isl_schedule_node_get_subtree_contraction(node);
- domain = isl_union_set_preimage_union_pw_multi_aff(domain,
- isl_union_pw_multi_aff_copy(contraction));
- prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
- prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
- contraction);
- node = mark_kernels(gen, node);
- if (to_from_device) {
- node = add_to_from_device(node, domain, prefix, gen->prog);
- } else {
- isl_union_set_free(domain);
- isl_union_map_free(prefix);
- }
- node = isl_schedule_node_root(node);
- node = isl_schedule_node_child(node, 0);
- node = isl_schedule_node_child(node, 0);
- node = isl_schedule_node_insert_guard(node, guard);
- node = isl_schedule_node_child(node, 0);
- node = add_init_clear_device(node);
- schedule = isl_schedule_node_get_schedule(node);
- isl_schedule_node_free(node);
-
- return schedule;
-}
-
-/* Internal data structure for extract_access.
- * "next_access" points to the end of a linked list that is extended
- * by extract_access.
- * "single_expression" is set if the access expressions belong to
- * an expression statement (i.e., a statement without internal control).
- * "any_to_outer" maps all intermediate arrays to their outer arrays.
- */
-struct ppcg_extract_access_data {
- struct gpu_stmt_access **next_access;
- int single_expression;
- isl_union_map *any_to_outer;
-};
-
-/* Given a tagged access relation to a single array "tagged", extract it
- * as a map, taking into account that the input may be empty.
- * If the access relation is empty, then it does not contain
- * any space information, so we try to recover it from the index
- * expression.
- * The space of the index expression is of the form I -> A,
- * with I the statement instances and A the array, or [I -> F] -> A,
- * with F the filters corresponding to arguments.
- * We first drop F, if present, obtaining I -> A.
- * Then we construct I -> R, with R the reference tag,
- * combine the two into I -> [R -> A] and uncurry to obtain
- * the final result [I -> R] -> A.
- * Note that the index expression may have a lower dimension
- * than that of the array, but this dimension is not used
- * if the access relation is empty.
- */
-static __isl_give isl_map *extract_single_tagged_access(
- __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
-{
- int empty;
- isl_id *id;
- isl_space *space, *space2;
- isl_multi_pw_aff *index;
-
- empty = isl_union_map_is_empty(tagged);
- if (empty < 0)
- goto error;
- if (!empty)
- return isl_map_from_union_map(tagged);
- isl_union_map_free(tagged);
-
- index = pet_expr_access_get_index(expr);
- space = isl_multi_pw_aff_get_space(index);
- isl_multi_pw_aff_free(index);
- if (isl_space_domain_is_wrapping(space))
- space = isl_space_domain_factor_domain(space);
- space2 = isl_space_copy(space);
- space2 = isl_space_from_domain(isl_space_domain(space));
- id = pet_expr_access_get_ref_id(expr);
- space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
- space = isl_space_range_product(space2, space);
- space = isl_space_uncurry(space);
-
- return isl_map_empty(space);
-error:
- isl_union_map_free(tagged);
- return NULL;
-}
-
-/* Does the index expression "index" of "expr" represent an access
- * to a single element?
- * That is, is "index" completely specified?
- *
- * If "expr" accesses elements from different spaces (i.e., fields
- * of a structure), then it does not access a single element.
- * Otherwise, if the single space of the access matches the space
- * of "index", then the index expression is completely specified
- * (no pointer to a lower-dimensional slice of the accessed array)
- * and a single element is being accessed.
- */
-static isl_bool complete_index(__isl_keep pet_expr *expr,
- __isl_keep isl_multi_pw_aff *index)
-{
- isl_union_map *read, *write, *all;
- isl_map *map;
- isl_space *space1, *space2;
- isl_bool complete;
-
- read = pet_expr_access_get_may_read(expr);
- write = pet_expr_access_get_may_write(expr);
- all = isl_union_map_union(read, write);
- if (!all)
- return isl_bool_error;
- if (isl_union_map_n_map(all) != 1) {
- isl_union_map_free(all);
- return isl_bool_false;
- }
- map = isl_map_from_union_map(all);
- space1 = isl_map_get_space(map);
- isl_map_free(map);
- space2 = isl_multi_pw_aff_get_space(index);
- complete = isl_space_tuple_is_equal(space1, isl_dim_out,
- space2, isl_dim_out);
- isl_space_free(space1);
- isl_space_free(space2);
-
- return complete;
-}
-
-/* Does "expr" access a single, fixed element (independently of the statement
- * instance)?
- * That is, does it have a completely specified constant index expression?
- *
- * Note that it is not sufficient for the index expression to be
- * piecewise constant. isl_multi_pw_aff_is_cst can therefore not be used.
- */
-static isl_bool accesses_fixed_element(__isl_keep pet_expr *expr)
-{
- int i, n;
- isl_multi_pw_aff *index;
- isl_bool fixed = isl_bool_true;
-
- index = pet_expr_access_get_index(expr);
- if (index < 0)
- return isl_bool_error;
- n = isl_multi_pw_aff_dim(index, isl_dim_out);
- for (i = 0; i < n; ++i) {
- isl_pw_aff *pa;
-
- pa = isl_multi_pw_aff_get_pw_aff(index, 0);
- fixed = isl_pw_aff_n_piece(pa) == 1;
- if (fixed)
- fixed = isl_pw_aff_is_cst(pa);
- isl_pw_aff_free(pa);
- if (fixed < 0 || !fixed)
- break;
- }
- if (fixed >= 0 && fixed)
- fixed = complete_index(expr, index);
- isl_multi_pw_aff_free(index);
-
- return fixed;
-}
-
-/* Extract a gpu_stmt_access from "expr", append it to the list
- * that ends in *data->next_access and update the end of the list.
- * If the access expression performs a write, then it is considered
- * exact only if it appears in a single expression statement and
- * if its may access relation is equal to its must access relation.
- *
- * The combined set of may accesses may be a union if member accesses
- * are involved, but the entire set is derived from a single reference and
- * therefore from a single index expression. These accesses therefore
- * all map to the same outer array.
- */
-static int extract_access(__isl_keep pet_expr *expr, void *user)
-{
- struct ppcg_extract_access_data *data = user;
- isl_union_map *tagged;
- struct gpu_stmt_access *access;
- isl_ctx *ctx = pet_expr_get_ctx(expr);
- isl_multi_pw_aff *index;
-
- access = isl_alloc_type(ctx, struct gpu_stmt_access);
- assert(access);
- access->next = NULL;
- access->read = pet_expr_access_is_read(expr);
- access->write = pet_expr_access_is_write(expr);
- tagged = pet_expr_access_get_tagged_may_read(expr);
- tagged = isl_union_map_union(tagged,
- pet_expr_access_get_tagged_may_write(expr));
- tagged = isl_union_map_apply_range(tagged,
- isl_union_map_copy(data->any_to_outer));
- if (!access->write) {
- access->exact_write = 1;
- } else if (!data->single_expression) {
- access->exact_write = 0;
- } else {
- isl_union_map *must, *may;
- may = isl_union_map_copy(tagged);
- may = isl_union_map_domain_factor_domain(may);
- must = pet_expr_access_get_must_write(expr);
- access->exact_write = isl_union_map_is_equal(must, may);
- isl_union_map_free(must);
- isl_union_map_free(may);
- }
- index = pet_expr_access_get_index(expr);
- access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
- isl_multi_pw_aff_free(index);
- access->ref_id = pet_expr_access_get_ref_id(expr);
- access->tagged_access = extract_single_tagged_access(tagged, expr);
- access->access = isl_map_copy(access->tagged_access);
- access->access = isl_map_domain_factor_domain(access->access);
- access->fixed_element = accesses_fixed_element(expr);
-
- *data->next_access = access;
- data->next_access = &(*data->next_access)->next;
-
- if (!access->access || access->fixed_element < 0)
- return -1;
-
- return 0;
-}
-
-/* Construct a linked list of gpu_stmt_access objects,
- * one for each access expression in the statement body.
- * "any_to_outer" maps all intermediate arrays to their outer arrays.
- */
-static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
- __isl_keep isl_union_map *any_to_outer)
-{
- struct ppcg_extract_access_data data;
-
- stmt->accesses = NULL;
- data.next_access = &stmt->accesses;
- data.single_expression =
- pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
- data.any_to_outer = any_to_outer;
- return pet_tree_foreach_access_expr(stmt->stmt->body,
- &extract_access, &data);
-}
-
-/* Has statement "stmt" been killed from "scop"?
- * That is, is the instance set of "scop" free from any
- * instances of "stmt"?
- */
-static isl_bool is_stmt_killed(struct ppcg_scop *scop, struct pet_stmt *stmt)
-{
- isl_space *space;
- isl_set *left;
- isl_bool empty;
-
- if (!scop || !stmt)
- return isl_bool_error;
- space = isl_set_get_space(stmt->domain);
- left = isl_union_set_extract_set(scop->domain, space);
- empty = isl_set_plain_is_empty(left);
- isl_set_free(left);
-
- return empty;
-}
-
-/* Return an array of gpu_stmt representing the statements in "scop".
- * Do not collect array accesses for statements that have been killed.
- */
-static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
- __isl_keep isl_union_map *any_to_outer)
-{
- int i;
- struct gpu_stmt *stmts;
-
- stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
- if (!stmts)
- return NULL;
-
- for (i = 0; i < scop->pet->n_stmt; ++i) {
- struct gpu_stmt *s = &stmts[i];
- isl_bool killed;
-
- s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
- s->stmt = scop->pet->stmts[i];
- killed = is_stmt_killed(scop, scop->pet->stmts[i]);
- if (killed < 0)
- return free_stmts(stmts, i + 1);
- if (killed)
- continue;
- if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
- return free_stmts(stmts, i + 1);
- }
-
- return stmts;
-}
-
-/* Generate CUDA code for "scop" and print it to "p".
- * After generating an AST for the transformed scop as explained below,
- * we call "gen->print" to print the AST in the desired output format
- * to "p".
- *
- * If it turns out that it does not make sense to generate GPU code,
- * then we generate CPU code instead.
- *
- * The declarations of the arrays that are visible outside of the scop
- * are printed outside of the code generated from the schedule,
- * because the generated code may involve a guard around the entire code.
- *
- * We first compute a schedule that respects the dependences
- * of the original program and select the outermost bands
- * of tilable dimensions that have at least one parallel loop.
- * If the --load-schedule is specified, then the loaded schedule
- * is used instead of a computed schedule.
- *
- * Each of these bands B is then tiled according to "tile" sizes, resulting
- * in two nested bands, with a kernel marker on top
- *
- * K
- * |
- * T
- * |
- * P
- *
- * We then split off at most 2 parallel dimensions from the T band and
- * at most 3 parallel dimension from the P band
- *
- * K
- * |
- * T
- * T1
- * |
- * T2
- * |
- * P1
- * |
- * P2
- *
- * A filter is introduced in front of T1 that maps the domain instances
- * to block identifiers. Similarly, a filter is introduced in front of P1
- * that maps the domain instances to thread identifiers.
- *
- * For each iteration of the T2 band and for each array, we compute
- * the array elements accessed by that iteration, construct a rectangular
- * box around it and shift it to the origin. The result is used
- * as shared memory for the array.
- *
- * Copying and synchronization statements are added to this schedule tree.
- * In principle, these are added in front of the P1 band, but some of
- * them may get hoisted up to higher levels.
- *
- * The entire AST is then generated from the single resulting schedule tree.
- * During the generation the subtrees at kernel nodes (K) are saved
- * aside and replaced by kernel calls. The result is printed as host code
- * while the saved subtrees are printed as device code.
- */
-static __isl_give isl_printer *generate(__isl_take isl_printer *p,
- struct gpu_gen *gen, struct ppcg_scop *scop,
- struct ppcg_options *options)
-{
- struct gpu_prog *prog;
- isl_ctx *ctx;
- isl_schedule *schedule;
- int any_permutable;
-
- if (!scop)
- return isl_printer_free(p);
-
- ctx = isl_printer_get_ctx(p);
- prog = gpu_prog_alloc(ctx, scop);
- if (!prog)
- return isl_printer_free(p);
-
- gen->prog = prog;
- schedule = get_schedule(gen);
-
- any_permutable = has_any_permutable_node(schedule);
- if (any_permutable < 0 || !any_permutable) {
- if (any_permutable < 0)
- p = isl_printer_free(p);
- else
- p = print_cpu(p, scop, options);
- isl_schedule_free(schedule);
- } else {
- const int create_to_from_device = 1;
- schedule = map_to_device(gen, schedule, create_to_from_device);
- gen->tree = generate_code(gen, schedule);
- p = ppcg_set_macro_names(p);
- p = ppcg_print_exposed_declarations(p, prog->scop);
- p = gen->print(p, gen->prog, gen->tree, &gen->types,
- gen->print_user);
- isl_ast_node_free(gen->tree);
- }
-
- gpu_prog_free(prog);
-
- return p;
-}
-
-/* Wrapper around generate for use as a ppcg_transform callback.
- */
-static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
- struct ppcg_scop *scop, void *user)
-{
- struct gpu_gen *gen = user;
-
- return generate(p, gen, scop, gen->options);
-}
-
-/* Transform the code in the file called "input" by replacing
- * all scops by corresponding GPU code and write the results to "out".
- */
-int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
- struct ppcg_options *options,
- __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
- struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
- struct gpu_types *types, void *user), void *user)
-{
- struct gpu_gen gen;
- int r;
- int i;
-
- gen.ctx = ctx;
- gen.sizes = extract_sizes_from_str(ctx, options->sizes);
- gen.options = options;
- gen.kernel_id = 0;
- gen.print = print;
- gen.print_user = user;
- gen.types.n = 0;
- gen.types.name = NULL;
-
- if (options->debug->dump_sizes) {
- isl_space *space = isl_space_params_alloc(ctx, 0);
- gen.used_sizes = isl_union_map_empty(space);
- }
-
- r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
-
- if (options->debug->dump_sizes) {
- isl_union_map_dump(gen.used_sizes);
- isl_union_map_free(gen.used_sizes);
- }
-
- isl_union_map_free(gen.sizes);
- for (i = 0; i < gen.types.n; ++i)
- free(gen.types.name[i]);
- free(gen.types.name);
-
- return r;
-}
-
-/* Compute the set of inner array elements that may have their values
- * preserved by "prog". In particular, collect the array elements of
- * arrays that are not local to "prog" and remove those elements that
- * are definitely killed or definitely written by "prog".
- */
-__isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
-{
- int i;
- isl_union_set *may_persist, *killed;
- isl_union_map *must_kill;
-
- may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
- for (i = 0; i < prog->n_array; ++i) {
- isl_set *extent;
-
- if (prog->array[i].local)
- continue;
-
- extent = isl_set_copy(prog->array[i].extent);
- may_persist = isl_union_set_add_set(may_persist, extent);
- }
-
- may_persist = isl_union_set_intersect_params(may_persist,
- isl_set_copy(prog->context));
- may_persist = isl_union_set_apply(may_persist,
- isl_union_map_copy(prog->to_inner));
- must_kill = isl_union_map_copy(prog->tagged_must_kill);
- killed = isl_union_map_range(must_kill);
- must_kill = isl_union_map_copy(prog->must_write);
- killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
-
- may_persist = isl_union_set_subtract(may_persist, killed);
- return may_persist;
-}
-
-struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
-{
- struct gpu_prog *prog;
- isl_space *space;
- isl_map *id;
-
- if (!scop)
- return NULL;
-
- prog = isl_calloc_type(ctx, struct gpu_prog);
- assert(prog);
-
- prog->ctx = ctx;
- prog->scop = scop;
- prog->context = isl_set_copy(scop->context);
- prog->n_stmts = scop->pet->n_stmt;
- prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
- prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
- space = isl_union_map_get_space(prog->any_to_outer);
- space = isl_space_set_from_params(space);
- space = isl_space_add_dims(space, isl_dim_set, 1);
- space = isl_space_map_from_set(space);
- id = isl_map_identity(space);
- prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
- prog->stmts = extract_stmts(ctx, scop, prog->any_to_outer);
- prog->read = isl_union_map_copy(scop->reads);
- prog->may_write = isl_union_map_copy(scop->may_writes);
- prog->must_write = isl_union_map_copy(scop->must_writes);
- prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
- prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
- prog->to_outer = isl_union_map_copy(prog->to_inner);
- prog->to_outer = isl_union_map_reverse(prog->to_outer);
-
- if (!prog->stmts)
- return gpu_prog_free(prog);
-
- if (collect_array_info(prog) < 0)
- return gpu_prog_free(prog);
- prog->may_persist = compute_may_persist(prog);
-
- return prog;
-}
-
-void *gpu_prog_free(struct gpu_prog *prog)
-{
- if (!prog)
- return NULL;
- free_array_info(prog);
- free_stmts(prog->stmts, prog->n_stmts);
- isl_union_map_free(prog->any_to_outer);
- isl_union_map_free(prog->to_outer);
- isl_union_map_free(prog->to_inner);
- isl_union_map_free(prog->read);
- isl_union_map_free(prog->may_write);
- isl_union_map_free(prog->must_write);
- isl_union_map_free(prog->tagged_must_kill);
- isl_union_map_free(prog->array_order);
- isl_union_set_free(prog->may_persist);
- isl_set_free(prog->context);
- free(prog);
- return NULL;
-}