summaryrefslogtreecommitdiff
path: root/third-party/benchmark/src/statistics.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third-party/benchmark/src/statistics.cc')
-rw-r--r--third-party/benchmark/src/statistics.cc195
1 files changed, 195 insertions, 0 deletions
diff --git a/third-party/benchmark/src/statistics.cc b/third-party/benchmark/src/statistics.cc
new file mode 100644
index 000000000000..57472b9ff99b
--- /dev/null
+++ b/third-party/benchmark/src/statistics.cc
@@ -0,0 +1,195 @@
+// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
+// Copyright 2017 Roman Lebedev. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "benchmark/benchmark.h"
+
+#include <algorithm>
+#include <cmath>
+#include <numeric>
+#include <string>
+#include <vector>
+#include "check.h"
+#include "statistics.h"
+
+namespace benchmark {
+
+auto StatisticsSum = [](const std::vector<double>& v) {
+ return std::accumulate(v.begin(), v.end(), 0.0);
+};
+
+double StatisticsMean(const std::vector<double>& v) {
+ if (v.empty()) return 0.0;
+ return StatisticsSum(v) * (1.0 / v.size());
+}
+
+double StatisticsMedian(const std::vector<double>& v) {
+ if (v.size() < 3) return StatisticsMean(v);
+ std::vector<double> copy(v);
+
+ auto center = copy.begin() + v.size() / 2;
+ std::nth_element(copy.begin(), center, copy.end());
+
+ // did we have an odd number of samples?
+ // if yes, then center is the median
+ // it no, then we are looking for the average between center and the value
+ // before
+ if (v.size() % 2 == 1) return *center;
+ auto center2 = copy.begin() + v.size() / 2 - 1;
+ std::nth_element(copy.begin(), center2, copy.end());
+ return (*center + *center2) / 2.0;
+}
+
+// Return the sum of the squares of this sample set
+auto SumSquares = [](const std::vector<double>& v) {
+ return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
+};
+
+auto Sqr = [](const double dat) { return dat * dat; };
+auto Sqrt = [](const double dat) {
+ // Avoid NaN due to imprecision in the calculations
+ if (dat < 0.0) return 0.0;
+ return std::sqrt(dat);
+};
+
+double StatisticsStdDev(const std::vector<double>& v) {
+ const auto mean = StatisticsMean(v);
+ if (v.empty()) return mean;
+
+ // Sample standard deviation is undefined for n = 1
+ if (v.size() == 1) return 0.0;
+
+ const double avg_squares = SumSquares(v) * (1.0 / v.size());
+ return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
+}
+
+std::vector<BenchmarkReporter::Run> ComputeStats(
+ const std::vector<BenchmarkReporter::Run>& reports) {
+ typedef BenchmarkReporter::Run Run;
+ std::vector<Run> results;
+
+ auto error_count =
+ std::count_if(reports.begin(), reports.end(),
+ [](Run const& run) { return run.error_occurred; });
+
+ if (reports.size() - error_count < 2) {
+ // We don't report aggregated data if there was a single run.
+ return results;
+ }
+
+ // Accumulators.
+ std::vector<double> real_accumulated_time_stat;
+ std::vector<double> cpu_accumulated_time_stat;
+
+ real_accumulated_time_stat.reserve(reports.size());
+ cpu_accumulated_time_stat.reserve(reports.size());
+
+ // All repetitions should be run with the same number of iterations so we
+ // can take this information from the first benchmark.
+ const IterationCount run_iterations = reports.front().iterations;
+ // create stats for user counters
+ struct CounterStat {
+ Counter c;
+ std::vector<double> s;
+ };
+ std::map<std::string, CounterStat> counter_stats;
+ for (Run const& r : reports) {
+ for (auto const& cnt : r.counters) {
+ auto it = counter_stats.find(cnt.first);
+ if (it == counter_stats.end()) {
+ counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
+ it = counter_stats.find(cnt.first);
+ it->second.s.reserve(reports.size());
+ } else {
+ CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
+ }
+ }
+ }
+
+ // Populate the accumulators.
+ for (Run const& run : reports) {
+ CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
+ CHECK_EQ(run_iterations, run.iterations);
+ if (run.error_occurred) continue;
+ real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
+ cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
+ // user counters
+ for (auto const& cnt : run.counters) {
+ auto it = counter_stats.find(cnt.first);
+ CHECK_NE(it, counter_stats.end());
+ it->second.s.emplace_back(cnt.second);
+ }
+ }
+
+ // Only add label if it is same for all runs
+ std::string report_label = reports[0].report_label;
+ for (std::size_t i = 1; i < reports.size(); i++) {
+ if (reports[i].report_label != report_label) {
+ report_label = "";
+ break;
+ }
+ }
+
+ const double iteration_rescale_factor =
+ double(reports.size()) / double(run_iterations);
+
+ for (const auto& Stat : *reports[0].statistics) {
+ // Get the data from the accumulator to BenchmarkReporter::Run's.
+ Run data;
+ data.run_name = reports[0].run_name;
+ data.family_index = reports[0].family_index;
+ data.per_family_instance_index = reports[0].per_family_instance_index;
+ data.run_type = BenchmarkReporter::Run::RT_Aggregate;
+ data.threads = reports[0].threads;
+ data.repetitions = reports[0].repetitions;
+ data.repetition_index = Run::no_repetition_index;
+ data.aggregate_name = Stat.name_;
+ data.report_label = report_label;
+
+ // It is incorrect to say that an aggregate is computed over
+ // run's iterations, because those iterations already got averaged.
+ // Similarly, if there are N repetitions with 1 iterations each,
+ // an aggregate will be computed over N measurements, not 1.
+ // Thus it is best to simply use the count of separate reports.
+ data.iterations = reports.size();
+
+ data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
+ data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
+
+ // We will divide these times by data.iterations when reporting, but the
+ // data.iterations is not nessesairly the scale of these measurements,
+ // because in each repetition, these timers are sum over all the iterations.
+ // And if we want to say that the stats are over N repetitions and not
+ // M iterations, we need to multiply these by (N/M).
+ data.real_accumulated_time *= iteration_rescale_factor;
+ data.cpu_accumulated_time *= iteration_rescale_factor;
+
+ data.time_unit = reports[0].time_unit;
+
+ // user counters
+ for (auto const& kv : counter_stats) {
+ // Do *NOT* rescale the custom counters. They are already properly scaled.
+ const auto uc_stat = Stat.compute_(kv.second.s);
+ auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
+ counter_stats[kv.first].c.oneK);
+ data.counters[kv.first] = c;
+ }
+
+ results.push_back(data);
+ }
+
+ return results;
+}
+
+} // end namespace benchmark