1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
|
//===--- SemanticHighlighting.cpp - ------------------------- ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SemanticHighlighting.h"
#include "FindTarget.h"
#include "HeuristicResolver.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "support/Logger.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <optional>
namespace clang {
namespace clangd {
namespace {
/// Some names are not written in the source code and cannot be highlighted,
/// e.g. anonymous classes. This function detects those cases.
bool canHighlightName(DeclarationName Name) {
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
auto *II = Name.getAsIdentifierInfo();
return II && !II->getName().empty();
}
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
return true;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
// Multi-arg selectors need special handling, and we handle 0/1 arg
// selectors there too.
return false;
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXDeductionGuideName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
return false;
}
llvm_unreachable("invalid name kind");
}
bool isUniqueDefinition(const NamedDecl *Decl) {
if (auto *Func = dyn_cast<FunctionDecl>(Decl))
return Func->isThisDeclarationADefinition();
if (auto *Klass = dyn_cast<CXXRecordDecl>(Decl))
return Klass->isThisDeclarationADefinition();
if (auto *Iface = dyn_cast<ObjCInterfaceDecl>(Decl))
return Iface->isThisDeclarationADefinition();
if (auto *Proto = dyn_cast<ObjCProtocolDecl>(Decl))
return Proto->isThisDeclarationADefinition();
if (auto *Var = dyn_cast<VarDecl>(Decl))
return Var->isThisDeclarationADefinition();
return isa<TemplateTypeParmDecl>(Decl) ||
isa<NonTypeTemplateParmDecl>(Decl) ||
isa<TemplateTemplateParmDecl>(Decl) || isa<ObjCCategoryDecl>(Decl) ||
isa<ObjCImplDecl>(Decl);
}
std::optional<HighlightingKind> kindForType(const Type *TP,
const HeuristicResolver *Resolver);
std::optional<HighlightingKind> kindForDecl(const NamedDecl *D,
const HeuristicResolver *Resolver) {
if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
if (auto *Target = USD->getTargetDecl())
D = Target;
}
if (auto *TD = dyn_cast<TemplateDecl>(D)) {
if (auto *Templated = TD->getTemplatedDecl())
D = Templated;
}
if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
// We try to highlight typedefs as their underlying type.
if (auto K =
kindForType(TD->getUnderlyingType().getTypePtrOrNull(), Resolver))
return K;
// And fallback to a generic kind if this fails.
return HighlightingKind::Typedef;
}
// We highlight class decls, constructor decls and destructor decls as
// `Class` type. The destructor decls are handled in `VisitTagTypeLoc` (we
// will visit a TypeLoc where the underlying Type is a CXXRecordDecl).
if (auto *RD = llvm::dyn_cast<RecordDecl>(D)) {
// We don't want to highlight lambdas like classes.
if (RD->isLambda())
return std::nullopt;
return HighlightingKind::Class;
}
if (isa<ClassTemplateDecl, RecordDecl, CXXConstructorDecl, ObjCInterfaceDecl,
ObjCImplementationDecl>(D))
return HighlightingKind::Class;
if (isa<ObjCProtocolDecl>(D))
return HighlightingKind::Interface;
if (isa<ObjCCategoryDecl>(D))
return HighlightingKind::Namespace;
if (auto *MD = dyn_cast<CXXMethodDecl>(D))
return MD->isStatic() ? HighlightingKind::StaticMethod
: HighlightingKind::Method;
if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
return OMD->isClassMethod() ? HighlightingKind::StaticMethod
: HighlightingKind::Method;
if (isa<FieldDecl, ObjCPropertyDecl>(D))
return HighlightingKind::Field;
if (isa<EnumDecl>(D))
return HighlightingKind::Enum;
if (isa<EnumConstantDecl>(D))
return HighlightingKind::EnumConstant;
if (isa<ParmVarDecl>(D))
return HighlightingKind::Parameter;
if (auto *VD = dyn_cast<VarDecl>(D)) {
if (isa<ImplicitParamDecl>(VD)) // e.g. ObjC Self
return std::nullopt;
return VD->isStaticDataMember()
? HighlightingKind::StaticField
: VD->isLocalVarDecl() ? HighlightingKind::LocalVariable
: HighlightingKind::Variable;
}
if (const auto *BD = dyn_cast<BindingDecl>(D))
return BD->getDeclContext()->isFunctionOrMethod()
? HighlightingKind::LocalVariable
: HighlightingKind::Variable;
if (isa<FunctionDecl>(D))
return HighlightingKind::Function;
if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D) ||
isa<UsingDirectiveDecl>(D))
return HighlightingKind::Namespace;
if (isa<TemplateTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
isa<NonTypeTemplateParmDecl>(D))
return HighlightingKind::TemplateParameter;
if (isa<ConceptDecl>(D))
return HighlightingKind::Concept;
if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(D)) {
auto Targets = Resolver->resolveUsingValueDecl(UUVD);
if (!Targets.empty() && Targets[0] != UUVD) {
return kindForDecl(Targets[0], Resolver);
}
return HighlightingKind::Unknown;
}
return std::nullopt;
}
std::optional<HighlightingKind> kindForType(const Type *TP,
const HeuristicResolver *Resolver) {
if (!TP)
return std::nullopt;
if (TP->isBuiltinType()) // Builtins are special, they do not have decls.
return HighlightingKind::Primitive;
if (auto *TD = dyn_cast<TemplateTypeParmType>(TP))
return kindForDecl(TD->getDecl(), Resolver);
if (isa<ObjCObjectPointerType>(TP))
return HighlightingKind::Class;
if (auto *TD = TP->getAsTagDecl())
return kindForDecl(TD, Resolver);
return std::nullopt;
}
// Whether T is const in a loose sense - is a variable with this type readonly?
bool isConst(QualType T) {
if (T.isNull())
return false;
T = T.getNonReferenceType();
if (T.isConstQualified())
return true;
if (const auto *AT = T->getAsArrayTypeUnsafe())
return isConst(AT->getElementType());
if (isConst(T->getPointeeType()))
return true;
return false;
}
// Whether D is const in a loose sense (should it be highlighted as such?)
// FIXME: This is separate from whether *a particular usage* can mutate D.
// We may want V in V.size() to be readonly even if V is mutable.
bool isConst(const Decl *D) {
if (llvm::isa<EnumConstantDecl>(D) || llvm::isa<NonTypeTemplateParmDecl>(D))
return true;
if (llvm::isa<FieldDecl>(D) || llvm::isa<VarDecl>(D) ||
llvm::isa<MSPropertyDecl>(D) || llvm::isa<BindingDecl>(D)) {
if (isConst(llvm::cast<ValueDecl>(D)->getType()))
return true;
}
if (const auto *OCPD = llvm::dyn_cast<ObjCPropertyDecl>(D)) {
if (OCPD->isReadOnly())
return true;
}
if (const auto *MPD = llvm::dyn_cast<MSPropertyDecl>(D)) {
if (!MPD->hasSetter())
return true;
}
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) {
if (CMD->isConst())
return true;
}
return false;
}
// "Static" means many things in C++, only some get the "static" modifier.
//
// Meanings that do:
// - Members associated with the class rather than the instance.
// This is what 'static' most often means across languages.
// - static local variables
// These are similarly "detached from their context" by the static keyword.
// In practice, these are rarely used inside classes, reducing confusion.
//
// Meanings that don't:
// - Namespace-scoped variables, which have static storage class.
// This is implicit, so the keyword "static" isn't so strongly associated.
// If we want a modifier for these, "global scope" is probably the concept.
// - Namespace-scoped variables/functions explicitly marked "static".
// There the keyword changes *linkage* , which is a totally different concept.
// If we want to model this, "file scope" would be a nice modifier.
//
// This is confusing, and maybe we should use another name, but because "static"
// is a standard LSP modifier, having one with that name has advantages.
bool isStatic(const Decl *D) {
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D))
return CMD->isStatic();
if (const VarDecl *VD = llvm::dyn_cast<VarDecl>(D))
return VD->isStaticDataMember() || VD->isStaticLocal();
if (const auto *OPD = llvm::dyn_cast<ObjCPropertyDecl>(D))
return OPD->isClassProperty();
if (const auto *OMD = llvm::dyn_cast<ObjCMethodDecl>(D))
return OMD->isClassMethod();
return false;
}
bool isAbstract(const Decl *D) {
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D))
return CMD->isPure();
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(D))
return CRD->hasDefinition() && CRD->isAbstract();
return false;
}
bool isVirtual(const Decl *D) {
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D))
return CMD->isVirtual();
return false;
}
bool isDependent(const Decl *D) {
if (isa<UnresolvedUsingValueDecl>(D))
return true;
return false;
}
/// Returns true if `Decl` is considered to be from a default/system library.
/// This currently checks the systemness of the file by include type, although
/// different heuristics may be used in the future (e.g. sysroot paths).
bool isDefaultLibrary(const Decl *D) {
SourceLocation Loc = D->getLocation();
if (!Loc.isValid())
return false;
return D->getASTContext().getSourceManager().isInSystemHeader(Loc);
}
bool isDefaultLibrary(const Type *T) {
if (!T)
return false;
const Type *Underlying = T->getPointeeOrArrayElementType();
if (Underlying->isBuiltinType())
return true;
if (auto *TD = dyn_cast<TemplateTypeParmType>(Underlying))
return isDefaultLibrary(TD->getDecl());
if (auto *TD = Underlying->getAsTagDecl())
return isDefaultLibrary(TD);
return false;
}
// For a macro usage `DUMP(foo)`, we want:
// - DUMP --> "macro"
// - foo --> "variable".
SourceLocation getHighlightableSpellingToken(SourceLocation L,
const SourceManager &SM) {
if (L.isFileID())
return SM.isWrittenInMainFile(L) ? L : SourceLocation{};
// Tokens expanded from the macro body contribute no highlightings.
if (!SM.isMacroArgExpansion(L))
return {};
// Tokens expanded from macro args are potentially highlightable.
return getHighlightableSpellingToken(SM.getImmediateSpellingLoc(L), SM);
}
unsigned evaluateHighlightPriority(const HighlightingToken &Tok) {
enum HighlightPriority { Dependent = 0, Resolved = 1 };
return (Tok.Modifiers & (1 << uint32_t(HighlightingModifier::DependentName)))
? Dependent
: Resolved;
}
// Sometimes we get multiple tokens at the same location:
//
// - findExplicitReferences() returns a heuristic result for a dependent name
// (e.g. Method) and CollectExtraHighlighting returning a fallback dependent
// highlighting (e.g. Unknown+Dependent).
// - macro arguments are expanded multiple times and have different roles
// - broken code recovery produces several AST nodes at the same location
//
// We should either resolve these to a single token, or drop them all.
// Our heuristics are:
//
// - token kinds that come with "dependent-name" modifiers are less reliable
// (these tend to be vague, like Type or Unknown)
// - if we have multiple equally reliable kinds, drop token rather than guess
// - take the union of modifiers from all tokens
//
// In particular, heuristically resolved dependent names get their heuristic
// kind, plus the dependent modifier.
std::optional<HighlightingToken> resolveConflict(const HighlightingToken &A,
const HighlightingToken &B) {
unsigned Priority1 = evaluateHighlightPriority(A);
unsigned Priority2 = evaluateHighlightPriority(B);
if (Priority1 == Priority2 && A.Kind != B.Kind)
return std::nullopt;
auto Result = Priority1 > Priority2 ? A : B;
Result.Modifiers = A.Modifiers | B.Modifiers;
return Result;
}
std::optional<HighlightingToken>
resolveConflict(ArrayRef<HighlightingToken> Tokens) {
if (Tokens.size() == 1)
return Tokens[0];
assert(Tokens.size() >= 2);
std::optional<HighlightingToken> Winner =
resolveConflict(Tokens[0], Tokens[1]);
for (size_t I = 2; Winner && I < Tokens.size(); ++I)
Winner = resolveConflict(*Winner, Tokens[I]);
return Winner;
}
/// Consumes source locations and maps them to text ranges for highlightings.
class HighlightingsBuilder {
public:
HighlightingsBuilder(const ParsedAST &AST, bool IncludeInactiveRegionTokens)
: TB(AST.getTokens()), SourceMgr(AST.getSourceManager()),
LangOpts(AST.getLangOpts()),
IncludeInactiveRegionTokens(IncludeInactiveRegionTokens) {}
HighlightingToken &addToken(SourceLocation Loc, HighlightingKind Kind) {
auto Range = getRangeForSourceLocation(Loc);
if (!Range)
return InvalidHighlightingToken;
return addToken(*Range, Kind);
}
// Most of this function works around
// https://github.com/clangd/clangd/issues/871.
void addAngleBracketTokens(SourceLocation LLoc, SourceLocation RLoc) {
if (!LLoc.isValid() || !RLoc.isValid())
return;
auto LRange = getRangeForSourceLocation(LLoc);
if (!LRange)
return;
// RLoc might be pointing at a virtual buffer when it's part of a `>>`
// token.
RLoc = SourceMgr.getFileLoc(RLoc);
// Make sure token is part of the main file.
RLoc = getHighlightableSpellingToken(RLoc, SourceMgr);
if (!RLoc.isValid())
return;
const auto *RTok = TB.spelledTokenAt(RLoc);
// Handle `>>`. RLoc is always pointing at the right location, just change
// the end to be offset by 1.
// We'll either point at the beginning of `>>`, hence get a proper spelled
// or point in the middle of `>>` hence get no spelled tok.
if (!RTok || RTok->kind() == tok::greatergreater) {
Position Begin = sourceLocToPosition(SourceMgr, RLoc);
Position End = sourceLocToPosition(SourceMgr, RLoc.getLocWithOffset(1));
addToken(*LRange, HighlightingKind::Bracket);
addToken({Begin, End}, HighlightingKind::Bracket);
return;
}
// Easy case, we have the `>` token directly available.
if (RTok->kind() == tok::greater) {
if (auto RRange = getRangeForSourceLocation(RLoc)) {
addToken(*LRange, HighlightingKind::Bracket);
addToken(*RRange, HighlightingKind::Bracket);
}
return;
}
}
HighlightingToken &addToken(Range R, HighlightingKind Kind) {
HighlightingToken HT;
HT.R = std::move(R);
HT.Kind = Kind;
Tokens.push_back(std::move(HT));
return Tokens.back();
}
void addExtraModifier(SourceLocation Loc, HighlightingModifier Modifier) {
if (auto Range = getRangeForSourceLocation(Loc))
ExtraModifiers[*Range].push_back(Modifier);
}
std::vector<HighlightingToken> collect(ParsedAST &AST) && {
// Initializer lists can give duplicates of tokens, therefore all tokens
// must be deduplicated.
llvm::sort(Tokens);
auto Last = std::unique(Tokens.begin(), Tokens.end());
Tokens.erase(Last, Tokens.end());
// Macros can give tokens that have the same source range but conflicting
// kinds. In this case all tokens sharing this source range should be
// removed.
std::vector<HighlightingToken> NonConflicting;
NonConflicting.reserve(Tokens.size());
for (ArrayRef<HighlightingToken> TokRef = Tokens; !TokRef.empty();) {
ArrayRef<HighlightingToken> Conflicting =
TokRef.take_while([&](const HighlightingToken &T) {
// TokRef is guaranteed at least one element here because otherwise
// this predicate would never fire.
return T.R == TokRef.front().R;
});
if (auto Resolved = resolveConflict(Conflicting)) {
// Apply extra collected highlighting modifiers
auto Modifiers = ExtraModifiers.find(Resolved->R);
if (Modifiers != ExtraModifiers.end()) {
for (HighlightingModifier Mod : Modifiers->second) {
Resolved->addModifier(Mod);
}
}
NonConflicting.push_back(*Resolved);
}
// TokRef[Conflicting.size()] is the next token with a different range (or
// the end of the Tokens).
TokRef = TokRef.drop_front(Conflicting.size());
}
if (!IncludeInactiveRegionTokens)
return NonConflicting;
const auto &SM = AST.getSourceManager();
StringRef MainCode = SM.getBufferOrFake(SM.getMainFileID()).getBuffer();
// Merge token stream with "inactive line" markers.
std::vector<HighlightingToken> WithInactiveLines;
auto SortedSkippedRanges = AST.getMacros().SkippedRanges;
llvm::sort(SortedSkippedRanges);
auto It = NonConflicting.begin();
for (const Range &R : SortedSkippedRanges) {
// Create one token for each line in the skipped range, so it works
// with line-based diffing.
assert(R.start.line <= R.end.line);
for (int Line = R.start.line; Line <= R.end.line; ++Line) {
// If the end of the inactive range is at the beginning
// of a line, that line is not inactive.
if (Line == R.end.line && R.end.character == 0)
continue;
// Copy tokens before the inactive line
for (; It != NonConflicting.end() && It->R.start.line < Line; ++It)
WithInactiveLines.push_back(std::move(*It));
// Add a token for the inactive line itself.
auto StartOfLine = positionToOffset(MainCode, Position{Line, 0});
if (StartOfLine) {
StringRef LineText =
MainCode.drop_front(*StartOfLine).take_until([](char C) {
return C == '\n';
});
HighlightingToken HT;
WithInactiveLines.emplace_back();
WithInactiveLines.back().Kind = HighlightingKind::InactiveCode;
WithInactiveLines.back().R.start.line = Line;
WithInactiveLines.back().R.end.line = Line;
WithInactiveLines.back().R.end.character =
static_cast<int>(lspLength(LineText));
} else {
elog("Failed to convert position to offset: {0}",
StartOfLine.takeError());
}
// Skip any other tokens on the inactive line. e.g.
// `#ifndef Foo` is considered as part of an inactive region when Foo is
// defined, and there is a Foo macro token.
// FIXME: we should reduce the scope of the inactive region to not
// include the directive itself.
while (It != NonConflicting.end() && It->R.start.line == Line)
++It;
}
}
// Copy tokens after the last inactive line
for (; It != NonConflicting.end(); ++It)
WithInactiveLines.push_back(std::move(*It));
return WithInactiveLines;
}
const HeuristicResolver *getResolver() const { return Resolver; }
private:
std::optional<Range> getRangeForSourceLocation(SourceLocation Loc) {
Loc = getHighlightableSpellingToken(Loc, SourceMgr);
if (Loc.isInvalid())
return std::nullopt;
// We might have offsets in the main file that don't correspond to any
// spelled tokens.
const auto *Tok = TB.spelledTokenAt(Loc);
if (!Tok)
return std::nullopt;
return halfOpenToRange(SourceMgr,
Tok->range(SourceMgr).toCharRange(SourceMgr));
}
const syntax::TokenBuffer &TB;
const SourceManager &SourceMgr;
const LangOptions &LangOpts;
bool IncludeInactiveRegionTokens;
std::vector<HighlightingToken> Tokens;
std::map<Range, llvm::SmallVector<HighlightingModifier, 1>> ExtraModifiers;
const HeuristicResolver *Resolver = nullptr;
// returned from addToken(InvalidLoc)
HighlightingToken InvalidHighlightingToken;
};
std::optional<HighlightingModifier> scopeModifier(const NamedDecl *D) {
const DeclContext *DC = D->getDeclContext();
// Injected "Foo" within the class "Foo" has file scope, not class scope.
if (auto *R = dyn_cast_or_null<RecordDecl>(D))
if (R->isInjectedClassName())
DC = DC->getParent();
// Lambda captures are considered function scope, not class scope.
if (llvm::isa<FieldDecl>(D))
if (const auto *RD = llvm::dyn_cast<RecordDecl>(DC))
if (RD->isLambda())
return HighlightingModifier::FunctionScope;
// Walk up the DeclContext hierarchy until we find something interesting.
for (; !DC->isFileContext(); DC = DC->getParent()) {
if (DC->isFunctionOrMethod())
return HighlightingModifier::FunctionScope;
if (DC->isRecord())
return HighlightingModifier::ClassScope;
}
// Some template parameters (e.g. those for variable templates) don't have
// meaningful DeclContexts. That doesn't mean they're global!
if (DC->isTranslationUnit() && D->isTemplateParameter())
return std::nullopt;
// ExternalLinkage threshold could be tweaked, e.g. module-visible as global.
if (D->getLinkageInternal() < ExternalLinkage)
return HighlightingModifier::FileScope;
return HighlightingModifier::GlobalScope;
}
std::optional<HighlightingModifier> scopeModifier(const Type *T) {
if (!T)
return std::nullopt;
if (T->isBuiltinType())
return HighlightingModifier::GlobalScope;
if (auto *TD = dyn_cast<TemplateTypeParmType>(T))
return scopeModifier(TD->getDecl());
if (auto *TD = T->getAsTagDecl())
return scopeModifier(TD);
return std::nullopt;
}
/// Produces highlightings, which are not captured by findExplicitReferences,
/// e.g. highlights dependent names and 'auto' as the underlying type.
class CollectExtraHighlightings
: public RecursiveASTVisitor<CollectExtraHighlightings> {
using Base = RecursiveASTVisitor<CollectExtraHighlightings>;
public:
CollectExtraHighlightings(HighlightingsBuilder &H) : H(H) {}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
highlightMutableReferenceArguments(E->getConstructor(),
{E->getArgs(), E->getNumArgs()});
return true;
}
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
if (Init->isMemberInitializer())
if (auto *Member = Init->getMember())
highlightMutableReferenceArgument(Member->getType(), Init->getInit());
return Base::TraverseConstructorInitializer(Init);
}
bool TraverseTypeConstraint(const TypeConstraint *C) {
if (auto *Args = C->getTemplateArgsAsWritten())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
return Base::TraverseTypeConstraint(C);
}
bool VisitPredefinedExpr(PredefinedExpr *E) {
H.addToken(E->getLocation(), HighlightingKind::LocalVariable)
.addModifier(HighlightingModifier::Static)
.addModifier(HighlightingModifier::Readonly)
.addModifier(HighlightingModifier::FunctionScope);
return true;
}
bool VisitConceptSpecializationExpr(ConceptSpecializationExpr *E) {
if (auto *Args = E->getTemplateArgsAsWritten())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
return true;
}
bool VisitTemplateDecl(TemplateDecl *D) {
if (auto *TPL = D->getTemplateParameters())
H.addAngleBracketTokens(TPL->getLAngleLoc(), TPL->getRAngleLoc());
return true;
}
bool VisitTagDecl(TagDecl *D) {
for (unsigned i = 0; i < D->getNumTemplateParameterLists(); ++i) {
if (auto *TPL = D->getTemplateParameterList(i))
H.addAngleBracketTokens(TPL->getLAngleLoc(), TPL->getRAngleLoc());
}
return true;
}
bool VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
if (auto *TPL = D->getTemplateParameters())
H.addAngleBracketTokens(TPL->getLAngleLoc(), TPL->getRAngleLoc());
if (auto *Args = D->getTemplateArgsAsWritten())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
return true;
}
bool VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) {
if (auto *Args = D->getTemplateArgsInfo())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
return true;
}
bool VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D) {
if (auto *TPL = D->getTemplateParameters())
H.addAngleBracketTokens(TPL->getLAngleLoc(), TPL->getRAngleLoc());
if (auto *Args = D->getTemplateArgsAsWritten())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
return true;
}
bool VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D) {
if (auto *Args = D->getTemplateArgsAsWritten())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
return true;
}
bool VisitDeclRefExpr(DeclRefExpr *E) {
H.addAngleBracketTokens(E->getLAngleLoc(), E->getRAngleLoc());
return true;
}
bool VisitMemberExpr(MemberExpr *E) {
H.addAngleBracketTokens(E->getLAngleLoc(), E->getRAngleLoc());
return true;
}
bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
H.addAngleBracketTokens(L.getLAngleLoc(), L.getRAngleLoc());
return true;
}
bool VisitAutoTypeLoc(AutoTypeLoc L) {
if (L.isConstrained())
H.addAngleBracketTokens(L.getLAngleLoc(), L.getRAngleLoc());
return true;
}
bool VisitFunctionDecl(FunctionDecl *D) {
if (D->isOverloadedOperator()) {
const auto AddOpDeclToken = [&](SourceLocation Loc) {
auto &Token = H.addToken(Loc, HighlightingKind::Operator)
.addModifier(HighlightingModifier::Declaration);
if (D->isThisDeclarationADefinition())
Token.addModifier(HighlightingModifier::Definition);
};
const auto Range = D->getNameInfo().getCXXOperatorNameRange();
AddOpDeclToken(Range.getBegin());
const auto Kind = D->getOverloadedOperator();
if (Kind == OO_Call || Kind == OO_Subscript)
AddOpDeclToken(Range.getEnd());
}
if (auto *Args = D->getTemplateSpecializationArgsAsWritten())
H.addAngleBracketTokens(Args->getLAngleLoc(), Args->getRAngleLoc());
if (auto *I = D->getDependentSpecializationInfo())
H.addAngleBracketTokens(I->getLAngleLoc(), I->getRAngleLoc());
return true;
}
bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
const auto AddOpToken = [&](SourceLocation Loc) {
H.addToken(Loc, HighlightingKind::Operator)
.addModifier(HighlightingModifier::UserDefined);
};
AddOpToken(E->getOperatorLoc());
const auto Kind = E->getOperator();
if (Kind == OO_Call || Kind == OO_Subscript) {
if (auto *Callee = E->getCallee())
AddOpToken(Callee->getBeginLoc());
}
return true;
}
bool VisitUnaryOperator(UnaryOperator *Op) {
auto &Token = H.addToken(Op->getOperatorLoc(), HighlightingKind::Operator);
if (Op->getSubExpr()->isTypeDependent())
Token.addModifier(HighlightingModifier::UserDefined);
return true;
}
bool VisitBinaryOperator(BinaryOperator *Op) {
auto &Token = H.addToken(Op->getOperatorLoc(), HighlightingKind::Operator);
if (Op->getLHS()->isTypeDependent() || Op->getRHS()->isTypeDependent())
Token.addModifier(HighlightingModifier::UserDefined);
return true;
}
bool VisitConditionalOperator(ConditionalOperator *Op) {
H.addToken(Op->getQuestionLoc(), HighlightingKind::Operator);
H.addToken(Op->getColonLoc(), HighlightingKind::Operator);
return true;
}
bool VisitCXXNewExpr(CXXNewExpr *E) {
auto &Token = H.addToken(E->getBeginLoc(), HighlightingKind::Operator);
if (isa_and_present<CXXMethodDecl>(E->getOperatorNew()))
Token.addModifier(HighlightingModifier::UserDefined);
return true;
}
bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
auto &Token = H.addToken(E->getBeginLoc(), HighlightingKind::Operator);
if (isa_and_present<CXXMethodDecl>(E->getOperatorDelete()))
Token.addModifier(HighlightingModifier::UserDefined);
return true;
}
bool VisitCXXNamedCastExpr(CXXNamedCastExpr *E) {
const auto &B = E->getAngleBrackets();
H.addAngleBracketTokens(B.getBegin(), B.getEnd());
return true;
}
bool VisitCallExpr(CallExpr *E) {
// Highlighting parameters passed by non-const reference does not really
// make sense for literals...
if (isa<UserDefinedLiteral>(E))
return true;
// FIXME: consider highlighting parameters of some other overloaded
// operators as well
llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()};
if (auto *CallOp = dyn_cast<CXXOperatorCallExpr>(E)) {
switch (CallOp->getOperator()) {
case OO_Call:
case OO_Subscript:
Args = Args.drop_front(); // Drop object parameter
break;
default:
return true;
}
}
highlightMutableReferenceArguments(
dyn_cast_or_null<FunctionDecl>(E->getCalleeDecl()), Args);
return true;
}
void highlightMutableReferenceArgument(QualType T, const Expr *Arg) {
if (!Arg)
return;
// Is this parameter passed by non-const pointer or reference?
// FIXME The condition T->idDependentType() could be relaxed a bit,
// e.g. std::vector<T>& is dependent but we would want to highlight it
bool IsRef = T->isLValueReferenceType();
bool IsPtr = T->isPointerType();
if ((!IsRef && !IsPtr) || T->getPointeeType().isConstQualified() ||
T->isDependentType()) {
return;
}
std::optional<SourceLocation> Location;
// FIXME Add "unwrapping" for ArraySubscriptExpr,
// e.g. highlight `a` in `a[i]`
// FIXME Handle dependent expression types
if (auto *IC = dyn_cast<ImplicitCastExpr>(Arg))
Arg = IC->getSubExprAsWritten();
if (auto *UO = dyn_cast<UnaryOperator>(Arg)) {
if (UO->getOpcode() == UO_AddrOf)
Arg = UO->getSubExpr();
}
if (auto *DR = dyn_cast<DeclRefExpr>(Arg))
Location = DR->getLocation();
else if (auto *M = dyn_cast<MemberExpr>(Arg))
Location = M->getMemberLoc();
if (Location)
H.addExtraModifier(*Location,
IsRef ? HighlightingModifier::UsedAsMutableReference
: HighlightingModifier::UsedAsMutablePointer);
}
void
highlightMutableReferenceArguments(const FunctionDecl *FD,
llvm::ArrayRef<const Expr *const> Args) {
if (!FD)
return;
if (auto *ProtoType = FD->getType()->getAs<FunctionProtoType>()) {
// Iterate over the types of the function parameters.
// If any of them are non-const reference paramteres, add it as a
// highlighting modifier to the corresponding expression
for (size_t I = 0;
I < std::min(size_t(ProtoType->getNumParams()), Args.size()); ++I) {
highlightMutableReferenceArgument(ProtoType->getParamType(I), Args[I]);
}
}
}
bool VisitDecltypeTypeLoc(DecltypeTypeLoc L) {
if (auto K = kindForType(L.getTypePtr(), H.getResolver())) {
auto &Tok = H.addToken(L.getBeginLoc(), *K)
.addModifier(HighlightingModifier::Deduced);
if (auto Mod = scopeModifier(L.getTypePtr()))
Tok.addModifier(*Mod);
if (isDefaultLibrary(L.getTypePtr()))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
return true;
}
bool VisitCXXDestructorDecl(CXXDestructorDecl *D) {
if (auto *TI = D->getNameInfo().getNamedTypeInfo()) {
SourceLocation Loc = TI->getTypeLoc().getBeginLoc();
H.addExtraModifier(Loc, HighlightingModifier::ConstructorOrDestructor);
H.addExtraModifier(Loc, HighlightingModifier::Declaration);
if (D->isThisDeclarationADefinition())
H.addExtraModifier(Loc, HighlightingModifier::Definition);
}
return true;
}
bool VisitCXXMemberCallExpr(CXXMemberCallExpr *CE) {
// getMethodDecl can return nullptr with member pointers, e.g.
// `(foo.*pointer_to_member_fun)(arg);`
if (auto *D = CE->getMethodDecl()) {
if (isa<CXXDestructorDecl>(D)) {
if (auto *ME = dyn_cast<MemberExpr>(CE->getCallee())) {
if (auto *TI = ME->getMemberNameInfo().getNamedTypeInfo()) {
H.addExtraModifier(TI->getTypeLoc().getBeginLoc(),
HighlightingModifier::ConstructorOrDestructor);
}
}
} else if (D->isOverloadedOperator()) {
if (auto *ME = dyn_cast<MemberExpr>(CE->getCallee()))
H.addToken(
ME->getMemberNameInfo().getCXXOperatorNameRange().getBegin(),
HighlightingKind::Operator)
.addModifier(HighlightingModifier::UserDefined);
}
}
return true;
}
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
for (unsigned i = 0; i < D->getNumTemplateParameterLists(); ++i) {
if (auto *TPL = D->getTemplateParameterList(i))
H.addAngleBracketTokens(TPL->getLAngleLoc(), TPL->getRAngleLoc());
}
auto *AT = D->getType()->getContainedAutoType();
if (!AT)
return true;
auto K =
kindForType(AT->getDeducedType().getTypePtrOrNull(), H.getResolver());
if (!K)
return true;
SourceLocation StartLoc = D->getTypeSpecStartLoc();
// The AutoType may not have a corresponding token, e.g. in the case of
// init-captures. In this case, StartLoc overlaps with the location
// of the decl itself, and producing a token for the type here would result
// in both it and the token for the decl being dropped due to conflict.
if (StartLoc == D->getLocation())
return true;
auto &Tok =
H.addToken(StartLoc, *K).addModifier(HighlightingModifier::Deduced);
const Type *Deduced = AT->getDeducedType().getTypePtrOrNull();
if (auto Mod = scopeModifier(Deduced))
Tok.addModifier(*Mod);
if (isDefaultLibrary(Deduced))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
return true;
}
// We handle objective-C selectors specially, because one reference can
// cover several non-contiguous tokens.
void highlightObjCSelector(const ArrayRef<SourceLocation> &Locs, bool Decl,
bool Def, bool Class, bool DefaultLibrary) {
HighlightingKind Kind =
Class ? HighlightingKind::StaticMethod : HighlightingKind::Method;
for (SourceLocation Part : Locs) {
auto &Tok =
H.addToken(Part, Kind).addModifier(HighlightingModifier::ClassScope);
if (Decl)
Tok.addModifier(HighlightingModifier::Declaration);
if (Def)
Tok.addModifier(HighlightingModifier::Definition);
if (Class)
Tok.addModifier(HighlightingModifier::Static);
if (DefaultLibrary)
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
}
bool VisitObjCMethodDecl(ObjCMethodDecl *OMD) {
llvm::SmallVector<SourceLocation> Locs;
OMD->getSelectorLocs(Locs);
highlightObjCSelector(Locs, /*Decl=*/true,
OMD->isThisDeclarationADefinition(),
OMD->isClassMethod(), isDefaultLibrary(OMD));
return true;
}
bool VisitObjCMessageExpr(ObjCMessageExpr *OME) {
llvm::SmallVector<SourceLocation> Locs;
OME->getSelectorLocs(Locs);
bool DefaultLibrary = false;
if (ObjCMethodDecl *OMD = OME->getMethodDecl())
DefaultLibrary = isDefaultLibrary(OMD);
highlightObjCSelector(Locs, /*Decl=*/false, /*Def=*/false,
OME->isClassMessage(), DefaultLibrary);
return true;
}
// Objective-C allows you to use property syntax `self.prop` as sugar for
// `[self prop]` and `[self setProp:]` when there's no explicit `@property`
// for `prop` as well as for class properties. We treat this like a property
// even though semantically it's equivalent to a method expression.
void highlightObjCImplicitPropertyRef(const ObjCMethodDecl *OMD,
SourceLocation Loc) {
auto &Tok = H.addToken(Loc, HighlightingKind::Field)
.addModifier(HighlightingModifier::ClassScope);
if (OMD->isClassMethod())
Tok.addModifier(HighlightingModifier::Static);
if (isDefaultLibrary(OMD))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
}
bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *OPRE) {
// We need to handle implicit properties here since they will appear to
// reference `ObjCMethodDecl` via an implicit `ObjCMessageExpr`, so normal
// highlighting will not work.
if (!OPRE->isImplicitProperty())
return true;
// A single property expr can reference both a getter and setter, but we can
// only provide a single semantic token, so prefer the getter. In most cases
// the end result should be the same, although it's technically possible
// that the user defines a setter for a system SDK.
if (OPRE->isMessagingGetter()) {
highlightObjCImplicitPropertyRef(OPRE->getImplicitPropertyGetter(),
OPRE->getLocation());
return true;
}
if (OPRE->isMessagingSetter()) {
highlightObjCImplicitPropertyRef(OPRE->getImplicitPropertySetter(),
OPRE->getLocation());
}
return true;
}
bool VisitOverloadExpr(OverloadExpr *E) {
H.addAngleBracketTokens(E->getLAngleLoc(), E->getRAngleLoc());
if (!E->decls().empty())
return true; // handled by findExplicitReferences.
auto &Tok = H.addToken(E->getNameLoc(), HighlightingKind::Unknown)
.addModifier(HighlightingModifier::DependentName);
if (llvm::isa<UnresolvedMemberExpr>(E))
Tok.addModifier(HighlightingModifier::ClassScope);
// other case is UnresolvedLookupExpr, scope is unknown.
return true;
}
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
H.addToken(E->getMemberNameInfo().getLoc(), HighlightingKind::Unknown)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
H.addAngleBracketTokens(E->getLAngleLoc(), E->getRAngleLoc());
return true;
}
bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
H.addToken(E->getNameInfo().getLoc(), HighlightingKind::Unknown)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
H.addAngleBracketTokens(E->getLAngleLoc(), E->getRAngleLoc());
return true;
}
bool VisitAttr(Attr *A) {
switch (A->getKind()) {
case attr::Override:
case attr::Final:
H.addToken(A->getLocation(), HighlightingKind::Modifier);
break;
default:
break;
}
return true;
}
bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
H.addToken(L.getNameLoc(), HighlightingKind::Type)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
return true;
}
bool VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc L) {
H.addToken(L.getTemplateNameLoc(), HighlightingKind::Type)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
H.addAngleBracketTokens(L.getLAngleLoc(), L.getRAngleLoc());
return true;
}
bool TraverseTemplateArgumentLoc(TemplateArgumentLoc L) {
// Handle template template arguments only (other arguments are handled by
// their Expr, TypeLoc etc values).
if (L.getArgument().getKind() != TemplateArgument::Template &&
L.getArgument().getKind() != TemplateArgument::TemplateExpansion)
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L);
TemplateName N = L.getArgument().getAsTemplateOrTemplatePattern();
switch (N.getKind()) {
case TemplateName::OverloadedTemplate:
// Template template params must always be class templates.
// Don't bother to try to work out the scope here.
H.addToken(L.getTemplateNameLoc(), HighlightingKind::Class);
break;
case TemplateName::DependentTemplate:
case TemplateName::AssumedTemplate:
H.addToken(L.getTemplateNameLoc(), HighlightingKind::Class)
.addModifier(HighlightingModifier::DependentName);
break;
case TemplateName::Template:
case TemplateName::QualifiedTemplate:
case TemplateName::SubstTemplateTemplateParm:
case TemplateName::SubstTemplateTemplateParmPack:
case TemplateName::UsingTemplate:
// Names that could be resolved to a TemplateDecl are handled elsewhere.
break;
}
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L);
}
// findExplicitReferences will walk nested-name-specifiers and
// find anything that can be resolved to a Decl. However, non-leaf
// components of nested-name-specifiers which are dependent names
// (kind "Identifier") cannot be resolved to a decl, so we visit
// them here.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc Q) {
if (NestedNameSpecifier *NNS = Q.getNestedNameSpecifier()) {
if (NNS->getKind() == NestedNameSpecifier::Identifier)
H.addToken(Q.getLocalBeginLoc(), HighlightingKind::Type)
.addModifier(HighlightingModifier::DependentName)
.addModifier(HighlightingModifier::ClassScope);
}
return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(Q);
}
private:
HighlightingsBuilder &H;
};
} // namespace
std::vector<HighlightingToken>
getSemanticHighlightings(ParsedAST &AST, bool IncludeInactiveRegionTokens) {
auto &C = AST.getASTContext();
// Add highlightings for AST nodes.
HighlightingsBuilder Builder(AST, IncludeInactiveRegionTokens);
// Highlight 'decltype' and 'auto' as their underlying types.
CollectExtraHighlightings(Builder).TraverseAST(C);
// Highlight all decls and references coming from the AST.
findExplicitReferences(
C,
[&](ReferenceLoc R) {
for (const NamedDecl *Decl : R.Targets) {
if (!canHighlightName(Decl->getDeclName()))
continue;
auto Kind = kindForDecl(Decl, AST.getHeuristicResolver());
if (!Kind)
continue;
auto &Tok = Builder.addToken(R.NameLoc, *Kind);
// The attribute tests don't want to look at the template.
if (auto *TD = dyn_cast<TemplateDecl>(Decl)) {
if (auto *Templated = TD->getTemplatedDecl())
Decl = Templated;
}
if (auto Mod = scopeModifier(Decl))
Tok.addModifier(*Mod);
if (isConst(Decl))
Tok.addModifier(HighlightingModifier::Readonly);
if (isStatic(Decl))
Tok.addModifier(HighlightingModifier::Static);
if (isAbstract(Decl))
Tok.addModifier(HighlightingModifier::Abstract);
if (isVirtual(Decl))
Tok.addModifier(HighlightingModifier::Virtual);
if (isDependent(Decl))
Tok.addModifier(HighlightingModifier::DependentName);
if (isDefaultLibrary(Decl))
Tok.addModifier(HighlightingModifier::DefaultLibrary);
if (Decl->isDeprecated())
Tok.addModifier(HighlightingModifier::Deprecated);
if (isa<CXXConstructorDecl>(Decl))
Tok.addModifier(HighlightingModifier::ConstructorOrDestructor);
if (R.IsDecl) {
// Do not treat an UnresolvedUsingValueDecl as a declaration.
// It's more common to think of it as a reference to the
// underlying declaration.
if (!isa<UnresolvedUsingValueDecl>(Decl))
Tok.addModifier(HighlightingModifier::Declaration);
if (isUniqueDefinition(Decl))
Tok.addModifier(HighlightingModifier::Definition);
}
}
},
AST.getHeuristicResolver());
// Add highlightings for macro references.
auto AddMacro = [&](const MacroOccurrence &M) {
auto &T = Builder.addToken(M.Rng, HighlightingKind::Macro);
T.addModifier(HighlightingModifier::GlobalScope);
if (M.IsDefinition)
T.addModifier(HighlightingModifier::Declaration);
};
for (const auto &SIDToRefs : AST.getMacros().MacroRefs)
for (const auto &M : SIDToRefs.second)
AddMacro(M);
for (const auto &M : AST.getMacros().UnknownMacros)
AddMacro(M);
return std::move(Builder).collect(AST);
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingKind K) {
switch (K) {
case HighlightingKind::Variable:
return OS << "Variable";
case HighlightingKind::LocalVariable:
return OS << "LocalVariable";
case HighlightingKind::Parameter:
return OS << "Parameter";
case HighlightingKind::Function:
return OS << "Function";
case HighlightingKind::Method:
return OS << "Method";
case HighlightingKind::StaticMethod:
return OS << "StaticMethod";
case HighlightingKind::Field:
return OS << "Field";
case HighlightingKind::StaticField:
return OS << "StaticField";
case HighlightingKind::Class:
return OS << "Class";
case HighlightingKind::Interface:
return OS << "Interface";
case HighlightingKind::Enum:
return OS << "Enum";
case HighlightingKind::EnumConstant:
return OS << "EnumConstant";
case HighlightingKind::Typedef:
return OS << "Typedef";
case HighlightingKind::Type:
return OS << "Type";
case HighlightingKind::Unknown:
return OS << "Unknown";
case HighlightingKind::Namespace:
return OS << "Namespace";
case HighlightingKind::TemplateParameter:
return OS << "TemplateParameter";
case HighlightingKind::Concept:
return OS << "Concept";
case HighlightingKind::Primitive:
return OS << "Primitive";
case HighlightingKind::Macro:
return OS << "Macro";
case HighlightingKind::Modifier:
return OS << "Modifier";
case HighlightingKind::Operator:
return OS << "Operator";
case HighlightingKind::Bracket:
return OS << "Bracket";
case HighlightingKind::InactiveCode:
return OS << "InactiveCode";
}
llvm_unreachable("invalid HighlightingKind");
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingModifier K) {
switch (K) {
case HighlightingModifier::Declaration:
return OS << "decl"; // abbreviation for common case
case HighlightingModifier::Definition:
return OS << "def"; // abbrevation for common case
case HighlightingModifier::ConstructorOrDestructor:
return OS << "constrDestr";
default:
return OS << toSemanticTokenModifier(K);
}
}
bool operator==(const HighlightingToken &L, const HighlightingToken &R) {
return std::tie(L.R, L.Kind, L.Modifiers) ==
std::tie(R.R, R.Kind, R.Modifiers);
}
bool operator<(const HighlightingToken &L, const HighlightingToken &R) {
return std::tie(L.R, L.Kind, L.Modifiers) <
std::tie(R.R, R.Kind, R.Modifiers);
}
std::vector<SemanticToken>
toSemanticTokens(llvm::ArrayRef<HighlightingToken> Tokens,
llvm::StringRef Code) {
assert(llvm::is_sorted(Tokens));
std::vector<SemanticToken> Result;
// In case we split a HighlightingToken into multiple tokens (e.g. because it
// was spanning multiple lines), this tracks the last one. This prevents
// having a copy all the time.
HighlightingToken Scratch;
const HighlightingToken *Last = nullptr;
for (const HighlightingToken &Tok : Tokens) {
Result.emplace_back();
SemanticToken *Out = &Result.back();
// deltaStart/deltaLine are relative if possible.
if (Last) {
assert(Tok.R.start.line >= Last->R.end.line);
Out->deltaLine = Tok.R.start.line - Last->R.end.line;
if (Out->deltaLine == 0) {
assert(Tok.R.start.character >= Last->R.start.character);
Out->deltaStart = Tok.R.start.character - Last->R.start.character;
} else {
Out->deltaStart = Tok.R.start.character;
}
} else {
Out->deltaLine = Tok.R.start.line;
Out->deltaStart = Tok.R.start.character;
}
Out->tokenType = static_cast<unsigned>(Tok.Kind);
Out->tokenModifiers = Tok.Modifiers;
Last = &Tok;
if (Tok.R.end.line == Tok.R.start.line) {
Out->length = Tok.R.end.character - Tok.R.start.character;
} else {
// If the token spans a line break, split it into multiple pieces for each
// line.
// This is slow, but multiline tokens are rare.
// FIXME: There's a client capability for supporting multiline tokens,
// respect that.
auto TokStartOffset = llvm::cantFail(positionToOffset(Code, Tok.R.start));
// Note that the loop doesn't cover the last line, which has a special
// length.
for (int I = Tok.R.start.line; I < Tok.R.end.line; ++I) {
auto LineEnd = Code.find('\n', TokStartOffset);
assert(LineEnd != Code.npos);
Out->length = LineEnd - TokStartOffset;
// Token continues on next line, right after the line break.
TokStartOffset = LineEnd + 1;
Result.emplace_back();
Out = &Result.back();
*Out = Result[Result.size() - 2];
// New token starts at the first column of the next line.
Out->deltaLine = 1;
Out->deltaStart = 0;
}
// This is the token on last line.
Out->length = Tok.R.end.character;
// Update the start location for last token, as that's used in the
// relative delta calculation for following tokens.
Scratch = *Last;
Scratch.R.start.line = Tok.R.end.line;
Scratch.R.start.character = 0;
Last = &Scratch;
}
}
return Result;
}
llvm::StringRef toSemanticTokenType(HighlightingKind Kind) {
switch (Kind) {
case HighlightingKind::Variable:
case HighlightingKind::LocalVariable:
case HighlightingKind::StaticField:
return "variable";
case HighlightingKind::Parameter:
return "parameter";
case HighlightingKind::Function:
return "function";
case HighlightingKind::Method:
return "method";
case HighlightingKind::StaticMethod:
// FIXME: better method with static modifier?
return "function";
case HighlightingKind::Field:
return "property";
case HighlightingKind::Class:
return "class";
case HighlightingKind::Interface:
return "interface";
case HighlightingKind::Enum:
return "enum";
case HighlightingKind::EnumConstant:
return "enumMember";
case HighlightingKind::Typedef:
case HighlightingKind::Type:
return "type";
case HighlightingKind::Unknown:
return "unknown"; // nonstandard
case HighlightingKind::Namespace:
return "namespace";
case HighlightingKind::TemplateParameter:
return "typeParameter";
case HighlightingKind::Concept:
return "concept"; // nonstandard
case HighlightingKind::Primitive:
return "type";
case HighlightingKind::Macro:
return "macro";
case HighlightingKind::Modifier:
return "modifier";
case HighlightingKind::Operator:
return "operator";
case HighlightingKind::Bracket:
return "bracket";
case HighlightingKind::InactiveCode:
return "comment";
}
llvm_unreachable("unhandled HighlightingKind");
}
llvm::StringRef toSemanticTokenModifier(HighlightingModifier Modifier) {
switch (Modifier) {
case HighlightingModifier::Declaration:
return "declaration";
case HighlightingModifier::Definition:
return "definition";
case HighlightingModifier::Deprecated:
return "deprecated";
case HighlightingModifier::Readonly:
return "readonly";
case HighlightingModifier::Static:
return "static";
case HighlightingModifier::Deduced:
return "deduced"; // nonstandard
case HighlightingModifier::Abstract:
return "abstract";
case HighlightingModifier::Virtual:
return "virtual";
case HighlightingModifier::DependentName:
return "dependentName"; // nonstandard
case HighlightingModifier::DefaultLibrary:
return "defaultLibrary";
case HighlightingModifier::UsedAsMutableReference:
return "usedAsMutableReference"; // nonstandard
case HighlightingModifier::UsedAsMutablePointer:
return "usedAsMutablePointer"; // nonstandard
case HighlightingModifier::ConstructorOrDestructor:
return "constructorOrDestructor"; // nonstandard
case HighlightingModifier::UserDefined:
return "userDefined"; // nonstandard
case HighlightingModifier::FunctionScope:
return "functionScope"; // nonstandard
case HighlightingModifier::ClassScope:
return "classScope"; // nonstandard
case HighlightingModifier::FileScope:
return "fileScope"; // nonstandard
case HighlightingModifier::GlobalScope:
return "globalScope"; // nonstandard
}
llvm_unreachable("unhandled HighlightingModifier");
}
std::vector<SemanticTokensEdit>
diffTokens(llvm::ArrayRef<SemanticToken> Old,
llvm::ArrayRef<SemanticToken> New) {
// For now, just replace everything from the first-last modification.
// FIXME: use a real diff instead, this is bad with include-insertion.
unsigned Offset = 0;
while (!Old.empty() && !New.empty() && Old.front() == New.front()) {
++Offset;
Old = Old.drop_front();
New = New.drop_front();
}
while (!Old.empty() && !New.empty() && Old.back() == New.back()) {
Old = Old.drop_back();
New = New.drop_back();
}
if (Old.empty() && New.empty())
return {};
SemanticTokensEdit Edit;
Edit.startToken = Offset;
Edit.deleteTokens = Old.size();
Edit.tokens = New;
return {std::move(Edit)};
}
} // namespace clangd
} // namespace clang
|