summaryrefslogtreecommitdiff
path: root/third-party/benchmark/src/complexity.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third-party/benchmark/src/complexity.cc')
-rw-r--r--third-party/benchmark/src/complexity.cc240
1 files changed, 240 insertions, 0 deletions
diff --git a/third-party/benchmark/src/complexity.cc b/third-party/benchmark/src/complexity.cc
new file mode 100644
index 000000000000..29f7c3b03155
--- /dev/null
+++ b/third-party/benchmark/src/complexity.cc
@@ -0,0 +1,240 @@
+// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Source project : https://github.com/ismaelJimenez/cpp.leastsq
+// Adapted to be used with google benchmark
+
+#include "benchmark/benchmark.h"
+
+#include <algorithm>
+#include <cmath>
+#include "check.h"
+#include "complexity.h"
+
+namespace benchmark {
+
+// Internal function to calculate the different scalability forms
+BigOFunc* FittingCurve(BigO complexity) {
+ static const double kLog2E = 1.44269504088896340736;
+ switch (complexity) {
+ case oN:
+ return [](IterationCount n) -> double { return static_cast<double>(n); };
+ case oNSquared:
+ return [](IterationCount n) -> double { return std::pow(n, 2); };
+ case oNCubed:
+ return [](IterationCount n) -> double { return std::pow(n, 3); };
+ case oLogN:
+ /* Note: can't use log2 because Android's GNU STL lacks it */
+ return
+ [](IterationCount n) { return kLog2E * log(static_cast<double>(n)); };
+ case oNLogN:
+ /* Note: can't use log2 because Android's GNU STL lacks it */
+ return [](IterationCount n) {
+ return kLog2E * n * log(static_cast<double>(n));
+ };
+ case o1:
+ default:
+ return [](IterationCount) { return 1.0; };
+ }
+}
+
+// Function to return an string for the calculated complexity
+std::string GetBigOString(BigO complexity) {
+ switch (complexity) {
+ case oN:
+ return "N";
+ case oNSquared:
+ return "N^2";
+ case oNCubed:
+ return "N^3";
+ case oLogN:
+ return "lgN";
+ case oNLogN:
+ return "NlgN";
+ case o1:
+ return "(1)";
+ default:
+ return "f(N)";
+ }
+}
+
+// Find the coefficient for the high-order term in the running time, by
+// minimizing the sum of squares of relative error, for the fitting curve
+// given by the lambda expression.
+// - n : Vector containing the size of the benchmark tests.
+// - time : Vector containing the times for the benchmark tests.
+// - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
+
+// For a deeper explanation on the algorithm logic, please refer to
+// https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics
+
+LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
+ const std::vector<double>& time,
+ BigOFunc* fitting_curve) {
+ double sigma_gn_squared = 0.0;
+ double sigma_time = 0.0;
+ double sigma_time_gn = 0.0;
+
+ // Calculate least square fitting parameter
+ for (size_t i = 0; i < n.size(); ++i) {
+ double gn_i = fitting_curve(n[i]);
+ sigma_gn_squared += gn_i * gn_i;
+ sigma_time += time[i];
+ sigma_time_gn += time[i] * gn_i;
+ }
+
+ LeastSq result;
+ result.complexity = oLambda;
+
+ // Calculate complexity.
+ result.coef = sigma_time_gn / sigma_gn_squared;
+
+ // Calculate RMS
+ double rms = 0.0;
+ for (size_t i = 0; i < n.size(); ++i) {
+ double fit = result.coef * fitting_curve(n[i]);
+ rms += pow((time[i] - fit), 2);
+ }
+
+ // Normalized RMS by the mean of the observed values
+ double mean = sigma_time / n.size();
+ result.rms = sqrt(rms / n.size()) / mean;
+
+ return result;
+}
+
+// Find the coefficient for the high-order term in the running time, by
+// minimizing the sum of squares of relative error.
+// - n : Vector containing the size of the benchmark tests.
+// - time : Vector containing the times for the benchmark tests.
+// - complexity : If different than oAuto, the fitting curve will stick to
+// this one. If it is oAuto, it will be calculated the best
+// fitting curve.
+LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
+ const std::vector<double>& time, const BigO complexity) {
+ CHECK_EQ(n.size(), time.size());
+ CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
+ // benchmark runs are given
+ CHECK_NE(complexity, oNone);
+
+ LeastSq best_fit;
+
+ if (complexity == oAuto) {
+ std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
+
+ // Take o1 as default best fitting curve
+ best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
+ best_fit.complexity = o1;
+
+ // Compute all possible fitting curves and stick to the best one
+ for (const auto& fit : fit_curves) {
+ LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
+ if (current_fit.rms < best_fit.rms) {
+ best_fit = current_fit;
+ best_fit.complexity = fit;
+ }
+ }
+ } else {
+ best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
+ best_fit.complexity = complexity;
+ }
+
+ return best_fit;
+}
+
+std::vector<BenchmarkReporter::Run> ComputeBigO(
+ const std::vector<BenchmarkReporter::Run>& reports) {
+ typedef BenchmarkReporter::Run Run;
+ std::vector<Run> results;
+
+ if (reports.size() < 2) return results;
+
+ // Accumulators.
+ std::vector<int64_t> n;
+ std::vector<double> real_time;
+ std::vector<double> cpu_time;
+
+ // Populate the accumulators.
+ for (const Run& run : reports) {
+ CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
+ n.push_back(run.complexity_n);
+ real_time.push_back(run.real_accumulated_time / run.iterations);
+ cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
+ }
+
+ LeastSq result_cpu;
+ LeastSq result_real;
+
+ if (reports[0].complexity == oLambda) {
+ result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
+ result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
+ } else {
+ result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
+ result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
+ }
+
+ // Drop the 'args' when reporting complexity.
+ auto run_name = reports[0].run_name;
+ run_name.args.clear();
+
+ // Get the data from the accumulator to BenchmarkReporter::Run's.
+ Run big_o;
+ big_o.run_name = run_name;
+ big_o.family_index = reports[0].family_index;
+ big_o.per_family_instance_index = reports[0].per_family_instance_index;
+ big_o.run_type = BenchmarkReporter::Run::RT_Aggregate;
+ big_o.repetitions = reports[0].repetitions;
+ big_o.repetition_index = Run::no_repetition_index;
+ big_o.threads = reports[0].threads;
+ big_o.aggregate_name = "BigO";
+ big_o.report_label = reports[0].report_label;
+ big_o.iterations = 0;
+ big_o.real_accumulated_time = result_real.coef;
+ big_o.cpu_accumulated_time = result_cpu.coef;
+ big_o.report_big_o = true;
+ big_o.complexity = result_cpu.complexity;
+
+ // All the time results are reported after being multiplied by the
+ // time unit multiplier. But since RMS is a relative quantity it
+ // should not be multiplied at all. So, here, we _divide_ it by the
+ // multiplier so that when it is multiplied later the result is the
+ // correct one.
+ double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
+
+ // Only add label to mean/stddev if it is same for all runs
+ Run rms;
+ rms.run_name = run_name;
+ rms.family_index = reports[0].family_index;
+ rms.per_family_instance_index = reports[0].per_family_instance_index;
+ rms.run_type = BenchmarkReporter::Run::RT_Aggregate;
+ rms.aggregate_name = "RMS";
+ rms.report_label = big_o.report_label;
+ rms.iterations = 0;
+ rms.repetition_index = Run::no_repetition_index;
+ rms.repetitions = reports[0].repetitions;
+ rms.threads = reports[0].threads;
+ rms.real_accumulated_time = result_real.rms / multiplier;
+ rms.cpu_accumulated_time = result_cpu.rms / multiplier;
+ rms.report_rms = true;
+ rms.complexity = result_cpu.complexity;
+ // don't forget to keep the time unit, or we won't be able to
+ // recover the correct value.
+ rms.time_unit = reports[0].time_unit;
+
+ results.push_back(big_o);
+ results.push_back(rms);
+ return results;
+}
+
+} // end namespace benchmark