summaryrefslogtreecommitdiff
path: root/flang/include/flang/Optimizer/HLFIR/HLFIROps.td
blob: 0aed2778698d3d4f071c40be5749c2e37471def5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
//===-- HLFIROps.td - HLFIR operation definitions ----------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Definition of the HLFIR dialect operations
///
//===----------------------------------------------------------------------===//

#ifndef FORTRAN_DIALECT_HLFIR_OPS
#define FORTRAN_DIALECT_HLFIR_OPS

include "flang/Optimizer/HLFIR/HLFIROpBase.td"
include "flang/Optimizer/Dialect/FIRTypes.td"
include "flang/Optimizer/Dialect/FIRAttr.td"
include "flang/Optimizer/Dialect/FortranVariableInterface.td"
include "mlir/Dialect/Arith/IR/ArithBase.td"
include "mlir/Dialect/Arith/IR/ArithOpsInterfaces.td"
include "mlir/IR/BuiltinAttributes.td"

// Base class for FIR operations.
// All operations automatically get a prefix of "hlfir.".
class hlfir_Op<string mnemonic, list<Trait> traits>
  : Op<hlfir_Dialect, mnemonic, traits>;



def hlfir_DeclareOp : hlfir_Op<"declare", [AttrSizedOperandSegments,
    DeclareOpInterfaceMethods<fir_FortranVariableOpInterface>]> {
  let summary = "declare a variable and produce an SSA value that can be used as a variable in HLFIR operations";

  let description = [{
    Tie the properties of a Fortran variable to an address. The properties
    include bounds, length parameters, and Fortran attributes.

    The arguments are the same as for fir.declare.

    The main difference with fir.declare is that hlfir.declare returns two
    values:
      - the first one is an SSA value that allows retrieving the variable
        address, bounds, and type parameters at any point without requiring
        access to the defining operation. This may be:
        - for scalar numerical, logical, or derived type without length
          parameters: a fir.ref<T> (e.g. fir.ref<i32>)
        - for scalar characters: a fir.boxchar<kind> or fir.ref<fir.char<kind,
          cst_len>>
        - for arrays of types without length parameters, without lower bounds,
          that are not polymorphic and with a constant shape:
          fir.ref<fir.array<cst_shapexT>>
        - for all non pointer/non allocatable entities: fir.box<T>, and
          fir.class<T> for polymorphic entities.
        - for all pointers/allocatables:
          fir.ref<fir.box<fir.ptr<T>>>/fir.ref<fir.box<fir.heap<T>>>
      - the second value has the same type as the input memref, and is the
        same. If it is a fir.box or fir.class, it may not contain accurate
        local lower bound values. It is intended to be used when generating FIR
        from HLFIR in order to avoid descriptor creation for simple entities.

    Example:

    CHARACTER(n) :: c(10:n, 20:n)

    Can be represented as:
    ```
    func.func @foo(%arg0: !fir.ref<!fir.array<?x?x!fir.char<1,?>>>, %arg1: !fir.ref<i64>) {
      %c10 = arith.constant 10 : index
      %c20 = arith.constant 20 : index
      %1 = fir.load %ag1 : fir.ref<i64>
      %2 = fir.shape_shift %c10, %1, %c20, %1 : (index, index, index, index) -> !fir.shapeshift<2>
      %3 = hfir.declare %arg0(%2) typeparams %1 {uniq_name = "c"} (fir.ref<!fir.array<?x?x!fir.char<1,?>>>, fir.shapeshift<2>, index) -> (fir.box<!fir.array<?x?x!fir.char<1,?>>>, fir.ref<!fir.array<?x?x!fir.char<1,?>>>)
      // ... uses %3#0 as "c"
    }
   ```
  }];

  let arguments = (ins
    AnyRefOrBox:$memref,
    Optional<AnyShapeOrShiftType>:$shape,
    Variadic<AnyIntegerType>:$typeparams,
    Builtin_StringAttr:$uniq_name,
    OptionalAttr<fir_FortranVariableFlagsAttr>:$fortran_attrs
  );

  let results = (outs AnyFortranVariable, AnyRefOrBoxLike);

  let assemblyFormat = [{
    $memref (`(` $shape^ `)`)? (`typeparams` $typeparams^)?
     attr-dict `:` functional-type(operands, results)
  }];

  let builders = [
    OpBuilder<(ins "mlir::Value":$memref, "llvm::StringRef":$uniq_name,
      CArg<"mlir::Value", "{}">:$shape, CArg<"mlir::ValueRange", "{}">:$typeparams,
      CArg<"fir::FortranVariableFlagsAttr", "{}">:$fortran_attrs)>];

  let extraClassDeclaration = [{
    /// Get the variable original base (same as input). It lacks
    /// any explicit lower bounds and the extents might not be retrievable
    /// from it. This matches what is used as a "base" in FIR.
    mlir::Value getOriginalBase() {
      return getResult(1);
    }

    /// Override FortranVariableInterface default implementation
    mlir::Value getBase() {
      return getResult(0);
    }

    /// Given a FIR memory type, and information about non default lower
    /// bounds, get the related HLFIR variable type.
    static mlir::Type getHLFIRVariableType(mlir::Type type, bool hasLowerBounds);
  }];

  let hasVerifier = 1;
}

def fir_AssignOp : hlfir_Op<"assign", [MemoryEffects<[MemWrite]>]> {
  let summary = "Assign an expression or variable value to a Fortran variable";

  let description = [{
    Assign rhs to lhs following Fortran intrinsic assignments rules.
    The operation deals with inserting a temporary if the lhs and rhs
    may overlap.
    The optional "realloc" flag allows indicating that this assignment
    has the Fortran 95 semantics for assignments to a whole allocatable.
    In such case, the left hand side must be an allocatable that may be
    unallocated or allocated with a different type and shape than the right
    hand side. It will be allocated or re-allocated as needed during the
    assignment.
    When "realloc" is set and this is a character assignment, the optional
    flag "keep_lhs_length_if_realloc" indicates that the character
    left hand side should retain its length after the assignment. If the
    right hand side has a different length, truncation and padding will
    occur. This covers the case of explicit and assumed length character
    allocatables.
    Otherwise, the left hand side will be allocated or reallocated to match the
    right hand side length if they differ. This covers the case of deferred
    length character allocatables.
  }];

  let arguments = (ins AnyFortranEntity:$rhs,
                   Arg<AnyFortranVariable, "", [MemWrite]>:$lhs,
                   UnitAttr:$realloc,
                   UnitAttr:$keep_lhs_length_if_realloc);

  let assemblyFormat = [{
    $rhs `to` $lhs (`realloc` $realloc^)?
    (`keep_lhs_len` $keep_lhs_length_if_realloc^)?
    attr-dict `:` type(operands)
  }];

  let extraClassDeclaration = [{
    /// Does this assignment have the Fortran 95 semantics of assignments
    /// to a whole allocatable?
    bool isAllocatableAssignment() {
      return getRealloc();
    }
    /// Is the assignment left hand side a whole allocatable character
    /// that should retain its length after the assignment?
    bool mustKeepLhsLengthInAllocatableAssignment() {
      return getKeepLhsLengthIfRealloc();
    }
  }];

  let hasVerifier = 1;
}

def hlfir_DesignateOp : hlfir_Op<"designate", [AttrSizedOperandSegments,
    DeclareOpInterfaceMethods<fir_FortranVariableOpInterface>, NoMemoryEffect]> {
  let summary = "Designate a Fortran variable";

  let description = [{
    This operation represents a Fortran "part-ref", except that it can embed a
    substring or or complex part directly, and that vector subscripts cannot be
    used. It returns a Fortran variable that is a part of the input variable.

    The operands are as follow:
      - memref is the variable being designated.
      - component may be provided if the memref is a derived type to
        represent a reference to a component. It must be the name of a
        component of memref derived type.
      - component_shape represents the shape of the component and must be
        provided if and only if both component and indices appear.
      - indices can be provided to index arrays. The indices may be simple
        indices or triplets.
        If indices are provided and there is a component, the component must be
        an array component and the indices index the array component.
        If memref is an array, and component is provided and is an array
        component, indices must be provided and must not be triplets. This
        ensures hlfir.designate does not create arrays of arrays (which is not
        possible in Fortran).
      - substring may contain two values to represent a substring lower and
        upper bounds.
      - complex_part may be provided to represent a complex part (true
        represents the imaginary part, and false the real part).
      - shape represents the shape of the result and must be provided if the
        result is an array that is not a box address.
      - typeparams represents the length parameters of the result and must be
        provided if the result type has length parameters and is not a box
        address.
  }];

  let arguments = (ins AnyFortranVariable:$memref,
                   OptionalAttr<Builtin_StringAttr>:$component,
                   Optional<AnyShapeOrShiftType>:$component_shape,
                   Variadic<AnyIntegerType>:$indices,
                   DenseBoolArrayAttr:$is_triplet,
                   Variadic<AnyIntegerType>:$substring,
                   OptionalAttr<BoolAttr>:$complex_part,
                   Optional<AnyShapeOrShiftType>:$shape,
                   Variadic<AnyIntegerType>:$typeparams,
                   OptionalAttr<fir_FortranVariableFlagsAttr>:$fortran_attrs
                );

  let results = (outs AnyFortranVariable);

  let assemblyFormat = [{
    $memref (`{` $component^ `}`)? (`<` $component_shape^ `>`)?
    custom<DesignatorIndices>($indices, $is_triplet)
    (`substr` $substring^)?
    custom<DesignatorComplexPart>($complex_part)
    (`shape` $shape^)? (`typeparams` $typeparams^)?
    attr-dict `:` functional-type(operands, results)
  }];

  let extraClassDeclaration = [{
    using Triplet = std::tuple<mlir::Value, mlir::Value, mlir::Value>;
    using Subscript = std::variant<mlir::Value, Triplet>;
    using Subscripts = llvm::SmallVector<Subscript, 8>;
  }];

  let builders = [
    OpBuilder<(ins "mlir::Type":$result_type, "mlir::Value":$memref,
      "llvm::StringRef":$component, "mlir::Value":$component_shape,
      "llvm::ArrayRef<std::variant<mlir::Value, std::tuple<mlir::Value, mlir::Value, mlir::Value>>>":$subscripts,
      CArg<"mlir::ValueRange", "{}">:$substring,
      CArg<"std::optional<bool>", "{}">:$complex_part,
      CArg<"mlir::Value", "{}">:$shape, CArg<"mlir::ValueRange", "{}">:$typeparams,
      CArg<"fir::FortranVariableFlagsAttr", "{}">:$fortran_attrs)>,

    OpBuilder<(ins "mlir::Type":$result_type, "mlir::Value":$memref,
      "mlir::ValueRange":$indices,
      CArg<"mlir::ValueRange", "{}">:$typeparams,
      CArg<"fir::FortranVariableFlagsAttr", "{}">:$fortran_attrs)>
    ];

  let hasVerifier = 1;
}

def hlfir_ParentComponentOp : hlfir_Op<"parent_comp", [AttrSizedOperandSegments,
    DeclareOpInterfaceMethods<fir_FortranVariableOpInterface>]> {
  let summary = "Designate the parent component of a variable";

  let description = [{
    This operation represents a Fortran component reference where the
    component name is a parent type of the variable's derived type.
    These component references cannot be represented with an hlfir.designate
    because the parent type names are not embedded in fir.type<> types
    as opposed to the actual component names.

    The operands are as follow:
      - memref is a derived type variable whose parent component is being
        designated.
      - shape is the shape of memref and the result and must be provided if
        memref is an array. Parent component reference lower bounds are ones,
        so the provided shape must be a fir.shape.
      - typeparams are the type parameters of the parent component type if any.
        It is a subset of memref type parameters.
    The parent component type and name is reflected in the result type.
  }];

  let arguments = (ins AnyFortranVariable:$memref,
                   Optional<AnyShapeType>:$shape,
                   Variadic<AnyIntegerType>:$typeparams);

  let extraClassDeclaration = [{
    // Implement FortranVariableInterface interface. Parent components have
    // no attributes (pointer, allocatable or contiguous can only be added
    // to regular components).
    std::optional<fir::FortranVariableFlagsEnum> getFortranAttrs() const {
      return std::nullopt;
    }
  }];

  let results = (outs AnyFortranVariable);

  let assemblyFormat = [{
    $memref (`shape` $shape^)? (`typeparams` $typeparams^)?
    attr-dict `:` functional-type(operands, results)
  }];

  let hasVerifier = 1;
}

def hlfir_ConcatOp : hlfir_Op<"concat", []> {
  let summary = "concatenate characters";
  let description = [{
    Concatenate two or more character strings of a same character kind.
  }];

  let arguments = (ins Variadic<AnyScalarCharacterEntity>:$strings,
                   AnyIntegerType:$length);

  let results = (outs AnyScalarCharacterExpr);

  let assemblyFormat = [{
    $strings `len` $length
     attr-dict `:` functional-type(operands, results)
  }];

  let builders = [OpBuilder<(ins "mlir::ValueRange":$strings,"mlir::Value":$len)>];

  let hasVerifier = 1;
}

def hlfir_AnyOp : hlfir_Op<"any", []> {
  let summary = "ANY transformational intrinsic";
  let description = [{
    Takes a logical array MASK as argument, optionally along a particular dimension,
    and returns true if any element of MASK is true.
  }];

  let arguments = (ins
    AnyFortranLogicalArrayObject:$mask,
    Optional<AnyIntegerType>:$dim
  );

  let results = (outs hlfir_ExprType);

  let assemblyFormat = [{
    $mask  (`dim` $dim^)?  attr-dict `:` functional-type(operands, results)
  }];

  let hasVerifier = 1;
}


def hlfir_ProductOp : hlfir_Op<"product", [AttrSizedOperandSegments,
    DeclareOpInterfaceMethods<ArithFastMathInterface>]> {
  let summary = "PRODUCT transformational intrinsic";
  let description = [{
    Multiplies the elements of an array, optionally along a particular dimension,
    optionally if a mask is true.
  }];

  let arguments = (ins
    AnyFortranNumericalArrayObject:$array,
    Optional<AnyIntegerType>:$dim,
    Optional<AnyFortranLogicalOrI1ArrayObject>:$mask,
    DefaultValuedAttr<Arith_FastMathAttr,
                      "::mlir::arith::FastMathFlags::none">:$fastmath
  );

  let results = (outs hlfir_ExprType);

  let assemblyFormat = [{
    $array (`dim` $dim^)? (`mask` $mask^)? attr-dict `:` functional-type(operands, results)
  }];

  let hasVerifier = 1;
}

def hlfir_SetLengthOp : hlfir_Op<"set_length", []> {
  let summary = "change the length of a character entity";
  let description = [{
    Change the length of character entity. This trims or pads the
    character argument according to the new length.
  }];

  let arguments = (ins AnyScalarCharacterEntity:$string,
                   AnyIntegerType:$length);

  let results = (outs AnyScalarCharacterExpr);

  let assemblyFormat = [{
    $string `len` $length
     attr-dict `:` functional-type(operands, results)
  }];

  let builders = [OpBuilder<(ins "mlir::Value":$string,"mlir::Value":$len)>];
}

def hlfir_SumOp : hlfir_Op<"sum", [AttrSizedOperandSegments,
    DeclareOpInterfaceMethods<ArithFastMathInterface>]> {
  let summary = "SUM transformational intrinsic";
  let description = [{
    Sums the elements of an array, optionally along a particular dimension,
    optionally if a mask is true.
  }];

  let arguments = (ins
    AnyFortranNumericalArrayObject:$array,
    Optional<AnyIntegerType>:$dim,
    Optional<AnyFortranLogicalOrI1ArrayObject>:$mask,
    DefaultValuedAttr<Arith_FastMathAttr,
                      "::mlir::arith::FastMathFlags::none">:$fastmath
  );

  let results = (outs hlfir_ExprType);

  let assemblyFormat = [{
    $array (`dim` $dim^)? (`mask` $mask^)? attr-dict `:` functional-type(operands, results)
  }];

  let hasVerifier = 1;
}

def hlfir_MatmulOp : hlfir_Op<"matmul",
    [DeclareOpInterfaceMethods<ArithFastMathInterface>]> {
  let summary = "MATMUL transformational intrinsic";
  let description = [{
    Matrix multiplication
  }];

  let arguments = (ins
    AnyFortranNumericalOrLogicalArrayObject:$lhs,
    AnyFortranNumericalOrLogicalArrayObject:$rhs,
    DefaultValuedAttr<Arith_FastMathAttr,
                      "::mlir::arith::FastMathFlags::none">:$fastmath
  );

  let results = (outs hlfir_ExprType);

  let assemblyFormat = [{
    $lhs $rhs attr-dict `:` functional-type(operands, results)
  }];

  // MATMUL(TRANSPOSE(...), ...) => hlfir.matmul_transpose
  let hasCanonicalizeMethod = 1;

  let hasVerifier = 1;
}

def hlfir_TransposeOp : hlfir_Op<"transpose", []> {
  let summary = "TRANSPOSE transformational intrinsic";
  let description = [{
    Transpose a rank 2 array
  }];

  let arguments = (ins AnyFortranArrayObject:$array);

  let results = (outs hlfir_ExprType);

  let assemblyFormat = [{
    $array attr-dict `:` functional-type(operands, results)
  }];

  let hasVerifier = 1;
}

def hlfir_MatmulTransposeOp : hlfir_Op<"matmul_transpose",
    [DeclareOpInterfaceMethods<ArithFastMathInterface>]> {
  let summary = "Optimized MATMUL(TRANSPOSE(...), ...)";
  let description = [{
    Matrix multiplication where the left hand side is transposed
  }];

  let arguments = (ins
    AnyFortranNumericalOrLogicalArrayObject:$lhs,
    AnyFortranNumericalOrLogicalArrayObject:$rhs,
    DefaultValuedAttr<Arith_FastMathAttr,
                      "::mlir::arith::FastMathFlags::none">:$fastmath
  );

  let results = (outs hlfir_ExprType);

  let assemblyFormat = [{
    $lhs $rhs attr-dict `:` functional-type(operands, results)
  }];

  let hasVerifier = 1;
}

def hlfir_AssociateOp : hlfir_Op<"associate", [AttrSizedOperandSegments,
    DeclareOpInterfaceMethods<fir_FortranVariableOpInterface>]> {
  let summary = "Create a variable from an expression value";
  let description = [{
    Create a variable from an expression value.
    For expressions, this operation is an incentive to re-use the expression
    storage, if any, after the bufferization pass when possible (if the
    expression is not used afterwards).
  }];

  let arguments = (ins
    AnyFortranValue:$source,
    Optional<AnyShapeOrShiftType>:$shape,
    Variadic<AnyIntegerType>:$typeparams,
    Builtin_StringAttr:$uniq_name,
    OptionalAttr<fir_FortranVariableFlagsAttr>:$fortran_attrs
  );

  let results = (outs AnyFortranVariable, AnyRefOrBoxLike, I1);

  let assemblyFormat = [{
    $source (`(` $shape^ `)`)? (`typeparams` $typeparams^)?
     attr-dict `:` functional-type(operands, results)
  }];

  let builders = [
    OpBuilder<(ins "mlir::Value":$source, "llvm::StringRef":$uniq_name,
      CArg<"mlir::Value", "{}">:$shape, CArg<"mlir::ValueRange", "{}">:$typeparams,
      CArg<"fir::FortranVariableFlagsAttr", "{}">:$fortran_attrs)>];

  let extraClassDeclaration = [{
    /// Override FortranVariableInterface default implementation
    mlir::Value getBase() {
      return getResult(0);
    }

    /// Get the variable FIR base (same as input). It lacks
    /// any explicit lower bounds and the extents might not be retrievable
    /// from it. This matches what is used as a "base" in FIR. All non
    /// polymorphic expressions FIR base is a simple raw address (they are
    /// contiguous in memory).
    mlir::Value getFirBase() {
      return getResult(1);
    }

    /// Return the result value that indicates if the variable storage
    /// was allocated on the heap. At the HLFIR level, this may not be
    /// known yet, and lowering will need to conditionally free the storage.
    mlir::Value getMustFreeStrorageFlag() {
      return getResult(2);
    }
  }];
}

def hlfir_EndAssociateOp : hlfir_Op<"end_associate", []> {
  let summary = "Mark the end of life of a variable associated to an expression";

  let description = [{
    Mark the end of life of a variable associated to an expression.
  }];

  let arguments = (ins AnyRefOrBoxLike:$var,
                   I1:$must_free);

  let assemblyFormat = [{
    $var `,` $must_free attr-dict `:` type(operands)
  }];

  let builders = [OpBuilder<(ins "hlfir::AssociateOp":$associate)>];
}

def hlfir_AsExprOp : hlfir_Op<"as_expr", []> {
  let summary = "Take the value of an array, character or derived variable";

  let description = [{
    Take the value of an array, character or derived variable.
    In general, this operation will lead to a copy of the variable
    in the bufferization pass if it was not transformed.

    However, if it is known that the variable storage will not be used anymore
    afterwards, the variable storage ownership can be passed to the hlfir.expr
    by providing the $must_free argument that is a boolean that indicates if
    the storage must be freed (when it was allocated on the heap).
    This allows Fortran lowering to build some expression value in memory when
    there is no adequate hlfir operation, and to promote the result to an
    hlfir.expr value without paying the price of introducing a copy.
  }];

  let arguments = (ins AnyFortranVariable:$var,
                       Optional<I1>:$must_free);
  let results = (outs hlfir_ExprType);

  let extraClassDeclaration = [{
      // Is this a "move" ?
      bool isMove() { return getMustFree() != mlir::Value{}; }
  }];

  let assemblyFormat = [{
    $var (`move` $must_free^)? attr-dict `:` functional-type(operands, results)
  }];


  let builders = [OpBuilder<(ins "mlir::Value":$var, CArg<"mlir::Value", "{}">:$must_free)>];
}

def hlfir_NoReassocOp : hlfir_Op<"no_reassoc", [NoMemoryEffect, SameOperandsAndResultType]> {
  let summary = "synthetic op to prevent reassociation";

  let description = [{
    Same as fir.reassoc, except it accepts hlfir.expr arguments.
  }];

  let arguments = (ins AnyFortranEntity:$val);
  let results = (outs AnyFortranEntity);

  let assemblyFormat = "$val attr-dict `:` type($val)";
}

def hlfir_ElementalOp : hlfir_Op<"elemental", [RecursiveMemoryEffects]> {
  let summary = "elemental expression";
  let description = [{
    Represent an elemental expression as a function of the indices.
    This operation contain a region whose block arguments are one
    based indices iterating over the elemental expression shape.
    Given these indices, the element value for the given iteration
    can be computed in the region and yielded with the hlfir.yield_element
    operation.

    The shape and typeparams operands represent the extents and type
    parameters of the resulting array value.


    Example: Y + X,  with Integer :: X(10, 20), Y(10,20)
    ```
      %0 = fir.shape %c10, %c20 : (index, index) -> !fir.shape<2>
      %5 = hlfir.elemental %0 : (!fir.shape<2>) -> !hlfir.expr<10x20xi32> {
      ^bb0(%i: index, %j: index):
        %6 = hlfir.designate %x (%i, %j)  : (!fir.ref<!fir.array<10x20xi32>>, index, index) -> !fir.ref<i32>
        %7 = hlfir.designate %y (%i, %j)  : (!fir.ref<!fir.array<10x20xi32>>, index, index) -> !fir.ref<i32>
        %8 = fir.load %6 : !fir.ref<i32>
        %9 = fir.load %7 : !fir.ref<i32>
        %10 = arith.addi %8, %9 : i32
        hlfir.yield_element %10 : i32
      }
    ```
  }];

  let arguments = (ins
    AnyShapeType:$shape,
    Variadic<AnyIntegerType>:$typeparams
  );

  let results = (outs hlfir_ExprType);
  let regions = (region SizedRegion<1>:$region);

  let assemblyFormat = [{
    $shape (`typeparams` $typeparams^)?
    attr-dict `:` functional-type(operands, results)
    $region
    }];

  let extraClassDeclaration = [{
      mlir::Block *getBody() { return &getRegion().front(); }

      // Get the indices iterating over the shape.
      mlir::Block::BlockArgListType getIndices() {
       return getBody()->getArguments();
      }
  }];

  let skipDefaultBuilders = 1;
  let builders = [
    OpBuilder<(ins "mlir::Type":$result_type, "mlir::Value":$shape,
      CArg<"mlir::ValueRange", "{}">:$typeparams)>];

}

def hlfir_YieldElementOp : hlfir_Op<"yield_element", [Terminator, HasParent<"ElementalOp">, Pure]> {
  let summary = "Yield the elemental value in an ElementalOp";
  let description = [{
    Yield the element value of the current elemental expression iteration
    in an hlfir.elemental region. See hlfir.elemental description for an
    example.
  }];

  let arguments = (ins AnyType:$element_value);

  let assemblyFormat = "$element_value attr-dict `:` type($element_value)";
}

def hlfir_ApplyOp : hlfir_Op<"apply", [NoMemoryEffect, AttrSizedOperandSegments]> {
  let summary = "get the element value of an expression";
  let description = [{
    Given an hlfir.expr array value, hlfir.apply allow retrieving
    the value for an element given one based indices.
    When hlfir.apply is used on an hlfir.elemental, and if the hlfir.elemental
    operation evaluation can be moved to the location of the hlfir.apply, it is
    as if the hlfir.elemental body was evaluated given the hlfir.apply indices.
  }];

  let arguments = (ins hlfir_ExprType:$expr,
                   Variadic<Index>:$indices,
                   Variadic<AnyIntegerType>:$typeparams
                  );
  let results = (outs AnyFortranValue:$element_value);

  let assemblyFormat = [{
    $expr `,` $indices (`typeparams` $typeparams^)?
    attr-dict `:` functional-type(operands, results)
  }];

  let builders = [
    OpBuilder<(ins "mlir::Value":$expr, "mlir::ValueRange":$indices,
      "mlir::ValueRange":$typeparams)>
  ];
}

def hlfir_NullOp : hlfir_Op<"null", [NoMemoryEffect, fir_FortranVariableOpInterface]> {
  let summary = "create a NULL() address";

  let description = [{
    Create a NULL() address.
    So far is not intended to represent NULL(MOLD).
  }];

  let results = (outs AnyFortranVariable);
  let builders = [OpBuilder<(ins)>];

  let assemblyFormat = "type(results) attr-dict";
  let extraClassDeclaration = [{
    // Implement FortranVariableInterface interface.
    std::optional<fir::FortranVariableFlagsEnum> getFortranAttrs() const {
      return std::nullopt;
    }
    mlir::Value getShape() const {return mlir::Value{};}
    mlir::OperandRange getExplicitTypeParams() const {
      // Return an empty range.
      return {(*this)->getOperands().begin(), (*this)->getOperands().begin()};
    }
  }];
}

def hlfir_DestroyOp : hlfir_Op<"destroy", [MemoryEffects<[MemFree]>]> {
  let summary = "Mark the last use of an hlfir.expr";
  let description = [{
    Mark the last use of an hlfir.expr. This will be the point at which the
    buffer of an hlfir.expr, if any, will be deallocated if it was heap
    allocated.
    It is not required to create an hlfir.destroy operation for and hlfir.expr
    created inside an hlfir.elemental an returned in the hlfir.yield_element.
    The last use of such expression is implicit and an hlfir.destroy could
    not be emitted after the hlfir.yield_element since it is a terminator.

    Note that hlfir.destroy are currently generated by Fortran lowering that
    has a good view of the expression use contexts, but this will need to be
    revisited if any motion of hlfir.expr is done (like CSE) since
    transformations should not introduce any hlfir.expr usages after an
    hlfir.destroy.
    The future will probably be to identify the last use points automatically
    in bufferization instead.
  }];

  let arguments = (ins hlfir_ExprType:$expr);

  let assemblyFormat = "$expr attr-dict `:` qualified(type($expr))";
}

def hlfir_CopyInOp : hlfir_Op<"copy_in", []> {
  let summary = "copy a variable into a contiguous temporary if it is not contiguous";
  let description = [{
    Copy a variable into a contiguous temporary if the variable is not
    an absent optional and is not contiguous at runtime. When a copy is made this
    operation returns the temporary as first result, otherwise, it returns the
    potentially absent variable storage. The second result indicates if a copy
    was made.

    This operation is meant to be used in combination with the hlfir.copy_out
    operation that deletes the temporary if it was created and copies the data
    back if needed.
    This operation allows passing non contiguous arrays to contiguous dummy
    arguments, which is possible in Fortran procedure references.

    To deal with the optional case, an extra boolean value can be pass to the
    operation. In such cases, the copy-in will only be done if "var_is_present"
    is true and, when it is false, the original value will be returned instead.
  }];

  let arguments = (ins fir_BaseBoxType:$var,
                   Optional<I1>:$var_is_present);

  let results = (outs fir_BaseBoxType, I1);

  let assemblyFormat = [{
    $var (`handle_optional` $var_is_present^)?
    attr-dict `:` functional-type(operands, results)
  }];

  let builders = [
    OpBuilder<(ins "mlir::Value":$var, "mlir::Value":$var_is_present)>
  ];

  let extraClassDeclaration = [{
    /// Get the resulting copied-in fir.box or fir.class.
    mlir::Value getCopiedIn() {
      return getResult(0);
    }

    /// Get the result indicating if a copy was made.
    mlir::Value getWasCopied() {
      return getResult(1);
    }
  }];
}

def hlfir_CopyOutOp : hlfir_Op<"copy_out", []> {
  let summary = "copy out a variable after a copy in";
  let description = [{
    If the variable was copied in a temporary in the related hlfir.copy_in,
    optionally copy back the temporary value to it (that may have been
    modified between the hlfir.copy_in and hlfir.copy_out). Then deallocate
    the temporary.
    The copy back is done if $var is provided and $was_copied is true.
    The deallocation of $temp is done if $was_copied is true.
  }];

  let arguments = (ins fir_BaseBoxType:$temp,
                       I1:$was_copied,
                       Optional<fir_BaseBoxType>:$var);

  let assemblyFormat = [{
    $temp `,` $was_copied (`to` $var^)?
    attr-dict `:` functional-type(operands, results)
  }];
}

def hlfir_ShapeOfOp : hlfir_Op<"shape_of", [Pure]> {
  let summary = "Get the shape of a hlfir.expr";
  let description = [{
    Gets the runtime shape of a hlfir.expr. In lowering to FIR, the
    hlfir.shape_of operation will be replaced by an fir.shape.
    It is not valid to request the shape of a hlfir.expr which has no shape.
  }];

  let arguments = (ins hlfir_ExprType:$expr);

  let results = (outs fir_ShapeType);

  let hasVerifier = 1;

  // If all extents are known at compile time, the hlfir.shape_of can be
  // immediately folded into a fir.shape operation. This makes information
  // available sooner to inform bufferization decisions
  let hasCanonicalizeMethod = 1;

  let extraClassDeclaration = [{
    std::size_t getRank();
  }];

  let assemblyFormat = [{
    $expr attr-dict `:` functional-type(operands, results)
  }];

  let builders = [OpBuilder<(ins "mlir::Value":$expr)>];
}

def hlfir_GetExtentOp : hlfir_Op<"get_extent", [Pure]> {
  let summary = "Get an extent value from a fir.shape";
  let description = [{
    Gets an extent value from a fir.shape. The dimension argument uses C style
    indexing and so should be between 0 and 1 less than the rank of the shape
  }];

  let arguments = (ins fir_ShapeType:$shape,
                       IndexAttr:$dim);

  let results = (outs Index);

  let hasVerifier = 1;

  let assemblyFormat = [{
    $shape attr-dict `:` functional-type(operands, results)
  }];

  let builders = [OpBuilder<(ins "mlir::Value":$shape, "unsigned":$dim)>];
}

def hlfir_OrderedAssignmentTreeOpInterface : OpInterface<"OrderedAssignmentTreeOpInterface"> {
  let description = [{
    Interface for the operations representing Forall and Where constructs and
    statements as an mlir::Region tree.

    These operations all have in common that they have "leaf" regions that contains
    some code that should be evaluated for "all active combinations of Forall
    index-name values" before the next OrderedAssignmentTreeOpInterface is
    evaluated.

    These operations are ordered in a tree fashion: Some operations, like
    hlfir.forall or hlfir.where, contain a list of OrderedAssignmentTreeOpInterface
    that should be evaluated after the "Leaf" regions, and before the next
    OrderedAssignmentTreeOpInterface.

    Nested OrderedAssignmentTreeOpInterface operations are affected by the
    OrderedAssignmentTreeOpInterface operations that contain them (e.g:
    hlfir.region_assign may be masked by the value of the mask region of
    an hlfir.where that contains it).

    OrderedAssignmentTreeOpInterface operations that contain nested operation
    must return a "sub-tree" region that contains the list of nested
    OrderedAssignmentTreeOpInterface operations.

    There is no constraints over what IR a leaf region may contain. There is also
    no restriction regarding how many leaf regions an
    OrderedAssignmentTreeOpInterface operation may contain.

    A "sub-tree" region, if any, must contain only OrderedAssignmentTreeOpInterface
    operations and, maybe, a fir.end terminator.
  }];

  let methods = [
    InterfaceMethod<
      /*desc=*/"Get the OrderedAssignmentTreeOpInterface leaf regions that contain evaluation code",
      /*retTy=*/"void",
      /*methodName=*/"getLeafRegions",
      /*args=*/(ins "llvm::SmallVectorImpl<mlir::Region*>&":$regions),
      /*methodBody=*/[{}]
    >,
    InterfaceMethod<
      /*desc=*/"Get the region, if any, containing the list of sub-tree OrderedAssignmentTreeOpInterface nodes",
      /*retTy=*/"mlir::Region*",
      /*methodName=*/"getSubTreeRegion",
      /*args=*/(ins),
      /*methodBody=*/[{}]
    >,
  ];

  let extraClassDeclaration = [{
    /// Interface verifier imlementation.
    mlir::LogicalResult verifyImpl();

    mlir::Block* getSubTreeBlock() {
      mlir::Region* region = getSubTreeRegion();
      return region && !region->empty()? &region->front() : nullptr;
    }
  }];

  let verify = [{
    return ::mlir::cast<::hlfir::OrderedAssignmentTreeOpInterface>($_op).verifyImpl();
  }];

  let cppNamespace = "hlfir";
}


def hlfir_RegionAssignOp : hlfir_Op<"region_assign", [hlfir_OrderedAssignmentTreeOpInterface]> {
  let summary = "represent a Fortran assignment using regions for the LHS and RHS evaluation";
  let description = [{
    This operation can represent Forall and Where assignment when inside an
    hlfir.forall or hlfir.where "ordered assignment tree". It can
    also represent user defined assignments and assignment to vector
    subscripted entities without requiring the materialization of the
    right-hand side temporary copy that may be needed to implement Fortran
    assignment semantic.

    The right-hand side and left-hand side evaluations are held in their
    own regions terminated with hlfir.yield operations (or hlfir.elemental_addr
    for a left-hand side with vector subscript).

    An optional region may be added to implement user defined assignment.
    This region provides two block arguments with the same type as the
    yielded rhs and lhs entities (in that order), or the element type if this
    is an elemental user defined assignment.

    If this optional region is not provided, intrinsic assignment is performed.

    Example: "X = Y",  where "=" is a user defined elemental assignment "foo"
    taking Y by value.
    ```
    hlfir.region_assign {
      hlfir.yield %y : !fir.box<!fir.array<?x!f32>>
    } to {
      hlfir.yield %x : !fir.box<!fir.array<?x!fir.type<t>>>
    } user_defined_assignment (%rhs_elt: !fir.ref<f32>) to (%lhs_elt: !fir.ref<!fir.type<t>>) {
      %0 = fir.load %rhs_elt : !fir.ref<f32>
      fir.call @foo(%lhs_elt, %0) : (!fir.ref<!fir.type<t>>, f32) -> ()
    }
    ```

    TODO: add optional "realloc" semantics like for hlfir.assign.
  }];

  let regions = (region  SizedRegion<1>:$rhs_region,
                         SizedRegion<1>:$lhs_region,
                         MaxSizedRegion<1>:$user_defined_assignment);

  let extraClassDeclaration = [{
    mlir::Value getUserAssignmentRhs() {
      return getUserDefinedAssignment().getArguments()[0];
    }
    mlir::Value getUserAssignmentLhs() {
      return getUserDefinedAssignment().getArguments()[1];
    }
    void getLeafRegions(llvm::SmallVectorImpl<mlir::Region*>& regions) {
      regions.push_back(&getRhsRegion());
      regions.push_back(&getLhsRegion());
      if (!getUserDefinedAssignment().empty())
        regions.push_back(&getUserDefinedAssignment());
    }
    mlir::Region* getSubTreeRegion() { return nullptr; }

  }];

  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def hlfir_YieldOp : hlfir_Op<"yield", [Terminator, ParentOneOf<["RegionAssignOp",
    "ElementalAddrOp", "ForallOp", "ForallMaskOp", "WhereOp", "ElseWhereOp"]>,
    SingleBlockImplicitTerminator<"fir::FirEndOp">, RecursivelySpeculatable,
        RecursiveMemoryEffects]> {

  let summary = "Yield a value or variable inside a forall, where or region assignment";

  let description = [{
    Terminator operation that yields an HLFIR value or variable that was computed in
    a region and hold the yielded entity cleanup, if any, into its own region.
    This allows representing any Fortran expression evaluation in its own region so
    that the evaluation can easily be scheduled/moved around in a pass.

    Example: "foo(x)" where foo returns an allocatable array.
    ```
    {
      // In some region.
      %0 = fir.call @foo(x) (!fir.ref<f32>) -> !fir.box<fir.heap<!fir.array<?xf32>>>
      hlfir.yield %0 : !fir.box<!fir.heap<!fir.array<?xf32>>> cleanup {
        %1 = fir.box_addr %0 : !fir.box<!fir.heap<!fir.array<?xf32>>> -> !fir.heap<!fir.array<?xf32>>
        %fir.freemem %1 : !fir.heap<!fir.array<?xf32>>
      }
    }
    ```
  }];

  let arguments = (ins AnyFortranEntity:$entity);
  let regions = (region  MaxSizedRegion<1>:$cleanup);

  let assemblyFormat = "$entity attr-dict `:` type($entity) custom<YieldOpCleanup>($cleanup)";
}

def hlfir_ElementalAddrOp : hlfir_Op<"elemental_addr", [Terminator, HasParent<"RegionAssignOp">, RecursiveMemoryEffects, RecursivelySpeculatable]> {
  let summary = "Yield the address of a vector subscripted variable inside an hlfir.region_assign";
  let description = [{
    Special terminator node for the left-hand side region of an hlfir.region_assign
    to a vector subscripted entity.

    It represents how the address of an element of such entity is computed given
    one based indices.

    It is very similar to hlfir.elemental, except that it does not produce an SSA
    value because there is no hlfir type to describe a vector subscripted entity
    (the codegen of such type would be problematic). Hence, it is tightly linked
    to an hlfir.region_assign by its terminator property.

    An optional cleanup region may be provided if any of the subscript expressions
    of the designator require a cleanup.
    This allows documenting cleanups that cannot be generated after the vector
    subscripted designator usage (that has not been materizaled yet). The cleanups
    will be evaluated after the assignment once the related
    hlfir.region_assign is lowered.

    Example: "X(VECTOR) = Y"

    ```
    hlfir.region_assign {
      hlfir.yield %y : !fir.ref<!fir.array<20xf32>>
    } to {
      hlfir.elemental_addr %vector_shape  : !fir.shape<1> {
        ^bb0(%i: index):
        %0 = hlfir.designate %vector (%i)  : (!fir.ref<!fir.array<20xi32>>, index) -> !fir.ref<i32>
        %1 = fir.load %0 : !fir.ref<i32>
        %x_element_addr = hlfir.designate %x (%1)  : (!fir.ref<!fir.array<100xf32>>, i32) -> !fir.ref<f32>
        hlfir.yield %x_element_addr : !fir.ref<f32>
      }
    }
    ```
  }];

  let arguments = (ins
    fir_ShapeType:$shape,
    Variadic<AnyIntegerType>:$typeparams);

  let regions = (region  SizedRegion<1>:$body,
                         MaxSizedRegion<1>:$cleanup);

  let builders = [
    OpBuilder<(ins "mlir::Value":$shape)>
  ];

  let assemblyFormat = [{
    $shape (`typeparams` $typeparams^)?
    attr-dict `:` type(operands) $body
    custom<YieldOpCleanup>($cleanup)}];

  let extraClassDeclaration = [{
    mlir::Region::BlockArgListType getIndices() {
      return getBody().getArguments();
    }
  }];

  let hasVerifier = 1;
}

/// Define ODS constraints to verify that a region ends with a yield of a
/// certain type.
def YieldIntegerOrEmpty : CPred<"yieldsIntegerOrEmpty($_self)">;
def YieldIntegerRegion : RegionConstraint<
  And<[SizedRegion<1>.predicate, YieldIntegerOrEmpty]>,
  "single block region that yields an integer scalar value">;
def MaybeYieldIntegerRegion : RegionConstraint<
  And<[MaxSizedRegion<1>.predicate, YieldIntegerOrEmpty]>,
  "optional single block region that yields an integer scalar value">;

def hlfir_ForallOp : hlfir_Op<"forall", [hlfir_OrderedAssignmentTreeOpInterface]> {
  let summary = "represent a Fortran forall";
  let description = [{
    This operation allows representing Fortran forall. It computes
    a set of "index-name" values based on lower bound, upper bound,
    and step values whose evaluations are represented in their own
    regions.

    Operations nested in its body region are evaluated in order.
    As opposed to a regular loop, each nested operation is
    fully evaluated for all the values in the "active set of
    index-name" before the next nested operation. In practice, the
    nested operation evaluation may be fused if it is proven that
    they do not have data dependency.

    The "index-name" value is represented as the argument of the
    body region.

    The lower, upper, and step region (if provided), must be terminated
    by hlfir.yield that yields scalar integers.

    The body region must only contain other OrderedAssignmentTreeOpInterface
    operations (like hlfir.region_assign, or other hlfir.forall).

    A Fortran forall with several indices is represented as a nest
    of hlfir.forall.

    All the regions contained in the hlfir.forall must only contain
    code that is pure from a Fortran point of view, except for the
    assignment effect of the hlfir.region_assign.
    This matches Fortran constraint C1037, but requires the outer
    controls to be evaluated outside of the hlfir.forall (these
    controls may have side effects as per Fortran 2018 10.1.4 section).

    Example: FORALL(I=1:10) X(I) = FOO(I)
    ```
      hlfir.forall lb {
        hlfir.yield %c1 : index
      } ub {
        hlfir.yield %c10 : index
      } (%i : index) {
        hlfir.region_assign {
          %res = fir.call @foo(%i) : (index) -> f32
          hlfir.yield %res : f32
        } to {
          %xi = hlfir.designate %x(%i) : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
          hlfir.yield %xi : !fir.ref<f32>
        }
      }
    ```

  }];

  let regions = (region  YieldIntegerRegion:$lb_region,
                         YieldIntegerRegion:$ub_region,
                         MaybeYieldIntegerRegion:$step_region,
                         SizedRegion<1>:$body);

  let extraClassDeclaration = [{
    mlir::Value getForallIndexValue() {
      return getBody().getArguments()[0];
    }
    void getLeafRegions(llvm::SmallVectorImpl<mlir::Region*>& regions) {
      regions.push_back(&getLbRegion());
      regions.push_back(&getUbRegion());
      if (!getStepRegion().empty())
        regions.push_back(&getStepRegion());
    }
    mlir::Region* getSubTreeRegion() { return &getBody(); }
  }];

  let assemblyFormat = [{
    attr-dict `lb` $lb_region
    `ub` $ub_region
    (`step` $step_region^)?
    custom<ForallOpBody>($body)
  }];
}

/// Shared definition for hlfir.forall_mask and hlfir.where
/// that have the same structure and assembly format, but not the same
/// constraints.
class hlfir_AssignmentMaskOp<string mnemonic> : hlfir_Op<mnemonic,
    [hlfir_OrderedAssignmentTreeOpInterface]> {
  let regions = (region  SizedRegion<1>:$mask_region,
                         SizedRegion<1>:$body);

  let extraClassDeclaration = [{
    void getLeafRegions(llvm::SmallVectorImpl<mlir::Region*>& regions) {
      regions.push_back(&getMaskRegion());
    }
    mlir::Region* getSubTreeRegion() { return &getBody(); }
  }];

  let assemblyFormat = [{
    $mask_region
    attr-dict `do`
    custom<AssignmentMaskOpBody>($body)
  }];
}

def hlfir_ForallMaskOp : hlfir_AssignmentMaskOp<"forall_mask"> {
  let summary = "Represent a Fortran forall mask";
  let description = [{
    Fortran Forall can have a scalar mask expression that depends on the
    Forall index-name value.
    hlfir.forall_mask allows representing this mask. The expression
    evaluation is held in the mask region that must yield an i1 scalar
    value.
    An hlfir.forall_mask must be directly nested in the body region of
    an hlfir.forall. It is a separate operation so that it can use the
    index SSA value defined by the hlfir.forall body region.

    Example: "FORALL(I=1:10, SOME_CONDITION(I)) X(I) = FOO(I)"
    ```
    hlfir.forall lb {
      hlfir.yield %c1 : index
    } ub {
      hlfir.yield %c10 : index
    } (%i : index) {
      hlfir.forall_mask {
        %mask = fir.call @some_condition(%i) : (index) -> i1
        hlfir.yield %mask : i1
      } do {
        hlfir.region_assign {
          %res = fir.call @foo(%i) : (index) -> f32
          hlfir.yield %res : f32
        } to {
          %xi = hlfir.designate %x(%i) : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
          hlfir.yield %xi : !fir.ref<f32>
        }
      }
    }
    ```
  }];
  let hasVerifier = 1;
}

def hlfir_WhereOp : hlfir_AssignmentMaskOp<"where"> {
  let summary = "Represent a Fortran where construct or statement";
  let description = [{
    Represent Fortran "where" construct or statement. The mask
    expression evaluation is held in the mask region that must yield
    logical array that has the same shape as all the nested
    hlfir.region_assign left-hand sides, and all the nested hlfir.where
    or hlfir.elsewhere masks.

    The values of the where and elsewhere masks form a control mask that
    controls all the nested hlfir.region_assign: only the array element for
    which the related control mask value is true are assigned. Any right-hand
    side elemental expression is only evaluated for elements where the control
    mask is true. See Fortran standard 2018 section 10.2.3 for more detailed
    about the control mask semantic.

    An hlfir.where must not contain any hlfir.forall but it may be contained
    in such operation. This matches Fortran rules.
  }];
  let hasVerifier = 1;
}

def hlfir_ElseWhereOp : hlfir_Op<"elsewhere", [Terminator,
    ParentOneOf<["WhereOp", "ElseWhereOp"]>, hlfir_OrderedAssignmentTreeOpInterface]> {
  let summary = "Represent a Fortran elsewhere statement";

  let description = [{
    Represent Fortran "elsewhere" construct or statement.

    It has an optional mask region to hold the evaluation of Fortran
    optional elsewhere mask expressions. If this region is provided,
    it must satisfy the same constraints as hlfir.where mask region.

    An hlfir.elsewhere must be the last operation of an hlfir.where or,
    hlfir.elsewhere body, which is enforced by its terminator property.

    Like in Fortran, an hlfir.elsewhere negate the current control mask,
    and if provided, adds the mask the resulting control mask (with a logical
    AND).
  }];

  let regions = (region  MaxSizedRegion<1>:$mask_region,
                         SizedRegion<1>:$body);

  let extraClassDeclaration = [{
    void getLeafRegions(llvm::SmallVectorImpl<mlir::Region*>& regions) {
      if (!getMaskRegion().empty())
        regions.push_back(&getMaskRegion());
    }
    mlir::Region* getSubTreeRegion() { return &getBody(); }
  }];

  let assemblyFormat = [{
    (`mask` $mask_region^)?
    attr-dict `do`
    custom<AssignmentMaskOpBody>($body)
  }];
  let hasVerifier = 1;
}

def hlfir_ForallIndexOp : hlfir_Op<"forall_index", [fir_FortranVariableOpInterface,
    hlfir_OrderedAssignmentTreeOpInterface, Pure]> {
  let summary = "represent a Fortran forall index declaration";
  let description = [{
    This operation allows placing an hlfir.forall index in memory with
    the related Fortran index-value name and type.

    So far, lowering needs to manipulate symbols as memory entities.
    This operation allows fulfilling this requirements without allowing
    bare alloca/declare/store inside the body of hlfir.forall, which would
    make their analysis more complex.

    Given Forall index-value cannot be modified it also allows defining
    a canonicalization of all its loads into a fir.convert of the
    hlfir.forall index, which helps simplifying the data dependency analysis
    of hlfir.forall.
  }];

  let arguments = (ins AnyIntegerType:$index,
                       Builtin_StringAttr:$name);

  let results = (outs AnyFortranVariable);

  let assemblyFormat = [{
    $name $index attr-dict `:` functional-type(operands, results)
  }];

  let extraClassDeclaration = [{
    /// Implement FortranVariableInterface interface.
    std::optional<fir::FortranVariableFlagsEnum> getFortranAttrs() const {
      return std::nullopt;
    }
    mlir::Value getShape() const {return mlir::Value{};}
    mlir::OperandRange getExplicitTypeParams() const {
      // Return an empty range.
      return {(*this)->getOperands().begin(), (*this)->getOperands().begin()};
    }
    /// Implement OrderedAssignmentTreeOpInterface interface.
    void getLeafRegions(llvm::SmallVectorImpl<mlir::Region*>& regions) {}
    mlir::Region* getSubTreeRegion() { return nullptr; }
  }];

  let hasCanonicalizeMethod = 1;
}

#endif // FORTRAN_DIALECT_HLFIR_OPS