1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
|
//===- bolt/Core/BinaryContext.h - Low-level context ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Context for processing binary executable/library files.
//
//===----------------------------------------------------------------------===//
#ifndef BOLT_CORE_BINARY_CONTEXT_H
#define BOLT_CORE_BINARY_CONTEXT_H
#include "bolt/Core/BinaryData.h"
#include "bolt/Core/BinarySection.h"
#include "bolt/Core/DebugData.h"
#include "bolt/Core/JumpTable.h"
#include "bolt/Core/MCPlusBuilder.h"
#include "bolt/RuntimeLibs/RuntimeLibrary.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Triple.h"
#include <functional>
#include <list>
#include <map>
#include <optional>
#include <set>
#include <string>
#include <system_error>
#include <type_traits>
#include <unordered_map>
#include <vector>
namespace llvm {
class MCDisassembler;
class MCInstPrinter;
using namespace object;
namespace bolt {
class BinaryFunction;
class ExecutableFileMemoryManager;
/// Information on loadable part of the file.
struct SegmentInfo {
uint64_t Address; /// Address of the segment in memory.
uint64_t Size; /// Size of the segment in memory.
uint64_t FileOffset; /// Offset in the file.
uint64_t FileSize; /// Size in file.
uint64_t Alignment; /// Alignment of the segment.
void print(raw_ostream &OS) const {
OS << "SegmentInfo { Address: 0x"
<< Twine::utohexstr(Address) << ", Size: 0x"
<< Twine::utohexstr(Size) << ", FileOffset: 0x"
<< Twine::utohexstr(FileOffset) << ", FileSize: 0x"
<< Twine::utohexstr(FileSize) << ", Alignment: 0x"
<< Twine::utohexstr(Alignment) << "}";
};
};
inline raw_ostream &operator<<(raw_ostream &OS, const SegmentInfo &SegInfo) {
SegInfo.print(OS);
return OS;
}
// AArch64-specific symbol markers used to delimit code/data in .text.
enum class MarkerSymType : char {
NONE = 0,
CODE,
DATA,
};
enum class MemoryContentsType : char {
UNKNOWN = 0, /// Unknown contents.
POSSIBLE_JUMP_TABLE, /// Possibly a non-PIC jump table.
POSSIBLE_PIC_JUMP_TABLE, /// Possibly a PIC jump table.
};
/// Helper function to truncate a \p Value to given size in \p Bytes.
inline int64_t truncateToSize(int64_t Value, unsigned Bytes) {
return Value & ((uint64_t)(int64_t)-1 >> (64 - Bytes * 8));
}
/// Filter iterator.
template <typename ItrType,
typename PredType = std::function<bool(const ItrType &)>>
class FilterIterator {
using inner_traits = std::iterator_traits<ItrType>;
using Iterator = FilterIterator;
PredType Pred;
ItrType Itr, End;
void prev() {
while (!Pred(--Itr))
;
}
void next() {
++Itr;
nextMatching();
}
void nextMatching() {
while (Itr != End && !Pred(Itr))
++Itr;
}
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = typename inner_traits::value_type;
using difference_type = typename inner_traits::difference_type;
using pointer = typename inner_traits::pointer;
using reference = typename inner_traits::reference;
Iterator &operator++() { next(); return *this; }
Iterator &operator--() { prev(); return *this; }
Iterator operator++(int) { auto Tmp(Itr); next(); return Tmp; }
Iterator operator--(int) { auto Tmp(Itr); prev(); return Tmp; }
bool operator==(const Iterator &Other) const { return Itr == Other.Itr; }
bool operator!=(const Iterator &Other) const { return !operator==(Other); }
reference operator*() { return *Itr; }
pointer operator->() { return &operator*(); }
FilterIterator(PredType Pred, ItrType Itr, ItrType End)
: Pred(Pred), Itr(Itr), End(End) {
nextMatching();
}
};
class BinaryContext {
BinaryContext() = delete;
/// Name of the binary file the context originated from.
std::string Filename;
/// Unique build ID if available for the binary.
std::optional<std::string> FileBuildID;
/// Set of all sections.
struct CompareSections {
bool operator()(const BinarySection *A, const BinarySection *B) const {
return *A < *B;
}
};
using SectionSetType = std::set<BinarySection *, CompareSections>;
SectionSetType Sections;
using SectionIterator = pointee_iterator<SectionSetType::iterator>;
using SectionConstIterator = pointee_iterator<SectionSetType::const_iterator>;
using FilteredSectionIterator = FilterIterator<SectionIterator>;
using FilteredSectionConstIterator = FilterIterator<SectionConstIterator>;
/// Map virtual address to a section. It is possible to have more than one
/// section mapped to the same address, e.g. non-allocatable sections.
using AddressToSectionMapType = std::multimap<uint64_t, BinarySection *>;
AddressToSectionMapType AddressToSection;
/// multimap of section name to BinarySection object. Some binaries
/// have multiple sections with the same name.
using NameToSectionMapType = std::multimap<std::string, BinarySection *>;
NameToSectionMapType NameToSection;
/// Map section references to BinarySection for matching sections in the
/// input file to internal section representation.
DenseMap<SectionRef, BinarySection *> SectionRefToBinarySection;
/// Low level section registration.
BinarySection ®isterSection(BinarySection *Section);
/// Store all functions in the binary, sorted by original address.
std::map<uint64_t, BinaryFunction> BinaryFunctions;
/// A mutex that is used to control parallel accesses to BinaryFunctions
mutable llvm::sys::RWMutex BinaryFunctionsMutex;
/// Functions injected by BOLT
std::vector<BinaryFunction *> InjectedBinaryFunctions;
/// Jump tables for all functions mapped by address.
std::map<uint64_t, JumpTable *> JumpTables;
/// Locations of PC-relative relocations in data objects.
std::unordered_set<uint64_t> DataPCRelocations;
/// Used in duplicateJumpTable() to uniquely identify a JT clone
/// Start our IDs with a high number so getJumpTableContainingAddress checks
/// with size won't overflow
uint32_t DuplicatedJumpTables{0x10000000};
/// Function fragments to skip.
std::unordered_set<BinaryFunction *> FragmentsToSkip;
/// The runtime library.
std::unique_ptr<RuntimeLibrary> RtLibrary;
/// DWP Context.
std::shared_ptr<DWARFContext> DWPContext;
/// A map of DWO Ids to CUs.
using DWOIdToCUMapType = std::unordered_map<uint64_t, DWARFUnit *>;
DWOIdToCUMapType DWOCUs;
bool ContainsDwarf5{false};
bool ContainsDwarfLegacy{false};
/// Preprocess DWO debug information.
void preprocessDWODebugInfo();
/// DWARF line info for CUs.
std::map<unsigned, DwarfLineTable> DwarfLineTablesCUMap;
/// Internal helper for removing section name from a lookup table.
void deregisterSectionName(const BinarySection &Section);
public:
static Expected<std::unique_ptr<BinaryContext>>
createBinaryContext(const ObjectFile *File, bool IsPIC,
std::unique_ptr<DWARFContext> DwCtx);
/// Superset of compiler units that will contain overwritten code that needs
/// new debug info. In a few cases, functions may end up not being
/// overwritten, but it is okay to re-generate debug info for them.
std::set<const DWARFUnit *> ProcessedCUs;
// Setup MCPlus target builder
void initializeTarget(std::unique_ptr<MCPlusBuilder> TargetBuilder) {
MIB = std::move(TargetBuilder);
}
/// Return function fragments to skip.
const std::unordered_set<BinaryFunction *> &getFragmentsToSkip() {
return FragmentsToSkip;
}
/// Add function fragment to skip
void addFragmentsToSkip(BinaryFunction *Function) {
FragmentsToSkip.insert(Function);
}
void clearFragmentsToSkip() { FragmentsToSkip.clear(); }
/// Given DWOId returns CU if it exists in DWOCUs.
std::optional<DWARFUnit *> getDWOCU(uint64_t DWOId);
/// Returns DWOContext if it exists.
DWARFContext *getDWOContext() const;
/// Get Number of DWOCUs in a map.
uint32_t getNumDWOCUs() { return DWOCUs.size(); }
/// Returns true if DWARF5 is used.
bool isDWARF5Used() const { return ContainsDwarf5; }
/// Returns true if DWARF4 or lower is used.
bool isDWARFLegacyUsed() const { return ContainsDwarfLegacy; }
std::map<unsigned, DwarfLineTable> &getDwarfLineTables() {
return DwarfLineTablesCUMap;
}
DwarfLineTable &getDwarfLineTable(unsigned CUID) {
return DwarfLineTablesCUMap[CUID];
}
Expected<unsigned> getDwarfFile(StringRef Directory, StringRef FileName,
unsigned FileNumber,
std::optional<MD5::MD5Result> Checksum,
std::optional<StringRef> Source,
unsigned CUID, unsigned DWARFVersion);
/// [start memory address] -> [segment info] mapping.
std::map<uint64_t, SegmentInfo> SegmentMapInfo;
/// Symbols that are expected to be undefined in MCContext during emission.
std::unordered_set<MCSymbol *> UndefinedSymbols;
/// [name] -> [BinaryData*] map used for global symbol resolution.
using SymbolMapType = StringMap<BinaryData *>;
SymbolMapType GlobalSymbols;
/// [address] -> [BinaryData], ...
/// Addresses never change.
/// Note: it is important that clients do not hold on to instances of
/// BinaryData* while the map is still being modified during BinaryFunction
/// disassembly. This is because of the possibility that a regular
/// BinaryData is later discovered to be a JumpTable.
using BinaryDataMapType = std::map<uint64_t, BinaryData *>;
using binary_data_iterator = BinaryDataMapType::iterator;
using binary_data_const_iterator = BinaryDataMapType::const_iterator;
BinaryDataMapType BinaryDataMap;
using FilteredBinaryDataConstIterator =
FilterIterator<binary_data_const_iterator>;
using FilteredBinaryDataIterator = FilterIterator<binary_data_iterator>;
/// Memory manager for sections and segments. Used to communicate with ORC
/// among other things.
std::shared_ptr<ExecutableFileMemoryManager> EFMM;
StringRef getFilename() const { return Filename; }
void setFilename(StringRef Name) { Filename = std::string(Name); }
std::optional<StringRef> getFileBuildID() const {
if (FileBuildID)
return StringRef(*FileBuildID);
return std::nullopt;
}
void setFileBuildID(StringRef ID) { FileBuildID = std::string(ID); }
bool hasSymbolsWithFileName() const { return HasSymbolsWithFileName; }
void setHasSymbolsWithFileName(bool Value) { HasSymbolsWithFileName = true; }
/// Return true if relocations against symbol with a given name
/// must be created.
bool forceSymbolRelocations(StringRef SymbolName) const;
uint64_t getNumUnusedProfiledObjects() const {
return NumUnusedProfiledObjects;
}
void setNumUnusedProfiledObjects(uint64_t N) { NumUnusedProfiledObjects = N; }
RuntimeLibrary *getRuntimeLibrary() { return RtLibrary.get(); }
void setRuntimeLibrary(std::unique_ptr<RuntimeLibrary> Lib) {
assert(!RtLibrary && "Cannot set runtime library twice.");
RtLibrary = std::move(Lib);
}
/// Return BinaryFunction containing a given \p Address or nullptr if
/// no registered function contains the \p Address.
///
/// In a binary a function has somewhat vague boundaries. E.g. a function can
/// refer to the first byte past the end of the function, and it will still be
/// referring to this function, not the function following it in the address
/// space. Thus we have the following flags that allow to lookup for
/// a function where a caller has more context for the search.
///
/// If \p CheckPastEnd is true and the \p Address falls on a byte
/// immediately following the last byte of some function and there's no other
/// function that starts there, then return the function as the one containing
/// the \p Address. This is useful when we need to locate functions for
/// references pointing immediately past a function body.
///
/// If \p UseMaxSize is true, then include the space between this function
/// body and the next object in address ranges that we check.
BinaryFunction *getBinaryFunctionContainingAddress(uint64_t Address,
bool CheckPastEnd = false,
bool UseMaxSize = false);
const BinaryFunction *
getBinaryFunctionContainingAddress(uint64_t Address,
bool CheckPastEnd = false,
bool UseMaxSize = false) const {
return const_cast<BinaryContext *>(this)
->getBinaryFunctionContainingAddress(Address, CheckPastEnd, UseMaxSize);
}
/// Return a BinaryFunction that starts at a given \p Address.
BinaryFunction *getBinaryFunctionAtAddress(uint64_t Address);
const BinaryFunction *getBinaryFunctionAtAddress(uint64_t Address) const {
return const_cast<BinaryContext *>(this)->getBinaryFunctionAtAddress(
Address);
}
/// Return size of an entry for the given jump table \p Type.
uint64_t getJumpTableEntrySize(JumpTable::JumpTableType Type) const {
return Type == JumpTable::JTT_PIC ? 4 : AsmInfo->getCodePointerSize();
}
/// Return JumpTable containing a given \p Address.
JumpTable *getJumpTableContainingAddress(uint64_t Address) {
auto JTI = JumpTables.upper_bound(Address);
if (JTI == JumpTables.begin())
return nullptr;
--JTI;
if (JTI->first + JTI->second->getSize() > Address)
return JTI->second;
if (JTI->second->getSize() == 0 && JTI->first == Address)
return JTI->second;
return nullptr;
}
unsigned getDWARFEncodingSize(unsigned Encoding) {
if (Encoding == dwarf::DW_EH_PE_omit)
return 0;
switch (Encoding & 0x0f) {
default:
llvm_unreachable("unknown encoding");
case dwarf::DW_EH_PE_absptr:
case dwarf::DW_EH_PE_signed:
return AsmInfo->getCodePointerSize();
case dwarf::DW_EH_PE_udata2:
case dwarf::DW_EH_PE_sdata2:
return 2;
case dwarf::DW_EH_PE_udata4:
case dwarf::DW_EH_PE_sdata4:
return 4;
case dwarf::DW_EH_PE_udata8:
case dwarf::DW_EH_PE_sdata8:
return 8;
}
}
/// [MCSymbol] -> [BinaryFunction]
///
/// As we fold identical functions, multiple symbols can point
/// to the same BinaryFunction.
std::unordered_map<const MCSymbol *, BinaryFunction *> SymbolToFunctionMap;
/// A mutex that is used to control parallel accesses to SymbolToFunctionMap
mutable llvm::sys::RWMutex SymbolToFunctionMapMutex;
/// Look up the symbol entry that contains the given \p Address (based on
/// the start address and size for each symbol). Returns a pointer to
/// the BinaryData for that symbol. If no data is found, nullptr is returned.
const BinaryData *getBinaryDataContainingAddressImpl(uint64_t Address) const;
/// Update the Parent fields in BinaryDatas after adding a new entry into
/// \p BinaryDataMap.
void updateObjectNesting(BinaryDataMapType::iterator GAI);
/// Validate that if object address ranges overlap that the object with
/// the larger range is a parent of the object with the smaller range.
bool validateObjectNesting() const;
/// Validate that there are no top level "holes" in each section
/// and that all relocations with a section are mapped to a valid
/// top level BinaryData.
bool validateHoles() const;
/// Produce output address ranges based on input ranges for some module.
DebugAddressRangesVector translateModuleAddressRanges(
const DWARFAddressRangesVector &InputRanges) const;
/// Get a bogus "absolute" section that will be associated with all
/// absolute BinaryDatas.
BinarySection &absoluteSection();
/// Process "holes" in between known BinaryData objects. For now,
/// symbols are padded with the space before the next BinaryData object.
void fixBinaryDataHoles();
/// Generate names based on data hashes for unknown symbols.
void generateSymbolHashes();
/// Construct BinaryFunction object and add it to internal maps.
BinaryFunction *createBinaryFunction(const std::string &Name,
BinarySection &Section, uint64_t Address,
uint64_t Size, uint64_t SymbolSize = 0,
uint16_t Alignment = 0);
/// Return all functions for this rewrite instance.
std::map<uint64_t, BinaryFunction> &getBinaryFunctions() {
return BinaryFunctions;
}
/// Return all functions for this rewrite instance.
const std::map<uint64_t, BinaryFunction> &getBinaryFunctions() const {
return BinaryFunctions;
}
/// Create BOLT-injected function
BinaryFunction *createInjectedBinaryFunction(const std::string &Name,
bool IsSimple = true);
std::vector<BinaryFunction *> &getInjectedBinaryFunctions() {
return InjectedBinaryFunctions;
}
/// Return vector with all functions, i.e. include functions from the input
/// binary and functions created by BOLT.
std::vector<BinaryFunction *> getAllBinaryFunctions();
/// Construct a jump table for \p Function at \p Address or return an existing
/// one at that location.
///
/// May create an embedded jump table and return its label as the second
/// element of the pair.
const MCSymbol *getOrCreateJumpTable(BinaryFunction &Function,
uint64_t Address,
JumpTable::JumpTableType Type);
/// Analyze a possible jump table of type \p Type at a given \p Address.
/// \p BF is a function referencing the jump table.
/// Return true if the jump table was detected at \p Address, and false
/// otherwise.
///
/// If \p NextJTAddress is different from zero, it is used as an upper
/// bound for jump table memory layout.
///
/// Optionally, populate \p Address from jump table entries. The entries
/// could be partially populated if the jump table detection fails.
bool analyzeJumpTable(const uint64_t Address,
const JumpTable::JumpTableType Type,
const BinaryFunction &BF,
const uint64_t NextJTAddress = 0,
JumpTable::AddressesType *EntriesAsAddress = nullptr,
bool *HasEntryInFragment = nullptr) const;
/// After jump table locations are established, this function will populate
/// their EntriesAsAddress based on memory contents.
void populateJumpTables();
/// Returns a jump table ID and label pointing to the duplicated jump table.
/// Ordinarily, jump tables are identified by their address in the input
/// binary. We return an ID with the high bit set to differentiate it from
/// regular addresses, avoiding conflicts with standard jump tables.
std::pair<uint64_t, const MCSymbol *>
duplicateJumpTable(BinaryFunction &Function, JumpTable *JT,
const MCSymbol *OldLabel);
/// Generate a unique name for jump table at a given \p Address belonging
/// to function \p BF.
std::string generateJumpTableName(const BinaryFunction &BF, uint64_t Address);
/// Free memory used by JumpTable's EntriesAsAddress
void clearJumpTableTempData() {
for (auto &JTI : JumpTables) {
JumpTable &JT = *JTI.second;
JumpTable::AddressesType Temp;
Temp.swap(JT.EntriesAsAddress);
}
}
/// Return true if the array of bytes represents a valid code padding.
bool hasValidCodePadding(const BinaryFunction &BF);
/// Verify padding area between functions, and adjust max function size
/// accordingly.
void adjustCodePadding();
/// Regular page size.
unsigned RegularPageSize{0x1000};
static constexpr unsigned RegularPageSizeX86 = 0x1000;
static constexpr unsigned RegularPageSizeAArch64 = 0x10000;
/// Huge page size to use.
static constexpr unsigned HugePageSize = 0x200000;
/// Map address to a constant island owner (constant data in code section)
std::map<uint64_t, BinaryFunction *> AddressToConstantIslandMap;
/// A map from jump table address to insertion order. Used for generating
/// jump table names.
std::map<uint64_t, size_t> JumpTableIds;
std::unique_ptr<MCContext> Ctx;
/// A mutex that is used to control parallel accesses to Ctx
mutable llvm::sys::RWMutex CtxMutex;
std::unique_lock<llvm::sys::RWMutex> scopeLock() const {
return std::unique_lock<llvm::sys::RWMutex>(CtxMutex);
}
std::unique_ptr<DWARFContext> DwCtx;
std::unique_ptr<Triple> TheTriple;
const Target *TheTarget;
std::string TripleName;
std::unique_ptr<MCCodeEmitter> MCE;
std::unique_ptr<MCObjectFileInfo> MOFI;
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<const MCSubtargetInfo> STI;
std::unique_ptr<MCInstPrinter> InstPrinter;
std::unique_ptr<const MCInstrAnalysis> MIA;
std::unique_ptr<MCPlusBuilder> MIB;
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<MCDisassembler> DisAsm;
/// Symbolic disassembler.
std::unique_ptr<MCDisassembler> SymbolicDisAsm;
std::unique_ptr<MCAsmBackend> MAB;
/// Indicates if relocations are available for usage.
bool HasRelocations{false};
/// Indicates if the binary is stripped
bool IsStripped{false};
/// Indicates if the binary contains split functions.
bool HasSplitFunctions{false};
/// Is the binary always loaded at a fixed address. Shared objects and
/// position-independent executables (PIEs) are examples of binaries that
/// will have HasFixedLoadAddress set to false.
bool HasFixedLoadAddress{true};
/// True if the binary has no dynamic dependencies, i.e., if it was statically
/// linked.
bool IsStaticExecutable{false};
/// Set to true if the binary contains PT_INTERP header.
bool HasInterpHeader{false};
/// Indicates if any of local symbols used for functions or data objects
/// have an origin file name available.
bool HasSymbolsWithFileName{false};
/// Sum of execution count of all functions
uint64_t SumExecutionCount{0};
/// Number of functions with profile information
uint64_t NumProfiledFuncs{0};
/// Number of functions with stale profile information
uint64_t NumStaleProfileFuncs{0};
/// Number of objects in profile whose profile was ignored.
uint64_t NumUnusedProfiledObjects{0};
/// Total hotness score according to profiling data for this binary.
uint64_t TotalScore{0};
/// Binary-wide stats for macro-fusion.
uint64_t MissedMacroFusionPairs{0};
uint64_t MissedMacroFusionExecCount{0};
// Address of the first allocated segment.
uint64_t FirstAllocAddress{std::numeric_limits<uint64_t>::max()};
/// Track next available address for new allocatable sections. RewriteInstance
/// sets this prior to running BOLT passes, so layout passes are aware of the
/// final addresses functions will have.
uint64_t LayoutStartAddress{0};
/// Old .text info.
uint64_t OldTextSectionAddress{0};
uint64_t OldTextSectionOffset{0};
uint64_t OldTextSectionSize{0};
/// Address of the code/function that is executed before any other code in
/// the binary.
std::optional<uint64_t> StartFunctionAddress;
/// Address of the code/function that is going to be executed right before
/// the execution of the binary is completed.
std::optional<uint64_t> FiniFunctionAddress;
/// Page alignment used for code layout.
uint64_t PageAlign{HugePageSize};
/// True if the binary requires immediate relocation processing.
bool RequiresZNow{false};
/// List of functions that always trap.
std::vector<const BinaryFunction *> TrappedFunctions;
/// Map SDT locations to SDT markers info
std::unordered_map<uint64_t, SDTMarkerInfo> SDTMarkers;
/// Map linux kernel program locations/instructions to their pointers in
/// special linux kernel sections
std::unordered_map<uint64_t, std::vector<LKInstructionMarkerInfo>> LKMarkers;
/// List of external addresses in the code that are not a function start
/// and are referenced from BinaryFunction.
std::list<std::pair<BinaryFunction *, uint64_t>> InterproceduralReferences;
/// PseudoProbe decoder
MCPseudoProbeDecoder ProbeDecoder;
/// DWARF encoding. Available encoding types defined in BinaryFormat/Dwarf.h
/// enum Constants, e.g. DW_EH_PE_omit.
unsigned LSDAEncoding = dwarf::DW_EH_PE_omit;
BinaryContext(std::unique_ptr<MCContext> Ctx,
std::unique_ptr<DWARFContext> DwCtx,
std::unique_ptr<Triple> TheTriple, const Target *TheTarget,
std::string TripleName, std::unique_ptr<MCCodeEmitter> MCE,
std::unique_ptr<MCObjectFileInfo> MOFI,
std::unique_ptr<const MCAsmInfo> AsmInfo,
std::unique_ptr<const MCInstrInfo> MII,
std::unique_ptr<const MCSubtargetInfo> STI,
std::unique_ptr<MCInstPrinter> InstPrinter,
std::unique_ptr<const MCInstrAnalysis> MIA,
std::unique_ptr<MCPlusBuilder> MIB,
std::unique_ptr<const MCRegisterInfo> MRI,
std::unique_ptr<MCDisassembler> DisAsm);
~BinaryContext();
std::unique_ptr<MCObjectWriter> createObjectWriter(raw_pwrite_stream &OS);
bool isELF() const { return TheTriple->isOSBinFormatELF(); }
bool isMachO() const { return TheTriple->isOSBinFormatMachO(); }
bool isAArch64() const {
return TheTriple->getArch() == llvm::Triple::aarch64;
}
bool isX86() const {
return TheTriple->getArch() == llvm::Triple::x86 ||
TheTriple->getArch() == llvm::Triple::x86_64;
}
// AArch64-specific functions to check if symbol is used to delimit
// code/data in .text. Code is marked by $x, data by $d.
MarkerSymType getMarkerType(const SymbolRef &Symbol) const;
bool isMarker(const SymbolRef &Symbol) const;
/// Iterate over all BinaryData.
iterator_range<binary_data_const_iterator> getBinaryData() const {
return make_range(BinaryDataMap.begin(), BinaryDataMap.end());
}
/// Iterate over all BinaryData.
iterator_range<binary_data_iterator> getBinaryData() {
return make_range(BinaryDataMap.begin(), BinaryDataMap.end());
}
/// Iterate over all BinaryData associated with the given \p Section.
iterator_range<FilteredBinaryDataConstIterator>
getBinaryDataForSection(const BinarySection &Section) const {
auto Begin = BinaryDataMap.lower_bound(Section.getAddress());
if (Begin != BinaryDataMap.begin())
--Begin;
auto End = BinaryDataMap.upper_bound(Section.getEndAddress());
auto pred = [&Section](const binary_data_const_iterator &Itr) -> bool {
return Itr->second->getSection() == Section;
};
return make_range(FilteredBinaryDataConstIterator(pred, Begin, End),
FilteredBinaryDataConstIterator(pred, End, End));
}
/// Iterate over all BinaryData associated with the given \p Section.
iterator_range<FilteredBinaryDataIterator>
getBinaryDataForSection(BinarySection &Section) {
auto Begin = BinaryDataMap.lower_bound(Section.getAddress());
if (Begin != BinaryDataMap.begin())
--Begin;
auto End = BinaryDataMap.upper_bound(Section.getEndAddress());
auto pred = [&Section](const binary_data_iterator &Itr) -> bool {
return Itr->second->getSection() == Section;
};
return make_range(FilteredBinaryDataIterator(pred, Begin, End),
FilteredBinaryDataIterator(pred, End, End));
}
/// Iterate over all the sub-symbols of /p BD (if any).
iterator_range<binary_data_iterator> getSubBinaryData(BinaryData *BD);
/// Clear the global symbol address -> name(s) map.
void clearBinaryData() {
GlobalSymbols.clear();
for (auto &Entry : BinaryDataMap)
delete Entry.second;
BinaryDataMap.clear();
}
/// Process \p Address reference from code in function \BF.
/// \p IsPCRel indicates if the reference is PC-relative.
/// Return <Symbol, Addend> pair corresponding to the \p Address.
std::pair<const MCSymbol *, uint64_t>
handleAddressRef(uint64_t Address, BinaryFunction &BF, bool IsPCRel);
/// Analyze memory contents at the given \p Address and return the type of
/// memory contents (such as a possible jump table).
MemoryContentsType analyzeMemoryAt(uint64_t Address, BinaryFunction &BF);
/// Return a value of the global \p Symbol or an error if the value
/// was not set.
ErrorOr<uint64_t> getSymbolValue(const MCSymbol &Symbol) const {
const BinaryData *BD = getBinaryDataByName(Symbol.getName());
if (!BD)
return std::make_error_code(std::errc::bad_address);
return BD->getAddress();
}
/// Return a global symbol registered at a given \p Address and \p Size.
/// If no symbol exists, create one with unique name using \p Prefix.
/// If there are multiple symbols registered at the \p Address, then
/// return the first one.
MCSymbol *getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix,
uint64_t Size = 0, uint16_t Alignment = 0,
unsigned Flags = 0);
/// Create a global symbol without registering an address.
MCSymbol *getOrCreateUndefinedGlobalSymbol(StringRef Name);
/// Register a symbol with \p Name at a given \p Address using \p Size,
/// \p Alignment, and \p Flags. See llvm::SymbolRef::Flags for the definition
/// of \p Flags.
MCSymbol *registerNameAtAddress(StringRef Name, uint64_t Address,
uint64_t Size, uint16_t Alignment,
unsigned Flags = 0);
/// Return BinaryData registered at a given \p Address or nullptr if no
/// global symbol was registered at the location.
const BinaryData *getBinaryDataAtAddress(uint64_t Address) const {
auto NI = BinaryDataMap.find(Address);
return NI != BinaryDataMap.end() ? NI->second : nullptr;
}
BinaryData *getBinaryDataAtAddress(uint64_t Address) {
auto NI = BinaryDataMap.find(Address);
return NI != BinaryDataMap.end() ? NI->second : nullptr;
}
/// Look up the symbol entry that contains the given \p Address (based on
/// the start address and size for each symbol). Returns a pointer to
/// the BinaryData for that symbol. If no data is found, nullptr is returned.
const BinaryData *getBinaryDataContainingAddress(uint64_t Address) const {
return getBinaryDataContainingAddressImpl(Address);
}
BinaryData *getBinaryDataContainingAddress(uint64_t Address) {
return const_cast<BinaryData *>(
getBinaryDataContainingAddressImpl(Address));
}
/// Return BinaryData for the given \p Name or nullptr if no
/// global symbol with that name exists.
const BinaryData *getBinaryDataByName(StringRef Name) const {
auto Itr = GlobalSymbols.find(Name);
return Itr != GlobalSymbols.end() ? Itr->second : nullptr;
}
BinaryData *getBinaryDataByName(StringRef Name) {
auto Itr = GlobalSymbols.find(Name);
return Itr != GlobalSymbols.end() ? Itr->second : nullptr;
}
/// Return registered PLT entry BinaryData with the given \p Name
/// or nullptr if no global PLT symbol with that name exists.
const BinaryData *getPLTBinaryDataByName(StringRef Name) const {
if (const BinaryData *Data = getBinaryDataByName(Name.str() + "@PLT"))
return Data;
// The symbol name might contain versioning information e.g
// memcpy@@GLIBC_2.17. Remove it and try to locate binary data
// without it.
size_t At = Name.find("@");
if (At != std::string::npos)
return getBinaryDataByName(Name.str().substr(0, At) + "@PLT");
return nullptr;
}
/// Return true if \p SymbolName was generated internally and was not present
/// in the input binary.
bool isInternalSymbolName(const StringRef Name) {
return Name.startswith("SYMBOLat") || Name.startswith("DATAat") ||
Name.startswith("HOLEat");
}
MCSymbol *getHotTextStartSymbol() const {
return Ctx->getOrCreateSymbol("__hot_start");
}
MCSymbol *getHotTextEndSymbol() const {
return Ctx->getOrCreateSymbol("__hot_end");
}
MCSection *getTextSection() const { return MOFI->getTextSection(); }
/// Return code section with a given name.
MCSection *getCodeSection(StringRef SectionName) const {
if (isELF())
return Ctx->getELFSection(SectionName, ELF::SHT_PROGBITS,
ELF::SHF_EXECINSTR | ELF::SHF_ALLOC);
else
return Ctx->getMachOSection("__TEXT", SectionName,
MachO::S_ATTR_PURE_INSTRUCTIONS,
SectionKind::getText());
}
/// Return data section with a given name.
MCSection *getDataSection(StringRef SectionName) const {
return Ctx->getELFSection(SectionName, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
}
/// \name Pre-assigned Section Names
/// @{
const char *getMainCodeSectionName() const { return ".text"; }
const char *getColdCodeSectionName() const { return ".text.cold"; }
const char *getHotTextMoverSectionName() const { return ".text.mover"; }
const char *getInjectedCodeSectionName() const { return ".text.injected"; }
const char *getInjectedColdCodeSectionName() const {
return ".text.injected.cold";
}
ErrorOr<BinarySection &> getGdbIndexSection() const {
return getUniqueSectionByName(".gdb_index");
}
/// @}
/// Register \p TargetFunction as a fragment of \p Function if checks pass:
/// - if \p TargetFunction name matches \p Function name with a suffix:
/// fragment_name == parent_name.cold(.\d+)?
/// True if the Function is registered, false if the check failed.
bool registerFragment(BinaryFunction &TargetFunction,
BinaryFunction &Function) const;
/// Add unterprocedural reference for \p Function to \p Address
void addInterproceduralReference(BinaryFunction *Function, uint64_t Address) {
InterproceduralReferences.push_back({Function, Address});
}
/// Used to fix the target of linker-generated AArch64 adrp + add
/// sequence with no relocation info.
void addAdrpAddRelocAArch64(BinaryFunction &BF, MCInst &LoadLowBits,
MCInst &LoadHiBits, uint64_t Target);
/// Return true if AARch64 veneer was successfully matched at a given
/// \p Address and register veneer binary function if \p MatchOnly
/// argument is false.
bool handleAArch64Veneer(uint64_t Address, bool MatchOnly = false);
/// Resolve inter-procedural dependencies from
void processInterproceduralReferences();
/// Skip functions with all parent and child fragments transitively.
void skipMarkedFragments();
/// Perform any necessary post processing on the symbol table after
/// function disassembly is complete. This processing fixes top
/// level data holes and makes sure the symbol table is valid.
/// It also assigns all memory profiling info to the appropriate
/// BinaryData objects.
void postProcessSymbolTable();
/// Set the size of the global symbol located at \p Address. Return
/// false if no symbol exists, true otherwise.
bool setBinaryDataSize(uint64_t Address, uint64_t Size);
/// Print the global symbol table.
void printGlobalSymbols(raw_ostream &OS) const;
/// Register information about the given \p Section so we can look up
/// sections by address.
BinarySection ®isterSection(SectionRef Section);
/// Register a copy of /p OriginalSection under a different name.
BinarySection ®isterSection(const Twine &SectionName,
const BinarySection &OriginalSection);
/// Register or update the information for the section with the given
/// /p Name. If the section already exists, the information in the
/// section will be updated with the new data.
BinarySection ®isterOrUpdateSection(const Twine &Name, unsigned ELFType,
unsigned ELFFlags,
uint8_t *Data = nullptr,
uint64_t Size = 0,
unsigned Alignment = 1);
/// Register the information for the note (non-allocatable) section
/// with the given /p Name. If the section already exists, the
/// information in the section will be updated with the new data.
BinarySection &
registerOrUpdateNoteSection(const Twine &Name, uint8_t *Data = nullptr,
uint64_t Size = 0, unsigned Alignment = 1,
bool IsReadOnly = true,
unsigned ELFType = ELF::SHT_PROGBITS) {
return registerOrUpdateSection(Name, ELFType,
BinarySection::getFlags(IsReadOnly), Data,
Size, Alignment);
}
/// Remove sections that were preregistered but never used.
void deregisterUnusedSections();
/// Remove the given /p Section from the set of all sections. Return
/// true if the section was removed (and deleted), otherwise false.
bool deregisterSection(BinarySection &Section);
/// Re-register \p Section under the \p NewName.
void renameSection(BinarySection &Section, const Twine &NewName);
/// Iterate over all registered sections.
iterator_range<FilteredSectionIterator> sections() {
auto notNull = [](const SectionIterator &Itr) { return (bool)*Itr; };
return make_range(
FilteredSectionIterator(notNull, Sections.begin(), Sections.end()),
FilteredSectionIterator(notNull, Sections.end(), Sections.end()));
}
/// Iterate over all registered sections.
iterator_range<FilteredSectionConstIterator> sections() const {
return const_cast<BinaryContext *>(this)->sections();
}
/// Iterate over all registered allocatable sections.
iterator_range<FilteredSectionIterator> allocatableSections() {
auto isAllocatable = [](const SectionIterator &Itr) {
return *Itr && Itr->isAllocatable();
};
return make_range(
FilteredSectionIterator(isAllocatable, Sections.begin(),
Sections.end()),
FilteredSectionIterator(isAllocatable, Sections.end(), Sections.end()));
}
/// Iterate over all registered code sections.
iterator_range<FilteredSectionIterator> textSections() {
auto isText = [](const SectionIterator &Itr) {
return *Itr && Itr->isAllocatable() && Itr->isText();
};
return make_range(
FilteredSectionIterator(isText, Sections.begin(), Sections.end()),
FilteredSectionIterator(isText, Sections.end(), Sections.end()));
}
/// Iterate over all registered allocatable sections.
iterator_range<FilteredSectionConstIterator> allocatableSections() const {
return const_cast<BinaryContext *>(this)->allocatableSections();
}
/// Iterate over all registered non-allocatable sections.
iterator_range<FilteredSectionIterator> nonAllocatableSections() {
auto notAllocated = [](const SectionIterator &Itr) {
return *Itr && !Itr->isAllocatable();
};
return make_range(
FilteredSectionIterator(notAllocated, Sections.begin(), Sections.end()),
FilteredSectionIterator(notAllocated, Sections.end(), Sections.end()));
}
/// Iterate over all registered non-allocatable sections.
iterator_range<FilteredSectionConstIterator> nonAllocatableSections() const {
return const_cast<BinaryContext *>(this)->nonAllocatableSections();
}
/// Iterate over all allocatable relocation sections.
iterator_range<FilteredSectionIterator> allocatableRelaSections() {
auto isAllocatableRela = [](const SectionIterator &Itr) {
return *Itr && Itr->isAllocatable() && Itr->isRela();
};
return make_range(FilteredSectionIterator(isAllocatableRela,
Sections.begin(), Sections.end()),
FilteredSectionIterator(isAllocatableRela, Sections.end(),
Sections.end()));
}
/// Return base address for the shared object or PIE based on the segment
/// mapping information. \p MMapAddress is an address where one of the
/// segments was mapped. \p FileOffset is the offset in the file of the
/// mapping. Note that \p FileOffset should be page-aligned and could be
/// different from the file offset of the segment which could be unaligned.
/// If no segment is found that matches \p FileOffset, return std::nullopt.
std::optional<uint64_t> getBaseAddressForMapping(uint64_t MMapAddress,
uint64_t FileOffset) const;
/// Check if the address belongs to this binary's static allocation space.
bool containsAddress(uint64_t Address) const {
return Address >= FirstAllocAddress && Address < LayoutStartAddress;
}
/// Return section name containing the given \p Address.
ErrorOr<StringRef> getSectionNameForAddress(uint64_t Address) const;
/// Print all sections.
void printSections(raw_ostream &OS) const;
/// Return largest section containing the given \p Address. These
/// functions only work for allocatable sections, i.e. ones with non-zero
/// addresses.
ErrorOr<BinarySection &> getSectionForAddress(uint64_t Address);
ErrorOr<const BinarySection &> getSectionForAddress(uint64_t Address) const {
return const_cast<BinaryContext *>(this)->getSectionForAddress(Address);
}
/// Return internal section representation for a section in a file.
BinarySection *getSectionForSectionRef(SectionRef Section) const {
return SectionRefToBinarySection.lookup(Section);
}
/// Return section(s) associated with given \p Name.
iterator_range<NameToSectionMapType::iterator>
getSectionByName(const Twine &Name) {
return make_range(NameToSection.equal_range(Name.str()));
}
iterator_range<NameToSectionMapType::const_iterator>
getSectionByName(const Twine &Name) const {
return make_range(NameToSection.equal_range(Name.str()));
}
/// Return the unique section associated with given \p Name.
/// If there is more than one section with the same name, return an error
/// object.
ErrorOr<BinarySection &>
getUniqueSectionByName(const Twine &SectionName) const {
auto Sections = getSectionByName(SectionName);
if (Sections.begin() != Sections.end() &&
std::next(Sections.begin()) == Sections.end())
return *Sections.begin()->second;
return std::make_error_code(std::errc::bad_address);
}
/// Return an unsigned value of \p Size stored at \p Address. The address has
/// to be a valid statically allocated address for the binary.
ErrorOr<uint64_t> getUnsignedValueAtAddress(uint64_t Address,
size_t Size) const;
/// Return a signed value of \p Size stored at \p Address. The address has
/// to be a valid statically allocated address for the binary.
ErrorOr<uint64_t> getSignedValueAtAddress(uint64_t Address,
size_t Size) const;
/// Special case of getUnsignedValueAtAddress() that uses a pointer size.
ErrorOr<uint64_t> getPointerAtAddress(uint64_t Address) const {
return getUnsignedValueAtAddress(Address, AsmInfo->getCodePointerSize());
}
/// Replaces all references to \p ChildBF with \p ParentBF. \p ChildBF is then
/// removed from the list of functions \p BFs. The profile data of \p ChildBF
/// is merged into that of \p ParentBF. This function is thread safe.
void foldFunction(BinaryFunction &ChildBF, BinaryFunction &ParentBF);
/// Add a Section relocation at a given \p Address.
void addRelocation(uint64_t Address, MCSymbol *Symbol, uint64_t Type,
uint64_t Addend = 0, uint64_t Value = 0);
/// Return a relocation registered at a given \p Address, or nullptr if there
/// is no relocation at such address.
const Relocation *getRelocationAt(uint64_t Address) const;
/// Register a presence of PC-relative relocation at the given \p Address.
void addPCRelativeDataRelocation(uint64_t Address) {
DataPCRelocations.emplace(Address);
}
/// Register dynamic relocation at \p Address.
void addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, uint64_t Type,
uint64_t Addend, uint64_t Value = 0);
/// Return a dynamic relocation registered at a given \p Address, or nullptr
/// if there is no dynamic relocation at such address.
const Relocation *getDynamicRelocationAt(uint64_t Address);
/// Remove registered relocation at a given \p Address.
bool removeRelocationAt(uint64_t Address);
/// This function makes sure that symbols referenced by ambiguous relocations
/// are marked as immovable. For now, if a section relocation points at the
/// boundary between two symbols then those symbols are marked as immovable.
void markAmbiguousRelocations(BinaryData &BD, const uint64_t Address);
/// Return BinaryFunction corresponding to \p Symbol. If \p EntryDesc is not
/// nullptr, set it to entry descriminator corresponding to \p Symbol
/// (0 for single-entry functions). This function is thread safe.
BinaryFunction *getFunctionForSymbol(const MCSymbol *Symbol,
uint64_t *EntryDesc = nullptr);
const BinaryFunction *
getFunctionForSymbol(const MCSymbol *Symbol,
uint64_t *EntryDesc = nullptr) const {
return const_cast<BinaryContext *>(this)->getFunctionForSymbol(Symbol,
EntryDesc);
}
/// Associate the symbol \p Sym with the function \p BF for lookups with
/// getFunctionForSymbol().
void setSymbolToFunctionMap(const MCSymbol *Sym, BinaryFunction *BF) {
SymbolToFunctionMap[Sym] = BF;
}
/// Populate some internal data structures with debug info.
void preprocessDebugInfo();
/// Add a filename entry from SrcCUID to DestCUID.
unsigned addDebugFilenameToUnit(const uint32_t DestCUID,
const uint32_t SrcCUID, unsigned FileIndex);
/// Return functions in output layout order
std::vector<BinaryFunction *> getSortedFunctions();
/// Do the best effort to calculate the size of the function by emitting
/// its code, and relaxing branch instructions. By default, branch
/// instructions are updated to match the layout. Pass \p FixBranches set to
/// false if the branches are known to be up to date with the code layout.
///
/// Return the pair where the first size is for the main part, and the second
/// size is for the cold one.
std::pair<size_t, size_t> calculateEmittedSize(BinaryFunction &BF,
bool FixBranches = true);
/// Calculate the size of the instruction \p Inst optionally using a
/// user-supplied emitter for lock-free multi-thread work. MCCodeEmitter is
/// not thread safe and each thread should operate with its own copy of it.
uint64_t
computeInstructionSize(const MCInst &Inst,
const MCCodeEmitter *Emitter = nullptr) const {
if (auto Size = MIB->getAnnotationWithDefault<uint32_t>(Inst, "Size"))
return Size;
if (!Emitter)
Emitter = this->MCE.get();
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
Emitter->encodeInstruction(Inst, VecOS, Fixups, *STI);
return Code.size();
}
/// Compute the native code size for a range of instructions.
/// Note: this can be imprecise wrt the final binary since happening prior to
/// relaxation, as well as wrt the original binary because of opcode
/// shortening.MCCodeEmitter is not thread safe and each thread should operate
/// with its own copy of it.
template <typename Itr>
uint64_t computeCodeSize(Itr Beg, Itr End,
const MCCodeEmitter *Emitter = nullptr) const {
uint64_t Size = 0;
while (Beg != End) {
if (!MIB->isPseudo(*Beg))
Size += computeInstructionSize(*Beg, Emitter);
++Beg;
}
return Size;
}
/// Validate that disassembling the \p Sequence of bytes into an instruction
/// and assembling the instruction again, results in a byte sequence identical
/// to the original one.
bool validateInstructionEncoding(ArrayRef<uint8_t> Sequence) const;
/// Return a function execution count threshold for determining whether
/// the function is 'hot'. Consider it hot if count is above the average exec
/// count of profiled functions.
uint64_t getHotThreshold() const;
/// Return true if instruction \p Inst requires an offset for further
/// processing (e.g. assigning a profile).
bool keepOffsetForInstruction(const MCInst &Inst) const {
if (MIB->isCall(Inst) || MIB->isBranch(Inst) || MIB->isReturn(Inst) ||
MIB->isPrefix(Inst) || MIB->isIndirectBranch(Inst)) {
return true;
}
return false;
}
/// Return true if the function should be emitted to the output file.
bool shouldEmit(const BinaryFunction &Function) const;
/// Print the string name for a CFI operation.
static void printCFI(raw_ostream &OS, const MCCFIInstruction &Inst);
/// Print a single MCInst in native format. If Function is non-null,
/// the instruction will be annotated with CFI and possibly DWARF line table
/// info.
/// If printMCInst is true, the instruction is also printed in the
/// architecture independent format.
void printInstruction(raw_ostream &OS, const MCInst &Instruction,
uint64_t Offset = 0,
const BinaryFunction *Function = nullptr,
bool PrintMCInst = false, bool PrintMemData = false,
bool PrintRelocations = false,
StringRef Endl = "\n") const;
/// Print a range of instructions.
template <typename Itr>
uint64_t
printInstructions(raw_ostream &OS, Itr Begin, Itr End, uint64_t Offset = 0,
const BinaryFunction *Function = nullptr,
bool PrintMCInst = false, bool PrintMemData = false,
bool PrintRelocations = false,
StringRef Endl = "\n") const {
while (Begin != End) {
printInstruction(OS, *Begin, Offset, Function, PrintMCInst, PrintMemData,
PrintRelocations, Endl);
Offset += computeCodeSize(Begin, Begin + 1);
++Begin;
}
return Offset;
}
void exitWithBugReport(StringRef Message,
const BinaryFunction &Function) const;
struct IndependentCodeEmitter {
std::unique_ptr<MCObjectFileInfo> LocalMOFI;
std::unique_ptr<MCContext> LocalCtx;
std::unique_ptr<MCCodeEmitter> MCE;
};
/// Encapsulates an independent MCCodeEmitter that doesn't share resources
/// with the main one available through BinaryContext::MCE, managed by
/// BinaryContext.
/// This is intended to create a lock-free environment for an auxiliary thread
/// that needs to perform work with an MCCodeEmitter that can be transient or
/// won't be used in the main code emitter.
IndependentCodeEmitter createIndependentMCCodeEmitter() const {
IndependentCodeEmitter MCEInstance;
MCEInstance.LocalCtx.reset(
new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get()));
MCEInstance.LocalMOFI.reset(
TheTarget->createMCObjectFileInfo(*MCEInstance.LocalCtx.get(),
/*PIC=*/!HasFixedLoadAddress));
MCEInstance.LocalCtx->setObjectFileInfo(MCEInstance.LocalMOFI.get());
MCEInstance.MCE.reset(
TheTarget->createMCCodeEmitter(*MII, *MCEInstance.LocalCtx));
return MCEInstance;
}
/// Creating MCStreamer instance.
std::unique_ptr<MCStreamer>
createStreamer(llvm::raw_pwrite_stream &OS) const {
MCCodeEmitter *MCE = TheTarget->createMCCodeEmitter(*MII, *Ctx);
MCAsmBackend *MAB =
TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions());
std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(OS);
std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer(
*TheTriple, *Ctx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW),
std::unique_ptr<MCCodeEmitter>(MCE), *STI,
/* RelaxAll */ false,
/* IncrementalLinkerCompatible */ false,
/* DWARFMustBeAtTheEnd */ false));
return Streamer;
}
};
template <typename T, typename = std::enable_if_t<sizeof(T) == 1>>
inline raw_ostream &operator<<(raw_ostream &OS, const ArrayRef<T> &ByteArray) {
const char *Sep = "";
for (const auto Byte : ByteArray) {
OS << Sep << format("%.2x", Byte);
Sep = " ";
}
return OS;
}
} // namespace bolt
} // namespace llvm
#endif
|