summaryrefslogtreecommitdiff
path: root/flang/include/flang/Semantics/symbol.h
blob: 5b011e76cbdce567fa60eaf301f31e9ec8839b92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
//===-- include/flang/Semantics/symbol.h ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef FORTRAN_SEMANTICS_SYMBOL_H_
#define FORTRAN_SEMANTICS_SYMBOL_H_

#include "type.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/enum-set.h"
#include "flang/Common/reference.h"
#include "flang/Common/visit.h"
#include "llvm/ADT/DenseMapInfo.h"

#include <array>
#include <functional>
#include <list>
#include <optional>
#include <set>
#include <vector>

namespace llvm {
class raw_ostream;
}
namespace Fortran::parser {
struct Expr;
}

namespace Fortran::semantics {

/// A Symbol consists of common information (name, owner, and attributes)
/// and details information specific to the kind of symbol, represented by the
/// *Details classes.

class Scope;
class Symbol;
class ProgramTree;

using SymbolRef = common::Reference<const Symbol>;
using SymbolVector = std::vector<SymbolRef>;
using MutableSymbolRef = common::Reference<Symbol>;
using MutableSymbolVector = std::vector<MutableSymbolRef>;

// A module or submodule.
class ModuleDetails {
public:
  ModuleDetails(bool isSubmodule = false) : isSubmodule_{isSubmodule} {}
  bool isSubmodule() const { return isSubmodule_; }
  const Scope *scope() const { return scope_; }
  const Scope *ancestor() const; // for submodule; nullptr for module
  const Scope *parent() const; // for submodule; nullptr for module
  void set_scope(const Scope *);
  bool isDefaultPrivate() const { return isDefaultPrivate_; }
  void set_isDefaultPrivate(bool yes = true) { isDefaultPrivate_ = yes; }

private:
  bool isSubmodule_;
  bool isDefaultPrivate_{false};
  const Scope *scope_{nullptr};
};

class MainProgramDetails {
public:
private:
};

class WithBindName {
public:
  const std::string *bindName() const {
    return bindName_ ? &*bindName_ : nullptr;
  }
  bool isExplicitBindName() const { return isExplicitBindName_; }
  void set_bindName(std::string &&name) { bindName_ = std::move(name); }
  void set_isExplicitBindName(bool yes) { isExplicitBindName_ = yes; }

private:
  std::optional<std::string> bindName_;
  bool isExplicitBindName_{false};
};

// A subroutine or function definition, or a subprogram interface defined
// in an INTERFACE block as part of the definition of a dummy procedure
// or a procedure pointer (with just POINTER).
class SubprogramDetails : public WithBindName {
public:
  bool isFunction() const { return result_ != nullptr; }
  bool isInterface() const { return isInterface_; }
  void set_isInterface(bool value = true) { isInterface_ = value; }
  bool isDummy() const { return isDummy_; }
  void set_isDummy(bool value = true) { isDummy_ = value; }
  Scope *entryScope() { return entryScope_; }
  const Scope *entryScope() const { return entryScope_; }
  void set_entryScope(Scope &scope) { entryScope_ = &scope; }
  const Symbol &result() const {
    CHECK(isFunction());
    return *result_;
  }
  void set_result(Symbol &result) {
    CHECK(!result_);
    result_ = &result;
  }
  const std::vector<Symbol *> &dummyArgs() const { return dummyArgs_; }
  void add_dummyArg(Symbol &symbol) { dummyArgs_.push_back(&symbol); }
  void add_alternateReturn() { dummyArgs_.push_back(nullptr); }
  const MaybeExpr &stmtFunction() const { return stmtFunction_; }
  void set_stmtFunction(SomeExpr &&expr) { stmtFunction_ = std::move(expr); }
  Symbol *moduleInterface() { return moduleInterface_; }
  const Symbol *moduleInterface() const { return moduleInterface_; }
  void set_moduleInterface(Symbol &);
  void ReplaceResult(Symbol &result) {
    CHECK(result_ != nullptr);
    result_ = &result;
  }
  bool defaultIgnoreTKR() const { return defaultIgnoreTKR_; }
  void set_defaultIgnoreTKR(bool yes) { defaultIgnoreTKR_ = yes; }

private:
  bool isInterface_{false}; // true if this represents an interface-body
  bool isDummy_{false}; // true when interface of dummy procedure
  std::vector<Symbol *> dummyArgs_; // nullptr -> alternate return indicator
  Symbol *result_{nullptr};
  Scope *entryScope_{nullptr}; // if ENTRY, points to subprogram's scope
  MaybeExpr stmtFunction_;
  // For MODULE FUNCTION or SUBROUTINE, this is the symbol of its declared
  // interface.  For MODULE PROCEDURE, this is the declared interface if it
  // appeared in an ancestor (sub)module.
  Symbol *moduleInterface_{nullptr};
  bool defaultIgnoreTKR_{false};

  friend llvm::raw_ostream &operator<<(
      llvm::raw_ostream &, const SubprogramDetails &);
};

// For SubprogramNameDetails, the kind indicates whether it is the name
// of a module subprogram or an internal subprogram or ENTRY.
ENUM_CLASS(SubprogramKind, Module, Internal)

// Symbol with SubprogramNameDetails is created when we scan for module and
// internal procedure names, to record that there is a subprogram with this
// name. Later they are replaced by SubprogramDetails with dummy and result
// type information.
class SubprogramNameDetails {
public:
  SubprogramNameDetails(SubprogramKind kind, ProgramTree &node)
      : kind_{kind}, node_{node} {}
  SubprogramNameDetails() = delete;
  SubprogramKind kind() const { return kind_; }
  ProgramTree &node() const { return *node_; }

private:
  SubprogramKind kind_;
  common::Reference<ProgramTree> node_;
};

// A name from an entity-decl -- could be object or function.
class EntityDetails : public WithBindName {
public:
  explicit EntityDetails(bool isDummy = false) : isDummy_{isDummy} {}
  const DeclTypeSpec *type() const { return type_; }
  void set_type(const DeclTypeSpec &);
  void ReplaceType(const DeclTypeSpec &);
  bool isDummy() const { return isDummy_; }
  void set_isDummy(bool value = true) { isDummy_ = value; }
  bool isFuncResult() const { return isFuncResult_; }
  void set_funcResult(bool x) { isFuncResult_ = x; }

private:
  bool isDummy_{false};
  bool isFuncResult_{false};
  const DeclTypeSpec *type_{nullptr};
  friend llvm::raw_ostream &operator<<(
      llvm::raw_ostream &, const EntityDetails &);
};

// Symbol is associated with a name or expression in a SELECT TYPE or ASSOCIATE.
class AssocEntityDetails : public EntityDetails {
public:
  AssocEntityDetails() {}
  explicit AssocEntityDetails(SomeExpr &&expr) : expr_{std::move(expr)} {}
  AssocEntityDetails(const AssocEntityDetails &) = default;
  AssocEntityDetails(AssocEntityDetails &&) = default;
  AssocEntityDetails &operator=(const AssocEntityDetails &) = default;
  AssocEntityDetails &operator=(AssocEntityDetails &&) = default;
  const MaybeExpr &expr() const { return expr_; }
  void set_rank(int rank);
  std::optional<int> rank() const { return rank_; }

private:
  MaybeExpr expr_;
  std::optional<int> rank_;
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &, const AssocEntityDetails &);

// An entity known to be an object.
class ObjectEntityDetails : public EntityDetails {
public:
  explicit ObjectEntityDetails(EntityDetails &&);
  ObjectEntityDetails(const ObjectEntityDetails &) = default;
  ObjectEntityDetails(ObjectEntityDetails &&) = default;
  ObjectEntityDetails &operator=(const ObjectEntityDetails &) = default;
  ObjectEntityDetails(bool isDummy = false) : EntityDetails(isDummy) {}
  MaybeExpr &init() { return init_; }
  const MaybeExpr &init() const { return init_; }
  void set_init(MaybeExpr &&expr) { init_ = std::move(expr); }
  const parser::Expr *unanalyzedPDTComponentInit() const {
    return unanalyzedPDTComponentInit_;
  }
  void set_unanalyzedPDTComponentInit(const parser::Expr *expr) {
    unanalyzedPDTComponentInit_ = expr;
  }
  ArraySpec &shape() { return shape_; }
  const ArraySpec &shape() const { return shape_; }
  ArraySpec &coshape() { return coshape_; }
  const ArraySpec &coshape() const { return coshape_; }
  void set_shape(const ArraySpec &);
  void set_coshape(const ArraySpec &);
  const Symbol *commonBlock() const { return commonBlock_; }
  void set_commonBlock(const Symbol &commonBlock) {
    commonBlock_ = &commonBlock;
  }
  common::IgnoreTKRSet ignoreTKR() const { return ignoreTKR_; }
  void set_ignoreTKR(common::IgnoreTKRSet set) { ignoreTKR_ = set; }
  bool IsArray() const { return !shape_.empty(); }
  bool IsCoarray() const { return !coshape_.empty(); }
  bool CanBeAssumedShape() const {
    return isDummy() && shape_.CanBeAssumedShape();
  }
  bool CanBeDeferredShape() const { return shape_.CanBeDeferredShape(); }
  bool IsAssumedSize() const { return isDummy() && shape_.CanBeAssumedSize(); }
  bool IsAssumedRank() const { return isDummy() && shape_.IsAssumedRank(); }

private:
  MaybeExpr init_;
  const parser::Expr *unanalyzedPDTComponentInit_{nullptr};
  ArraySpec shape_;
  ArraySpec coshape_;
  common::IgnoreTKRSet ignoreTKR_;
  const Symbol *commonBlock_{nullptr}; // common block this object is in
  friend llvm::raw_ostream &operator<<(
      llvm::raw_ostream &, const ObjectEntityDetails &);
};

// Mixin for details with passed-object dummy argument.
// If a procedure pointer component or type-bound procedure does not have
// the NOPASS attribute on its symbol, then PASS is assumed; the name
// is optional; if it is missing, the first dummy argument of the procedure's
// interface is the passed-object dummy argument.
class WithPassArg {
public:
  std::optional<SourceName> passName() const { return passName_; }
  void set_passName(const SourceName &passName) { passName_ = passName; }

private:
  std::optional<SourceName> passName_;
};

// A procedure pointer (other than one defined with POINTER and an
// INTERFACE block), a dummy procedure (without an INTERFACE but with
// EXTERNAL or use in a procedure reference), or external procedure.
class ProcEntityDetails : public EntityDetails, public WithPassArg {
public:
  ProcEntityDetails() = default;
  explicit ProcEntityDetails(EntityDetails &&);
  ProcEntityDetails(const ProcEntityDetails &) = default;
  ProcEntityDetails(ProcEntityDetails &&) = default;
  ProcEntityDetails &operator=(const ProcEntityDetails &) = default;

  const Symbol *procInterface() const { return procInterface_; }
  void set_procInterface(const Symbol &sym) { procInterface_ = &sym; }
  bool IsInterfaceSet() { return procInterface_ || type(); }
  inline bool HasExplicitInterface() const;

  // Be advised: !init().has_value() => uninitialized pointer,
  // while *init() == nullptr => explicit NULL() initialization.
  std::optional<const Symbol *> init() const { return init_; }
  void set_init(const Symbol &symbol) { init_ = &symbol; }
  void set_init(std::nullptr_t) { init_ = nullptr; }

private:
  const Symbol *procInterface_{nullptr};
  std::optional<const Symbol *> init_;
  friend llvm::raw_ostream &operator<<(
      llvm::raw_ostream &, const ProcEntityDetails &);
};

// These derived type details represent the characteristics of a derived
// type definition that are shared by all instantiations of that type.
// The DerivedTypeSpec instances whose type symbols share these details
// each own a scope into which the components' symbols have been cloned
// and specialized for each distinct set of type parameter values.
class DerivedTypeDetails {
public:
  const std::list<SourceName> &paramNames() const { return paramNames_; }
  const SymbolVector &paramDecls() const { return paramDecls_; }
  bool sequence() const { return sequence_; }
  bool isDECStructure() const { return isDECStructure_; }
  std::map<SourceName, SymbolRef> &finals() { return finals_; }
  const std::map<SourceName, SymbolRef> &finals() const { return finals_; }
  bool isForwardReferenced() const { return isForwardReferenced_; }
  void add_paramName(const SourceName &name) { paramNames_.push_back(name); }
  void add_paramDecl(const Symbol &symbol) { paramDecls_.push_back(symbol); }
  void add_component(const Symbol &);
  void set_sequence(bool x = true) { sequence_ = x; }
  void set_isDECStructure(bool x = true) { isDECStructure_ = x; }
  void set_isForwardReferenced(bool value) { isForwardReferenced_ = value; }
  const std::list<SourceName> &componentNames() const {
    return componentNames_;
  }

  // If this derived type extends another, locate the parent component's symbol.
  const Symbol *GetParentComponent(const Scope &) const;

  std::optional<SourceName> GetParentComponentName() const {
    if (componentNames_.empty()) {
      return std::nullopt;
    } else {
      return componentNames_.front();
    }
  }

  const Symbol *GetFinalForRank(int) const;

private:
  // These are (1) the names of the derived type parameters in the order
  // in which they appear on the type definition statement(s), and (2) the
  // symbols that correspond to those names in the order in which their
  // declarations appear in the derived type definition(s).
  std::list<SourceName> paramNames_;
  SymbolVector paramDecls_;
  // These are the names of the derived type's components in component
  // order.  A parent component, if any, appears first in this list.
  std::list<SourceName> componentNames_;
  std::map<SourceName, SymbolRef> finals_; // FINAL :: subr
  bool sequence_{false};
  bool isDECStructure_{false};
  bool isForwardReferenced_{false};
  friend llvm::raw_ostream &operator<<(
      llvm::raw_ostream &, const DerivedTypeDetails &);
};

class ProcBindingDetails : public WithPassArg {
public:
  explicit ProcBindingDetails(const Symbol &symbol) : symbol_{symbol} {}
  const Symbol &symbol() const { return symbol_; }
  void ReplaceSymbol(const Symbol &symbol) { symbol_ = symbol; }
  int numPrivatesNotOverridden() const { return numPrivatesNotOverridden_; }
  void set_numPrivatesNotOverridden(int n) { numPrivatesNotOverridden_ = n; }

private:
  SymbolRef symbol_; // procedure bound to; may be forward
  // Homonymous private bindings in ancestor types from other modules
  int numPrivatesNotOverridden_{0};
};

class NamelistDetails {
public:
  const SymbolVector &objects() const { return objects_; }
  void add_object(const Symbol &object) { objects_.push_back(object); }
  void add_objects(const SymbolVector &objects) {
    objects_.insert(objects_.end(), objects.begin(), objects.end());
  }

private:
  SymbolVector objects_;
};

class CommonBlockDetails : public WithBindName {
public:
  MutableSymbolVector &objects() { return objects_; }
  const MutableSymbolVector &objects() const { return objects_; }
  void add_object(Symbol &object) { objects_.emplace_back(object); }
  void replace_object(Symbol &object, unsigned index) {
    CHECK(index < (unsigned)objects_.size());
    objects_[index] = object;
  }
  std::size_t alignment() const { return alignment_; }
  void set_alignment(std::size_t alignment) { alignment_ = alignment; }

private:
  MutableSymbolVector objects_;
  std::size_t alignment_{0}; // required alignment in bytes
};

class MiscDetails {
public:
  ENUM_CLASS(Kind, None, ConstructName, ScopeName, PassName, ComplexPartRe,
      ComplexPartIm, KindParamInquiry, LenParamInquiry, SelectRankAssociateName,
      SelectTypeAssociateName, TypeBoundDefinedOp);
  MiscDetails(Kind kind) : kind_{kind} {}
  Kind kind() const { return kind_; }

private:
  Kind kind_;
};

class TypeParamDetails {
public:
  explicit TypeParamDetails(common::TypeParamAttr attr) : attr_{attr} {}
  TypeParamDetails(const TypeParamDetails &) = default;
  common::TypeParamAttr attr() const { return attr_; }
  MaybeIntExpr &init() { return init_; }
  const MaybeIntExpr &init() const { return init_; }
  void set_init(MaybeIntExpr &&expr) { init_ = std::move(expr); }
  const DeclTypeSpec *type() const { return type_; }
  void set_type(const DeclTypeSpec &);
  void ReplaceType(const DeclTypeSpec &);

private:
  common::TypeParamAttr attr_;
  MaybeIntExpr init_;
  const DeclTypeSpec *type_{nullptr};
};

// Record the USE of a symbol: location is where (USE statement or renaming);
// symbol is in the USEd module.
class UseDetails {
public:
  UseDetails(const SourceName &location, const Symbol &symbol)
      : location_{location}, symbol_{symbol} {}
  const SourceName &location() const { return location_; }
  const Symbol &symbol() const { return symbol_; }

private:
  SourceName location_;
  SymbolRef symbol_;
};

// A symbol with ambiguous use-associations. Record where they were so
// we can report the error if it is used.
class UseErrorDetails {
public:
  UseErrorDetails(const UseDetails &);
  UseErrorDetails &add_occurrence(const SourceName &, const Scope &);
  using listType = std::list<std::pair<SourceName, const Scope *>>;
  const listType occurrences() const { return occurrences_; };

private:
  listType occurrences_;
};

// A symbol host-associated from an enclosing scope.
class HostAssocDetails {
public:
  HostAssocDetails(const Symbol &symbol) : symbol_{symbol} {}
  const Symbol &symbol() const { return symbol_; }
  bool implicitOrSpecExprError{false};
  bool implicitOrExplicitTypeError{false};

private:
  SymbolRef symbol_;
};

// A GenericKind is one of: generic name, defined operator,
// defined assignment, intrinsic operator, or defined I/O.
struct GenericKind {
  ENUM_CLASS(OtherKind, Name, DefinedOp, Assignment, Concat)
  GenericKind() : u{OtherKind::Name} {}
  template <typename T> GenericKind(const T &x) { u = x; }
  bool IsName() const { return Is(OtherKind::Name); }
  bool IsAssignment() const { return Is(OtherKind::Assignment); }
  bool IsDefinedOperator() const { return Is(OtherKind::DefinedOp); }
  bool IsIntrinsicOperator() const;
  bool IsOperator() const;
  std::string ToString() const;
  static SourceName AsFortran(common::DefinedIo);
  std::variant<OtherKind, common::NumericOperator, common::LogicalOperator,
      common::RelationalOperator, common::DefinedIo>
      u;

private:
  template <typename T> bool Has() const {
    return std::holds_alternative<T>(u);
  }
  bool Is(OtherKind) const;
};

// A generic interface or type-bound generic.
class GenericDetails {
public:
  GenericDetails() {}

  GenericKind kind() const { return kind_; }
  void set_kind(GenericKind kind) { kind_ = kind; }

  const SymbolVector &specificProcs() const { return specificProcs_; }
  const std::vector<SourceName> &bindingNames() const { return bindingNames_; }
  void AddSpecificProc(const Symbol &, SourceName bindingName);
  const SymbolVector &uses() const { return uses_; }

  // specific and derivedType indicate a specific procedure or derived type
  // with the same name as this generic. Only one of them may be set.
  Symbol *specific() { return specific_; }
  const Symbol *specific() const { return specific_; }
  void set_specific(Symbol &specific);
  void clear_specific();
  Symbol *derivedType() { return derivedType_; }
  const Symbol *derivedType() const { return derivedType_; }
  void set_derivedType(Symbol &derivedType);
  void clear_derivedType();
  void AddUse(const Symbol &);

  // Copy in specificProcs, specific, and derivedType from another generic
  void CopyFrom(const GenericDetails &);

  // Check that specific is one of the specificProcs. If not, return the
  // specific as a raw pointer.
  const Symbol *CheckSpecific() const;
  Symbol *CheckSpecific();

private:
  GenericKind kind_;
  // all of the specific procedures for this generic
  SymbolVector specificProcs_;
  std::vector<SourceName> bindingNames_;
  // Symbols used from other modules merged into this one
  SymbolVector uses_;
  // a specific procedure with the same name as this generic, if any
  Symbol *specific_{nullptr};
  // a derived type with the same name as this generic, if any
  Symbol *derivedType_{nullptr};
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &, const GenericDetails &);

class UnknownDetails {};

using Details = std::variant<UnknownDetails, MainProgramDetails, ModuleDetails,
    SubprogramDetails, SubprogramNameDetails, EntityDetails,
    ObjectEntityDetails, ProcEntityDetails, AssocEntityDetails,
    DerivedTypeDetails, UseDetails, UseErrorDetails, HostAssocDetails,
    GenericDetails, ProcBindingDetails, NamelistDetails, CommonBlockDetails,
    TypeParamDetails, MiscDetails>;
llvm::raw_ostream &operator<<(llvm::raw_ostream &, const Details &);
std::string DetailsToString(const Details &);

class Symbol {
public:
  ENUM_CLASS(Flag,
      Function, // symbol is a function or statement function
      Subroutine, // symbol is a subroutine
      StmtFunction, // symbol is a statement function or result
      Implicit, // symbol is implicitly typed
      ImplicitOrError, // symbol must be implicitly typed or it's an error
      ModFile, // symbol came from .mod file
      ParentComp, // symbol is the "parent component" of an extended type
      CrayPointer, CrayPointee,
      LocalityLocal, // named in LOCAL locality-spec
      LocalityLocalInit, // named in LOCAL_INIT locality-spec
      LocalityShared, // named in SHARED locality-spec
      InDataStmt, // initialized in a DATA statement, =>object, or /init/
      InNamelist, // in a Namelist group
      EntryDummyArgument,
      CompilerCreated, // A compiler created symbol
      // For compiler created symbols that are constant but cannot legally have
      // the PARAMETER attribute.
      ReadOnly,
      // OpenACC data-sharing attribute
      AccPrivate, AccFirstPrivate, AccShared,
      // OpenACC data-mapping attribute
      AccCopyIn, AccCopyOut, AccCreate, AccDelete, AccPresent,
      // OpenACC miscellaneous flags
      AccCommonBlock, AccThreadPrivate, AccReduction, AccNone, AccPreDetermined,
      // OpenMP data-sharing attribute
      OmpShared, OmpPrivate, OmpLinear, OmpFirstPrivate, OmpLastPrivate,
      // OpenMP data-mapping attribute
      OmpMapTo, OmpMapFrom, OmpMapAlloc, OmpMapRelease, OmpMapDelete,
      OmpUseDevicePtr, OmpUseDeviceAddr,
      // OpenMP data-copying attribute
      OmpCopyIn, OmpCopyPrivate,
      // OpenMP miscellaneous flags
      OmpCommonBlock, OmpReduction, OmpAligned, OmpNontemporal, OmpAllocate,
      OmpDeclarativeAllocateDirective, OmpExecutableAllocateDirective,
      OmpDeclareSimd, OmpDeclareTarget, OmpThreadprivate, OmpDeclareReduction,
      OmpFlushed, OmpCriticalLock, OmpIfSpecified, OmpNone, OmpPreDetermined);
  using Flags = common::EnumSet<Flag, Flag_enumSize>;

  const Scope &owner() const { return *owner_; }
  const SourceName &name() const { return name_; }
  Attrs &attrs() { return attrs_; }
  const Attrs &attrs() const { return attrs_; }
  Attrs &implicitAttrs() { return implicitAttrs_; }
  const Attrs &implicitAttrs() const { return implicitAttrs_; }
  Flags &flags() { return flags_; }
  const Flags &flags() const { return flags_; }
  bool test(Flag flag) const { return flags_.test(flag); }
  void set(Flag flag, bool value = true) { flags_.set(flag, value); }
  // The Scope introduced by this symbol, if any.
  Scope *scope() { return scope_; }
  const Scope *scope() const { return scope_; }
  void set_scope(Scope *scope) { scope_ = scope; }
  std::size_t size() const { return size_; }
  void set_size(std::size_t size) { size_ = size; }
  std::size_t offset() const { return offset_; }
  void set_offset(std::size_t offset) { offset_ = offset; }
  // Give the symbol a name with a different source location but same chars.
  void ReplaceName(const SourceName &);

  // Does symbol have this type of details?
  template <typename D> bool has() const {
    return std::holds_alternative<D>(details_);
  }

  // Return a non-owning pointer to details if it is type D, else nullptr.
  template <typename D> D *detailsIf() { return std::get_if<D>(&details_); }
  template <typename D> const D *detailsIf() const {
    return std::get_if<D>(&details_);
  }

  // Return a reference to the details which must be of type D.
  template <typename D> D &get() {
    return const_cast<D &>(const_cast<const Symbol *>(this)->get<D>());
  }
  template <typename D> const D &get() const {
    const auto *p{detailsIf<D>()};
    CHECK(p);
    return *p;
  }

  Details &details() { return details_; }
  const Details &details() const { return details_; }
  // Assign the details of the symbol from one of the variants.
  // Only allowed in certain cases.
  void set_details(Details &&);

  // Can the details of this symbol be replaced with the given details?
  bool CanReplaceDetails(const Details &details) const;

  // Follow use-associations and host-associations to get the ultimate entity.
  inline Symbol &GetUltimate();
  inline const Symbol &GetUltimate() const;

  inline DeclTypeSpec *GetType();
  inline const DeclTypeSpec *GetType() const;
  void SetType(const DeclTypeSpec &);

  const std::string *GetBindName() const;
  void SetBindName(std::string &&);
  bool GetIsExplicitBindName() const;
  void SetIsExplicitBindName(bool);
  bool IsFuncResult() const;
  bool IsObjectArray() const;
  bool IsSubprogram() const;
  bool IsFromModFile() const;
  bool HasExplicitInterface() const {
    return common::visit(
        common::visitors{
            [](const SubprogramDetails &) { return true; },
            [](const SubprogramNameDetails &) { return true; },
            [&](const ProcEntityDetails &x) {
              return attrs_.test(Attr::INTRINSIC) || x.HasExplicitInterface();
            },
            [](const ProcBindingDetails &x) {
              return x.symbol().HasExplicitInterface();
            },
            [](const UseDetails &x) {
              return x.symbol().HasExplicitInterface();
            },
            [](const HostAssocDetails &x) {
              return x.symbol().HasExplicitInterface();
            },
            [](const GenericDetails &x) {
              return x.specific() && x.specific()->HasExplicitInterface();
            },
            [](const auto &) { return false; },
        },
        details_);
  }

  bool operator==(const Symbol &that) const { return this == &that; }
  bool operator!=(const Symbol &that) const { return !(*this == that); }

  int Rank() const { return RankImpl(); }

  int Corank() const {
    return common::visit(
        common::visitors{
            [](const SubprogramDetails &sd) {
              return sd.isFunction() ? sd.result().Corank() : 0;
            },
            [](const GenericDetails &) {
              return 0; /*TODO*/
            },
            [](const UseDetails &x) { return x.symbol().Corank(); },
            [](const HostAssocDetails &x) { return x.symbol().Corank(); },
            [](const ObjectEntityDetails &oed) { return oed.coshape().Rank(); },
            [](const auto &) { return 0; },
        },
        details_);
  }

  // If there is a parent component, return a pointer to its derived type spec.
  // The Scope * argument defaults to this->scope_ but should be overridden
  // for a parameterized derived type instantiation with the instance's scope.
  const DerivedTypeSpec *GetParentTypeSpec(const Scope * = nullptr) const;

  // If a derived type's symbol refers to an extended derived type,
  // return the parent component's symbol.  The scope of the derived type
  // can be overridden.
  const Symbol *GetParentComponent(const Scope * = nullptr) const;

  SemanticsContext &GetSemanticsContext() const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const;
#endif

private:
  const Scope *owner_;
  SourceName name_;
  Attrs attrs_;
  Attrs implicitAttrs_; // subset of attrs_ that were not explicit
  Flags flags_;
  Scope *scope_{nullptr};
  std::size_t size_{0}; // size in bytes
  std::size_t offset_{0}; // byte offset in scope or common block
  Details details_;

  Symbol() {} // only created in class Symbols
  std::string GetDetailsName() const;
  friend llvm::raw_ostream &operator<<(llvm::raw_ostream &, const Symbol &);
  friend llvm::raw_ostream &DumpForUnparse(
      llvm::raw_ostream &, const Symbol &, bool);

  static constexpr int startRecursionDepth{100};

  inline const DeclTypeSpec *GetTypeImpl(int depth = startRecursionDepth) const;
  inline int RankImpl(int depth = startRecursionDepth) const {
    if (depth-- == 0) {
      return 0;
    }
    return common::visit(
        common::visitors{
            [&](const SubprogramDetails &sd) {
              return sd.isFunction() ? sd.result().RankImpl(depth) : 0;
            },
            [](const GenericDetails &) {
              return 0; /*TODO*/
            },
            [&](const ProcBindingDetails &x) {
              return x.symbol().RankImpl(depth);
            },
            [&](const UseDetails &x) { return x.symbol().RankImpl(depth); },
            [&](const HostAssocDetails &x) {
              return x.symbol().RankImpl(depth);
            },
            [](const ObjectEntityDetails &oed) { return oed.shape().Rank(); },
            [&](const ProcEntityDetails &ped) {
              const Symbol *iface{ped.procInterface()};
              return iface ? iface->RankImpl(depth) : 0;
            },
            [](const AssocEntityDetails &aed) {
              if (const auto &expr{aed.expr()}) {
                if (auto assocRank{aed.rank()}) {
                  return *assocRank;
                } else {
                  return expr->Rank();
                }
              } else {
                return 0;
              }
            },
            [](const auto &) { return 0; },
        },
        details_);
  }
  template <std::size_t> friend class Symbols;
  template <class, std::size_t> friend class std::array;
};

llvm::raw_ostream &operator<<(llvm::raw_ostream &, Symbol::Flag);

// Manage memory for all symbols. BLOCK_SIZE symbols at a time are allocated.
// Make() returns a reference to the next available one. They are never
// deleted.
template <std::size_t BLOCK_SIZE> class Symbols {
public:
  Symbol &Make(const Scope &owner, const SourceName &name, const Attrs &attrs,
      Details &&details) {
    Symbol &symbol = Get();
    symbol.owner_ = &owner;
    symbol.name_ = name;
    symbol.attrs_ = attrs;
    symbol.details_ = std::move(details);
    return symbol;
  }

private:
  using blockType = std::array<Symbol, BLOCK_SIZE>;
  std::list<blockType *> blocks_;
  std::size_t nextIndex_{0};
  blockType *currBlock_{nullptr};

  Symbol &Get() {
    if (nextIndex_ == 0) {
      blocks_.push_back(new blockType());
      currBlock_ = blocks_.back();
    }
    Symbol &result = (*currBlock_)[nextIndex_];
    if (++nextIndex_ >= BLOCK_SIZE) {
      nextIndex_ = 0; // allocate a new block next time
    }
    return result;
  }
};

// Define a few member functions here in the header so that they
// can be used by lib/Evaluate without inducing a dependence cycle
// between the two shared libraries.

inline bool ProcEntityDetails::HasExplicitInterface() const {
  return procInterface_ && procInterface_->HasExplicitInterface();
}

inline Symbol &Symbol::GetUltimate() {
  return const_cast<Symbol &>(const_cast<const Symbol *>(this)->GetUltimate());
}
inline const Symbol &Symbol::GetUltimate() const {
  if (const auto *details{detailsIf<UseDetails>()}) {
    return details->symbol().GetUltimate();
  } else if (const auto *details{detailsIf<HostAssocDetails>()}) {
    return details->symbol().GetUltimate();
  } else {
    return *this;
  }
}

inline DeclTypeSpec *Symbol::GetType() {
  return const_cast<DeclTypeSpec *>(
      const_cast<const Symbol *>(this)->GetType());
}

inline const DeclTypeSpec *Symbol::GetTypeImpl(int depth) const {
  if (depth-- == 0) {
    return nullptr;
  }
  return common::visit(
      common::visitors{
          [](const EntityDetails &x) { return x.type(); },
          [](const ObjectEntityDetails &x) { return x.type(); },
          [](const AssocEntityDetails &x) { return x.type(); },
          [&](const SubprogramDetails &x) {
            return x.isFunction() ? x.result().GetTypeImpl(depth) : nullptr;
          },
          [&](const ProcEntityDetails &x) {
            const Symbol *symbol{x.procInterface()};
            return symbol ? symbol->GetTypeImpl(depth) : x.type();
          },
          [&](const ProcBindingDetails &x) {
            return x.symbol().GetTypeImpl(depth);
          },
          [](const TypeParamDetails &x) { return x.type(); },
          [&](const UseDetails &x) { return x.symbol().GetTypeImpl(depth); },
          [&](const HostAssocDetails &x) {
            return x.symbol().GetTypeImpl(depth);
          },
          [](const auto &) -> const DeclTypeSpec * { return nullptr; },
      },
      details_);
}

inline const DeclTypeSpec *Symbol::GetType() const { return GetTypeImpl(); }

// Sets and maps keyed by Symbols

struct SymbolAddressCompare {
  bool operator()(const SymbolRef &x, const SymbolRef &y) const {
    return &*x < &*y;
  }
  bool operator()(const MutableSymbolRef &x, const MutableSymbolRef &y) const {
    return &*x < &*y;
  }
};

// Symbol comparison is usually based on the order of cooked source
// stream creation and, when both are from the same cooked source,
// their positions in that cooked source stream.
// Don't use this comparator or OrderedSymbolSet to hold
// Symbols that might be subject to ReplaceName().
struct SymbolSourcePositionCompare {
  // These functions are implemented in Evaluate/tools.cpp to
  // satisfy complicated shared library interdependency.
  bool operator()(const SymbolRef &, const SymbolRef &) const;
  bool operator()(const MutableSymbolRef &, const MutableSymbolRef &) const;
};

struct SymbolOffsetCompare {
  bool operator()(const SymbolRef &, const SymbolRef &) const;
  bool operator()(const MutableSymbolRef &, const MutableSymbolRef &) const;
};

using UnorderedSymbolSet = std::set<SymbolRef, SymbolAddressCompare>;
using SourceOrderedSymbolSet = std::set<SymbolRef, SymbolSourcePositionCompare>;

template <typename A>
SourceOrderedSymbolSet OrderBySourcePosition(const A &container) {
  SourceOrderedSymbolSet result;
  for (SymbolRef x : container) {
    result.emplace(x);
  }
  return result;
}

} // namespace Fortran::semantics

// Define required  info so that SymbolRef can be used inside llvm::DenseMap.
namespace llvm {
template <> struct DenseMapInfo<Fortran::semantics::SymbolRef> {
  static inline Fortran::semantics::SymbolRef getEmptyKey() {
    auto ptr = DenseMapInfo<const Fortran::semantics::Symbol *>::getEmptyKey();
    return *reinterpret_cast<Fortran::semantics::SymbolRef *>(&ptr);
  }

  static inline Fortran::semantics::SymbolRef getTombstoneKey() {
    auto ptr =
        DenseMapInfo<const Fortran::semantics::Symbol *>::getTombstoneKey();
    return *reinterpret_cast<Fortran::semantics::SymbolRef *>(&ptr);
  }

  static unsigned getHashValue(const Fortran::semantics::SymbolRef &sym) {
    return DenseMapInfo<const Fortran::semantics::Symbol *>::getHashValue(
        &sym.get());
  }

  static bool isEqual(const Fortran::semantics::SymbolRef &LHS,
      const Fortran::semantics::SymbolRef &RHS) {
    return LHS == RHS;
  }
};
} // namespace llvm
#endif // FORTRAN_SEMANTICS_SYMBOL_H_