summaryrefslogtreecommitdiff
path: root/flang/lib/Evaluate/characteristics.cpp
blob: 7b7e62ee179e3b618ecc9156c043b835ad606fb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
//===-- lib/Evaluate/characteristics.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/characteristics.h"
#include "flang/Common/indirection.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include "llvm/Support/raw_ostream.h"
#include <initializer_list>

using namespace Fortran::parser::literals;

namespace Fortran::evaluate::characteristics {

// Copy attributes from a symbol to dst based on the mapping in pairs.
template <typename A, typename B>
static void CopyAttrs(const semantics::Symbol &src, A &dst,
    const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) {
  for (const auto &pair : pairs) {
    if (src.attrs().test(pair.first)) {
      dst.attrs.set(pair.second);
    }
  }
}

// Shapes of function results and dummy arguments have to have
// the same rank, the same deferred dimensions, and the same
// values for explicit dimensions when constant.
bool ShapesAreCompatible(const Shape &x, const Shape &y) {
  if (x.size() != y.size()) {
    return false;
  }
  auto yIter{y.begin()};
  for (const auto &xDim : x) {
    const auto &yDim{*yIter++};
    if (xDim) {
      if (!yDim || ToInt64(*xDim) != ToInt64(*yDim)) {
        return false;
      }
    } else if (yDim) {
      return false;
    }
  }
  return true;
}

bool TypeAndShape::operator==(const TypeAndShape &that) const {
  return type_ == that.type_ && ShapesAreCompatible(shape_, that.shape_) &&
      attrs_ == that.attrs_ && corank_ == that.corank_;
}

std::optional<TypeAndShape> TypeAndShape::Characterize(
    const semantics::Symbol &symbol, FoldingContext &context) {
  return std::visit(
      common::visitors{
          [&](const semantics::ObjectEntityDetails &object) {
            auto result{Characterize(object, context)};
            if (result &&
                result->type().category() == TypeCategory::Character) {
              if (auto len{DataRef{symbol}.LEN()}) {
                result->set_LEN(Fold(context, std::move(*len)));
              }
            }
            return result;
          },
          [&](const semantics::ProcEntityDetails &proc) {
            const semantics::ProcInterface &interface{proc.interface()};
            if (interface.type()) {
              return Characterize(*interface.type());
            } else if (interface.symbol()) {
              return Characterize(*interface.symbol(), context);
            } else {
              return std::optional<TypeAndShape>{};
            }
          },
          [&](const semantics::TypeParamDetails &tp) {
            if (auto type{DynamicType::From(tp.type())}) {
              return std::optional<TypeAndShape>{std::move(*type)};
            } else {
              return std::optional<TypeAndShape>{};
            }
          },
          [&](const semantics::UseDetails &use) {
            return Characterize(use.symbol(), context);
          },
          [&](const semantics::HostAssocDetails &assoc) {
            return Characterize(assoc.symbol(), context);
          },
          [&](const semantics::AssocEntityDetails &assoc) {
            return Characterize(assoc, context);
          },
          [](const auto &) { return std::optional<TypeAndShape>{}; },
      },
      symbol.details());
}

std::optional<TypeAndShape> TypeAndShape::Characterize(
    const semantics::ObjectEntityDetails &object, FoldingContext &context) {
  if (auto type{DynamicType::From(object.type())}) {
    TypeAndShape result{std::move(*type)};
    result.AcquireShape(object, context);
    return result;
  } else {
    return std::nullopt;
  }
}

std::optional<TypeAndShape> TypeAndShape::Characterize(
    const semantics::AssocEntityDetails &assoc, FoldingContext &context) {
  if (auto type{DynamicType::From(assoc.type())}) {
    if (auto shape{GetShape(context, assoc.expr())}) {
      TypeAndShape result{std::move(*type), std::move(*shape)};
      if (type->category() == TypeCategory::Character) {
        if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) {
          if (auto len{chExpr->LEN()}) {
            result.set_LEN(Fold(context, std::move(*len)));
          }
        }
      }
      return std::move(result);
    }
  }
  return std::nullopt;
}

std::optional<TypeAndShape> TypeAndShape::Characterize(
    const semantics::DeclTypeSpec &spec) {
  if (auto type{DynamicType::From(spec)}) {
    return TypeAndShape{std::move(*type)};
  } else {
    return std::nullopt;
  }
}

std::optional<TypeAndShape> TypeAndShape::Characterize(
    const ActualArgument &arg, FoldingContext &context) {
  return Characterize(arg.UnwrapExpr(), context);
}

bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages,
    const TypeAndShape &that, const char *thisIs, const char *thatIs,
    bool isElemental, bool thisIsDeferredShape,
    bool thatIsDeferredShape) const {
  if (!type_.IsTkCompatibleWith(that.type_)) {
    const auto &len{that.LEN()};
    messages.Say(
        "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US,
        thatIs, that.type_.AsFortran(len ? len->AsFortran() : ""), thisIs,
        type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""));
    return false;
  }
  return isElemental ||
      CheckConformance(messages, shape_, that.shape_, thisIs, thatIs, false,
          false /* no scalar expansion */, thisIsDeferredShape,
          thatIsDeferredShape);
}

std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes(
    FoldingContext *foldingContext) const {
  if (type_.category() == TypeCategory::Character && LEN_) {
    Expr<SubscriptInteger> result{
        common::Clone(*LEN_) * Expr<SubscriptInteger>{type_.kind()}};
    if (foldingContext) {
      result = Fold(*foldingContext, std::move(result));
    }
    return result;
  } else {
    return type_.MeasureSizeInBytes(foldingContext);
  }
}

void TypeAndShape::AcquireShape(
    const semantics::ObjectEntityDetails &object, FoldingContext &context) {
  CHECK(shape_.empty() && !attrs_.test(Attr::AssumedRank));
  corank_ = object.coshape().Rank();
  if (object.IsAssumedRank()) {
    attrs_.set(Attr::AssumedRank);
    return;
  }
  if (object.IsAssumedShape()) {
    attrs_.set(Attr::AssumedShape);
  }
  if (object.IsAssumedSize()) {
    attrs_.set(Attr::AssumedSize);
  }
  if (object.IsDeferredShape()) {
    attrs_.set(Attr::DeferredShape);
  }
  if (object.IsCoarray()) {
    attrs_.set(Attr::Coarray);
  }
  for (const semantics::ShapeSpec &dim : object.shape()) {
    if (dim.ubound().GetExplicit()) {
      Expr<SubscriptInteger> extent{*dim.ubound().GetExplicit()};
      if (auto lbound{dim.lbound().GetExplicit()}) {
        extent =
            std::move(extent) + Expr<SubscriptInteger>{1} - std::move(*lbound);
      }
      shape_.emplace_back(Fold(context, std::move(extent)));
    } else {
      shape_.push_back(std::nullopt);
    }
  }
}

void TypeAndShape::AcquireLEN() {
  if (type_.category() == TypeCategory::Character) {
    if (const auto *param{type_.charLength()}) {
      if (const auto &intExpr{param->GetExplicit()}) {
        LEN_ = ConvertToType<SubscriptInteger>(common::Clone(*intExpr));
      }
    }
  }
}

llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const {
  o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : "");
  attrs_.Dump(o, EnumToString);
  if (!shape_.empty()) {
    o << " dimension";
    char sep{'('};
    for (const auto &expr : shape_) {
      o << sep;
      sep = ',';
      if (expr) {
        expr->AsFortran(o);
      } else {
        o << ':';
      }
    }
    o << ')';
  }
  return o;
}

bool DummyDataObject::operator==(const DummyDataObject &that) const {
  return type == that.type && attrs == that.attrs && intent == that.intent &&
      coshape == that.coshape;
}

static common::Intent GetIntent(const semantics::Attrs &attrs) {
  if (attrs.test(semantics::Attr::INTENT_IN)) {
    return common::Intent::In;
  } else if (attrs.test(semantics::Attr::INTENT_OUT)) {
    return common::Intent::Out;
  } else if (attrs.test(semantics::Attr::INTENT_INOUT)) {
    return common::Intent::InOut;
  } else {
    return common::Intent::Default;
  }
}

std::optional<DummyDataObject> DummyDataObject::Characterize(
    const semantics::Symbol &symbol, FoldingContext &context) {
  if (const auto *obj{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    if (auto type{TypeAndShape::Characterize(*obj, context)}) {
      std::optional<DummyDataObject> result{std::move(*type)};
      using semantics::Attr;
      CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result,
          {
              {Attr::OPTIONAL, DummyDataObject::Attr::Optional},
              {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable},
              {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous},
              {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous},
              {Attr::VALUE, DummyDataObject::Attr::Value},
              {Attr::VOLATILE, DummyDataObject::Attr::Volatile},
              {Attr::POINTER, DummyDataObject::Attr::Pointer},
              {Attr::TARGET, DummyDataObject::Attr::Target},
          });
      result->intent = GetIntent(symbol.attrs());
      return result;
    }
  }
  return std::nullopt;
}

bool DummyDataObject::CanBePassedViaImplicitInterface() const {
  if ((attrs &
          Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional,
              Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile})
          .any()) {
    return false; // 15.4.2.2(3)(a)
  } else if ((type.attrs() &
                 TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape,
                     TypeAndShape::Attr::AssumedRank,
                     TypeAndShape::Attr::Coarray})
                 .any()) {
    return false; // 15.4.2.2(3)(b-d)
  } else if (type.type().IsPolymorphic()) {
    return false; // 15.4.2.2(3)(f)
  } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) {
    return derived->parameters().empty(); // 15.4.2.2(3)(e)
  } else {
    return true;
  }
}

llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const {
  attrs.Dump(o, EnumToString);
  if (intent != common::Intent::Default) {
    o << "INTENT(" << common::EnumToString(intent) << ')';
  }
  type.Dump(o);
  if (!coshape.empty()) {
    char sep{'['};
    for (const auto &expr : coshape) {
      expr.AsFortran(o << sep);
      sep = ',';
    }
  }
  return o;
}

DummyProcedure::DummyProcedure(Procedure &&p)
    : procedure{new Procedure{std::move(p)}} {}

bool DummyProcedure::operator==(const DummyProcedure &that) const {
  return attrs == that.attrs && intent == that.intent &&
      procedure.value() == that.procedure.value();
}

std::optional<DummyProcedure> DummyProcedure::Characterize(
    const semantics::Symbol &symbol, FoldingContext &context) {
  if (auto procedure{Procedure::Characterize(symbol, context)}) {
    // Dummy procedures may not be elemental.  Elemental dummy procedure
    // interfaces are errors when the interface is not intrinsic, and that
    // error is caught elsewhere.  Elemental intrinsic interfaces are
    // made non-elemental.
    procedure->attrs.reset(Procedure::Attr::Elemental);
    DummyProcedure result{std::move(procedure.value())};
    CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result,
        {
            {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional},
            {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer},
        });
    result.intent = GetIntent(symbol.attrs());
    return result;
  } else {
    return std::nullopt;
  }
}

llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const {
  attrs.Dump(o, EnumToString);
  if (intent != common::Intent::Default) {
    o << "INTENT(" << common::EnumToString(intent) << ')';
  }
  procedure.value().Dump(o);
  return o;
}

llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const {
  return o << '*';
}

DummyArgument::~DummyArgument() {}

bool DummyArgument::operator==(const DummyArgument &that) const {
  return u == that.u; // name and passed-object usage are not characteristics
}

std::optional<DummyArgument> DummyArgument::Characterize(
    const semantics::Symbol &symbol, FoldingContext &context) {
  auto name{symbol.name().ToString()};
  if (symbol.has<semantics::ObjectEntityDetails>()) {
    if (auto obj{DummyDataObject::Characterize(symbol, context)}) {
      return DummyArgument{std::move(name), std::move(obj.value())};
    }
  } else if (auto proc{DummyProcedure::Characterize(symbol, context)}) {
    return DummyArgument{std::move(name), std::move(proc.value())};
  }
  return std::nullopt;
}

std::optional<DummyArgument> DummyArgument::FromActual(
    std::string &&name, const Expr<SomeType> &expr, FoldingContext &context) {
  return std::visit(
      common::visitors{
          [&](const BOZLiteralConstant &) {
            return std::make_optional<DummyArgument>(std::move(name),
                DummyDataObject{
                    TypeAndShape{DynamicType::TypelessIntrinsicArgument()}});
          },
          [&](const NullPointer &) {
            return std::make_optional<DummyArgument>(std::move(name),
                DummyDataObject{
                    TypeAndShape{DynamicType::TypelessIntrinsicArgument()}});
          },
          [&](const ProcedureDesignator &designator) {
            if (auto proc{Procedure::Characterize(designator, context)}) {
              return std::make_optional<DummyArgument>(
                  std::move(name), DummyProcedure{std::move(*proc)});
            } else {
              return std::optional<DummyArgument>{};
            }
          },
          [&](const ProcedureRef &call) {
            if (auto proc{Procedure::Characterize(call, context)}) {
              return std::make_optional<DummyArgument>(
                  std::move(name), DummyProcedure{std::move(*proc)});
            } else {
              return std::optional<DummyArgument>{};
            }
          },
          [&](const auto &) {
            if (auto type{TypeAndShape::Characterize(expr, context)}) {
              return std::make_optional<DummyArgument>(
                  std::move(name), DummyDataObject{std::move(*type)});
            } else {
              return std::optional<DummyArgument>{};
            }
          },
      },
      expr.u);
}

bool DummyArgument::IsOptional() const {
  return std::visit(
      common::visitors{
          [](const DummyDataObject &data) {
            return data.attrs.test(DummyDataObject::Attr::Optional);
          },
          [](const DummyProcedure &proc) {
            return proc.attrs.test(DummyProcedure::Attr::Optional);
          },
          [](const AlternateReturn &) { return false; },
      },
      u);
}

void DummyArgument::SetOptional(bool value) {
  std::visit(common::visitors{
                 [value](DummyDataObject &data) {
                   data.attrs.set(DummyDataObject::Attr::Optional, value);
                 },
                 [value](DummyProcedure &proc) {
                   proc.attrs.set(DummyProcedure::Attr::Optional, value);
                 },
                 [](AlternateReturn &) { DIE("cannot set optional"); },
             },
      u);
}

void DummyArgument::SetIntent(common::Intent intent) {
  std::visit(common::visitors{
                 [intent](DummyDataObject &data) { data.intent = intent; },
                 [intent](DummyProcedure &proc) { proc.intent = intent; },
                 [](AlternateReturn &) { DIE("cannot set intent"); },
             },
      u);
}

common::Intent DummyArgument::GetIntent() const {
  return std::visit(common::visitors{
                        [](const DummyDataObject &data) { return data.intent; },
                        [](const DummyProcedure &proc) { return proc.intent; },
                        [](const AlternateReturn &) -> common::Intent {
                          DIE("Alternate return have no intent");
                        },
                    },
      u);
}

bool DummyArgument::CanBePassedViaImplicitInterface() const {
  if (const auto *object{std::get_if<DummyDataObject>(&u)}) {
    return object->CanBePassedViaImplicitInterface();
  } else {
    return true;
  }
}

bool DummyArgument::IsTypelessIntrinsicDummy() const {
  const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)};
  return argObj && argObj->type.type().IsTypelessIntrinsicArgument();
}

llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const {
  if (!name.empty()) {
    o << name << '=';
  }
  if (pass) {
    o << " PASS";
  }
  std::visit([&](const auto &x) { x.Dump(o); }, u);
  return o;
}

FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {}
FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {}
FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {}
FunctionResult::~FunctionResult() {}

bool FunctionResult::operator==(const FunctionResult &that) const {
  return attrs == that.attrs && u == that.u;
}

std::optional<FunctionResult> FunctionResult::Characterize(
    const Symbol &symbol, FoldingContext &context) {
  if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    if (auto type{TypeAndShape::Characterize(*object, context)}) {
      FunctionResult result{std::move(*type)};
      CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result,
          {
              {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable},
              {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous},
              {semantics::Attr::POINTER, FunctionResult::Attr::Pointer},
          });
      return result;
    }
  } else if (auto maybeProc{Procedure::Characterize(symbol, context)}) {
    FunctionResult result{std::move(*maybeProc)};
    result.attrs.set(FunctionResult::Attr::Pointer);
    return result;
  }
  return std::nullopt;
}

bool FunctionResult::IsAssumedLengthCharacter() const {
  if (const auto *ts{std::get_if<TypeAndShape>(&u)}) {
    return ts->type().IsAssumedLengthCharacter();
  } else {
    return false;
  }
}

bool FunctionResult::CanBeReturnedViaImplicitInterface() const {
  if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) {
    return false; // 15.4.2.2(4)(b)
  } else if (const auto *typeAndShape{GetTypeAndShape()}) {
    if (typeAndShape->Rank() > 0) {
      return false; // 15.4.2.2(4)(a)
    } else {
      const DynamicType &type{typeAndShape->type()};
      switch (type.category()) {
      case TypeCategory::Character:
        if (const auto *param{type.charLength()}) {
          if (const auto &expr{param->GetExplicit()}) {
            return IsConstantExpr(*expr); // 15.4.2.2(4)(c)
          } else if (param->isAssumed()) {
            return true;
          }
        }
        return false;
      case TypeCategory::Derived:
        if (!type.IsPolymorphic()) {
          const auto &spec{type.GetDerivedTypeSpec()};
          for (const auto &pair : spec.parameters()) {
            if (const auto &expr{pair.second.GetExplicit()}) {
              if (!IsConstantExpr(*expr)) {
                return false; // 15.4.2.2(4)(c)
              }
            }
          }
          return true;
        }
        return false;
      default:
        return true;
      }
    }
  } else {
    return false; // 15.4.2.2(4)(b) - procedure pointer
  }
}

llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const {
  attrs.Dump(o, EnumToString);
  std::visit(common::visitors{
                 [&](const TypeAndShape &ts) { ts.Dump(o); },
                 [&](const CopyableIndirection<Procedure> &p) {
                   p.value().Dump(o << " procedure(") << ')';
                 },
             },
      u);
  return o;
}

Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a)
    : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} {
}
Procedure::Procedure(DummyArguments &&args, Attrs a)
    : dummyArguments{std::move(args)}, attrs{a} {}
Procedure::~Procedure() {}

bool Procedure::operator==(const Procedure &that) const {
  return attrs == that.attrs && functionResult == that.functionResult &&
      dummyArguments == that.dummyArguments;
}

int Procedure::FindPassIndex(std::optional<parser::CharBlock> name) const {
  int argCount{static_cast<int>(dummyArguments.size())};
  int index{0};
  if (name) {
    while (index < argCount && *name != dummyArguments[index].name.c_str()) {
      ++index;
    }
  }
  CHECK(index < argCount);
  return index;
}

bool Procedure::CanOverride(
    const Procedure &that, std::optional<int> passIndex) const {
  // A pure procedure may override an impure one (7.5.7.3(2))
  if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) ||
      that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) ||
      functionResult != that.functionResult) {
    return false;
  }
  int argCount{static_cast<int>(dummyArguments.size())};
  if (argCount != static_cast<int>(that.dummyArguments.size())) {
    return false;
  }
  for (int j{0}; j < argCount; ++j) {
    if ((!passIndex || j != *passIndex) &&
        dummyArguments[j] != that.dummyArguments[j]) {
      return false;
    }
  }
  return true;
}

std::optional<Procedure> Procedure::Characterize(
    const semantics::Symbol &original, FoldingContext &context) {
  Procedure result;
  const auto &symbol{ResolveAssociations(original)};
  CopyAttrs<Procedure, Procedure::Attr>(symbol, result,
      {
          {semantics::Attr::PURE, Procedure::Attr::Pure},
          {semantics::Attr::ELEMENTAL, Procedure::Attr::Elemental},
          {semantics::Attr::BIND_C, Procedure::Attr::BindC},
      });
  if (result.attrs.test(Attr::Elemental) &&
      !symbol.attrs().test(semantics::Attr::IMPURE)) {
    result.attrs.set(Attr::Pure); // explicitly flag pure procedures
  }
  return std::visit(
      common::visitors{
          [&](const semantics::SubprogramDetails &subp)
              -> std::optional<Procedure> {
            if (subp.isFunction()) {
              if (auto fr{
                      FunctionResult::Characterize(subp.result(), context)}) {
                result.functionResult = std::move(fr);
              } else {
                return std::nullopt;
              }
            } else {
              result.attrs.set(Attr::Subroutine);
            }
            for (const semantics::Symbol *arg : subp.dummyArgs()) {
              if (!arg) {
                result.dummyArguments.emplace_back(AlternateReturn{});
              } else if (auto argCharacteristics{
                             DummyArgument::Characterize(*arg, context)}) {
                result.dummyArguments.emplace_back(
                    std::move(argCharacteristics.value()));
              } else {
                return std::nullopt;
              }
            }
            return result;
          },
          [&](const semantics::ProcEntityDetails &proc)
              -> std::optional<Procedure> {
            if (symbol.attrs().test(semantics::Attr::INTRINSIC)) {
              return context.intrinsics().IsSpecificIntrinsicFunction(
                  symbol.name().ToString());
            }
            const semantics::ProcInterface &interface{proc.interface()};
            if (const semantics::Symbol * interfaceSymbol{interface.symbol()}) {
              return Characterize(*interfaceSymbol, context);
            } else {
              result.attrs.set(Attr::ImplicitInterface);
              const semantics::DeclTypeSpec *type{interface.type()};
              if (symbol.test(semantics::Symbol::Flag::Subroutine)) {
                // ignore any implicit typing
                result.attrs.set(Attr::Subroutine);
              } else if (type) {
                if (auto resultType{DynamicType::From(*type)}) {
                  result.functionResult = FunctionResult{*resultType};
                } else {
                  return std::nullopt;
                }
              } else if (symbol.test(semantics::Symbol::Flag::Function)) {
                return std::nullopt;
              }
              // The PASS name, if any, is not a characteristic.
              return result;
            }
          },
          [&](const semantics::ProcBindingDetails &binding) {
            if (auto result{Characterize(binding.symbol(), context)}) {
              if (!symbol.attrs().test(semantics::Attr::NOPASS)) {
                auto passName{binding.passName()};
                for (auto &dummy : result->dummyArguments) {
                  if (!passName || dummy.name.c_str() == *passName) {
                    dummy.pass = true;
                    return result;
                  }
                }
                DIE("PASS argument missing");
              }
              return result;
            } else {
              return std::optional<Procedure>{};
            }
          },
          [&](const semantics::UseDetails &use) {
            return Characterize(use.symbol(), context);
          },
          [&](const semantics::HostAssocDetails &assoc) {
            return Characterize(assoc.symbol(), context);
          },
          [](const auto &) { return std::optional<Procedure>{}; },
      },
      symbol.details());
}

std::optional<Procedure> Procedure::Characterize(
    const ProcedureDesignator &proc, FoldingContext &context) {
  if (const auto *symbol{proc.GetSymbol()}) {
    if (auto result{characteristics::Procedure::Characterize(
            ResolveAssociations(*symbol), context)}) {
      return result;
    }
  } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) {
    return intrinsic->characteristics.value();
  }
  return std::nullopt;
}

std::optional<Procedure> Procedure::Characterize(
    const ProcedureRef &ref, FoldingContext &context) {
  if (auto callee{Characterize(ref.proc(), context)}) {
    if (callee->functionResult) {
      if (const Procedure *
          proc{callee->functionResult->IsProcedurePointer()}) {
        return {*proc};
      }
    }
  }
  return std::nullopt;
}

bool Procedure::CanBeCalledViaImplicitInterface() const {
  if (attrs.test(Attr::Elemental) || attrs.test(Attr::BindC)) {
    return false; // 15.4.2.2(5,6)
  } else if (IsFunction() &&
      !functionResult->CanBeReturnedViaImplicitInterface()) {
    return false;
  } else {
    for (const DummyArgument &arg : dummyArguments) {
      if (!arg.CanBePassedViaImplicitInterface()) {
        return false;
      }
    }
    return true;
  }
}

llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const {
  attrs.Dump(o, EnumToString);
  if (functionResult) {
    functionResult->Dump(o << "TYPE(") << ") FUNCTION";
  } else {
    o << "SUBROUTINE";
  }
  char sep{'('};
  for (const auto &dummy : dummyArguments) {
    dummy.Dump(o << sep);
    sep = ',';
  }
  return o << (sep == '(' ? "()" : ")");
}

// Utility class to determine if Procedures, etc. are distinguishable
class DistinguishUtils {
public:
  // Are these procedures distinguishable for a generic name?
  static bool Distinguishable(const Procedure &, const Procedure &);
  // Are these procedures distinguishable for a generic operator or assignment?
  static bool DistinguishableOpOrAssign(const Procedure &, const Procedure &);

private:
  struct CountDummyProcedures {
    CountDummyProcedures(const DummyArguments &args) {
      for (const DummyArgument &arg : args) {
        if (std::holds_alternative<DummyProcedure>(arg.u)) {
          total += 1;
          notOptional += !arg.IsOptional();
        }
      }
    }
    int total{0};
    int notOptional{0};
  };

  static bool Rule3Distinguishable(const Procedure &, const Procedure &);
  static const DummyArgument *Rule1DistinguishingArg(
      const DummyArguments &, const DummyArguments &);
  static int FindFirstToDistinguishByPosition(
      const DummyArguments &, const DummyArguments &);
  static int FindLastToDistinguishByName(
      const DummyArguments &, const DummyArguments &);
  static int CountCompatibleWith(const DummyArgument &, const DummyArguments &);
  static int CountNotDistinguishableFrom(
      const DummyArgument &, const DummyArguments &);
  static bool Distinguishable(const DummyArgument &, const DummyArgument &);
  static bool Distinguishable(const DummyDataObject &, const DummyDataObject &);
  static bool Distinguishable(const DummyProcedure &, const DummyProcedure &);
  static bool Distinguishable(const FunctionResult &, const FunctionResult &);
  static bool Distinguishable(const TypeAndShape &, const TypeAndShape &);
  static bool IsTkrCompatible(const DummyArgument &, const DummyArgument &);
  static bool IsTkrCompatible(const TypeAndShape &, const TypeAndShape &);
  static const DummyArgument *GetAtEffectivePosition(
      const DummyArguments &, int);
  static const DummyArgument *GetPassArg(const Procedure &);
};

// Simpler distinguishability rules for operators and assignment
bool DistinguishUtils::DistinguishableOpOrAssign(
    const Procedure &proc1, const Procedure &proc2) {
  auto &args1{proc1.dummyArguments};
  auto &args2{proc2.dummyArguments};
  if (args1.size() != args2.size()) {
    return true; // C1511: distinguishable based on number of arguments
  }
  for (std::size_t i{0}; i < args1.size(); ++i) {
    if (Distinguishable(args1[i], args2[i])) {
      return true; // C1511, C1512: distinguishable based on this arg
    }
  }
  return false;
}

bool DistinguishUtils::Distinguishable(
    const Procedure &proc1, const Procedure &proc2) {
  auto &args1{proc1.dummyArguments};
  auto &args2{proc2.dummyArguments};
  auto count1{CountDummyProcedures(args1)};
  auto count2{CountDummyProcedures(args2)};
  if (count1.notOptional > count2.total || count2.notOptional > count1.total) {
    return true; // distinguishable based on C1514 rule 2
  }
  if (Rule3Distinguishable(proc1, proc2)) {
    return true; // distinguishable based on C1514 rule 3
  }
  if (Rule1DistinguishingArg(args1, args2)) {
    return true; // distinguishable based on C1514 rule 1
  }
  int pos1{FindFirstToDistinguishByPosition(args1, args2)};
  int name1{FindLastToDistinguishByName(args1, args2)};
  if (pos1 >= 0 && pos1 <= name1) {
    return true; // distinguishable based on C1514 rule 4
  }
  int pos2{FindFirstToDistinguishByPosition(args2, args1)};
  int name2{FindLastToDistinguishByName(args2, args1)};
  if (pos2 >= 0 && pos2 <= name2) {
    return true; // distinguishable based on C1514 rule 4
  }
  return false;
}

// C1514 rule 3: Procedures are distinguishable if both have a passed-object
// dummy argument and those are distinguishable.
bool DistinguishUtils::Rule3Distinguishable(
    const Procedure &proc1, const Procedure &proc2) {
  const DummyArgument *pass1{GetPassArg(proc1)};
  const DummyArgument *pass2{GetPassArg(proc2)};
  return pass1 && pass2 && Distinguishable(*pass1, *pass2);
}

// Find a non-passed-object dummy data object in one of the argument lists
// that satisfies C1514 rule 1. I.e. x such that:
// - m is the number of dummy data objects in one that are nonoptional,
//   are not passed-object, that x is TKR compatible with
// - n is the number of non-passed-object dummy data objects, in the other
//   that are not distinguishable from x
// - m is greater than n
const DummyArgument *DistinguishUtils::Rule1DistinguishingArg(
    const DummyArguments &args1, const DummyArguments &args2) {
  auto size1{args1.size()};
  auto size2{args2.size()};
  for (std::size_t i{0}; i < size1 + size2; ++i) {
    const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]};
    if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) {
      if (CountCompatibleWith(x, args1) >
              CountNotDistinguishableFrom(x, args2) ||
          CountCompatibleWith(x, args2) >
              CountNotDistinguishableFrom(x, args1)) {
        return &x;
      }
    }
  }
  return nullptr;
}

// Find the index of the first nonoptional non-passed-object dummy argument
// in args1 at an effective position such that either:
// - args2 has no dummy argument at that effective position
// - the dummy argument at that position is distinguishable from it
int DistinguishUtils::FindFirstToDistinguishByPosition(
    const DummyArguments &args1, const DummyArguments &args2) {
  int effective{0}; // position of arg1 in list, ignoring passed arg
  for (std::size_t i{0}; i < args1.size(); ++i) {
    const DummyArgument &arg1{args1.at(i)};
    if (!arg1.pass && !arg1.IsOptional()) {
      const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)};
      if (!arg2 || Distinguishable(arg1, *arg2)) {
        return i;
      }
    }
    effective += !arg1.pass;
  }
  return -1;
}

// Find the index of the last nonoptional non-passed-object dummy argument
// in args1 whose name is such that either:
// - args2 has no dummy argument with that name
// - the dummy argument with that name is distinguishable from it
int DistinguishUtils::FindLastToDistinguishByName(
    const DummyArguments &args1, const DummyArguments &args2) {
  std::map<std::string, const DummyArgument *> nameToArg;
  for (const auto &arg2 : args2) {
    nameToArg.emplace(arg2.name, &arg2);
  }
  for (int i = args1.size() - 1; i >= 0; --i) {
    const DummyArgument &arg1{args1.at(i)};
    if (!arg1.pass && !arg1.IsOptional()) {
      auto it{nameToArg.find(arg1.name)};
      if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) {
        return i;
      }
    }
  }
  return -1;
}

// Count the dummy data objects in args that are nonoptional, are not
// passed-object, and that x is TKR compatible with
int DistinguishUtils::CountCompatibleWith(
    const DummyArgument &x, const DummyArguments &args) {
  return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) {
    return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y);
  });
}

// Return the number of dummy data objects in args that are not
// distinguishable from x and not passed-object.
int DistinguishUtils::CountNotDistinguishableFrom(
    const DummyArgument &x, const DummyArguments &args) {
  return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) {
    return !y.pass && std::holds_alternative<DummyDataObject>(y.u) &&
        !Distinguishable(y, x);
  });
}

bool DistinguishUtils::Distinguishable(
    const DummyArgument &x, const DummyArgument &y) {
  if (x.u.index() != y.u.index()) {
    return true; // different kind: data/proc/alt-return
  }
  return std::visit(
      common::visitors{
          [&](const DummyDataObject &z) {
            return Distinguishable(z, std::get<DummyDataObject>(y.u));
          },
          [&](const DummyProcedure &z) {
            return Distinguishable(z, std::get<DummyProcedure>(y.u));
          },
          [&](const AlternateReturn &) { return false; },
      },
      x.u);
}

bool DistinguishUtils::Distinguishable(
    const DummyDataObject &x, const DummyDataObject &y) {
  using Attr = DummyDataObject::Attr;
  if (Distinguishable(x.type, y.type)) {
    return true;
  } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) &&
      y.intent != common::Intent::In) {
    return true;
  } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) &&
      x.intent != common::Intent::In) {
    return true;
  } else {
    return false;
  }
}

bool DistinguishUtils::Distinguishable(
    const DummyProcedure &x, const DummyProcedure &y) {
  const Procedure &xProc{x.procedure.value()};
  const Procedure &yProc{y.procedure.value()};
  if (Distinguishable(xProc, yProc)) {
    return true;
  } else {
    const std::optional<FunctionResult> &xResult{xProc.functionResult};
    const std::optional<FunctionResult> &yResult{yProc.functionResult};
    return xResult ? !yResult || Distinguishable(*xResult, *yResult)
                   : yResult.has_value();
  }
}

bool DistinguishUtils::Distinguishable(
    const FunctionResult &x, const FunctionResult &y) {
  if (x.u.index() != y.u.index()) {
    return true; // one is data object, one is procedure
  }
  return std::visit(
      common::visitors{
          [&](const TypeAndShape &z) {
            return Distinguishable(z, std::get<TypeAndShape>(y.u));
          },
          [&](const CopyableIndirection<Procedure> &z) {
            return Distinguishable(z.value(),
                std::get<CopyableIndirection<Procedure>>(y.u).value());
          },
      },
      x.u);
}

bool DistinguishUtils::Distinguishable(
    const TypeAndShape &x, const TypeAndShape &y) {
  return !IsTkrCompatible(x, y) && !IsTkrCompatible(y, x);
}

// Compatibility based on type, kind, and rank
bool DistinguishUtils::IsTkrCompatible(
    const DummyArgument &x, const DummyArgument &y) {
  const auto *obj1{std::get_if<DummyDataObject>(&x.u)};
  const auto *obj2{std::get_if<DummyDataObject>(&y.u)};
  return obj1 && obj2 && IsTkrCompatible(obj1->type, obj2->type);
}
bool DistinguishUtils::IsTkrCompatible(
    const TypeAndShape &x, const TypeAndShape &y) {
  return x.type().IsTkCompatibleWith(y.type()) &&
      (x.attrs().test(TypeAndShape::Attr::AssumedRank) ||
          y.attrs().test(TypeAndShape::Attr::AssumedRank) ||
          x.Rank() == y.Rank());
}

// Return the argument at the given index, ignoring the passed arg
const DummyArgument *DistinguishUtils::GetAtEffectivePosition(
    const DummyArguments &args, int index) {
  for (const DummyArgument &arg : args) {
    if (!arg.pass) {
      if (index == 0) {
        return &arg;
      }
      --index;
    }
  }
  return nullptr;
}

// Return the passed-object dummy argument of this procedure, if any
const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) {
  for (const auto &arg : proc.dummyArguments) {
    if (arg.pass) {
      return &arg;
    }
  }
  return nullptr;
}

bool Distinguishable(const Procedure &x, const Procedure &y) {
  return DistinguishUtils::Distinguishable(x, y);
}

bool DistinguishableOpOrAssign(const Procedure &x, const Procedure &y) {
  return DistinguishUtils::DistinguishableOpOrAssign(x, y);
}

DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure)
} // namespace Fortran::evaluate::characteristics

template class Fortran::common::Indirection<
    Fortran::evaluate::characteristics::Procedure, true>;