summaryrefslogtreecommitdiff
path: root/flang/lib/Lower/ConvertExpr.cpp
blob: dead3c54d243090f794cfc9a46d233551e63b963 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
//===-- ConvertExpr.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/ConvertExpr.h"
#include "flang/Common/default-kinds.h"
#include "flang/Common/unwrap.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/real.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/BuiltinModules.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/Coarray.h"
#include "flang/Lower/ComponentPath.h"
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/ConvertConstant.h"
#include "flang/Lower/ConvertProcedureDesignator.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/DumpEvaluateExpr.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/Runtime.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/Factory.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/Runtime/Assign.h"
#include "flang/Optimizer/Builder/Runtime/Character.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Runtime/Inquiry.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Ragged.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Runtime/support.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <optional>

#define DEBUG_TYPE "flang-lower-expr"

using namespace Fortran::runtime;

//===----------------------------------------------------------------------===//
// The composition and structure of Fortran::evaluate::Expr is defined in
// the various header files in include/flang/Evaluate. You are referred
// there for more information on these data structures. Generally speaking,
// these data structures are a strongly typed family of abstract data types
// that, composed as trees, describe the syntax of Fortran expressions.
//
// This part of the bridge can traverse these tree structures and lower them
// to the correct FIR representation in SSA form.
//===----------------------------------------------------------------------===//

static llvm::cl::opt<bool> generateArrayCoordinate(
    "gen-array-coor",
    llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
    llvm::cl::init(false));

// The default attempts to balance a modest allocation size with expected user
// input to minimize bounds checks and reallocations during dynamic array
// construction. Some user codes may have very large array constructors for
// which the default can be increased.
static llvm::cl::opt<unsigned> clInitialBufferSize(
    "array-constructor-initial-buffer-size",
    llvm::cl::desc(
        "set the incremental array construction buffer size (default=32)"),
    llvm::cl::init(32u));

// Lower TRANSPOSE as an "elemental" function that swaps the array
// expression's iteration space, so that no runtime call is needed.
// This lowering may help get rid of unnecessary creation of temporary
// arrays. Note that the runtime TRANSPOSE implementation may be different
// from the "inline" FIR, e.g. it may diagnose out-of-memory conditions
// during the temporary allocation whereas the inline implementation
// relies on AllocMemOp that will silently return null in case
// there is not enough memory.
//
// If it is set to false, then TRANSPOSE will be lowered using
// a runtime call. If it is set to true, then the lowering is controlled
// by LoweringOptions::optimizeTranspose bit (see isTransposeOptEnabled
// function in this file).
static llvm::cl::opt<bool> optimizeTranspose(
    "opt-transpose",
    llvm::cl::desc("lower transpose without using a runtime call"),
    llvm::cl::init(true));

// When copy-in/copy-out is generated for a boxed object we may
// either produce loops to copy the data or call the Fortran runtime's
// Assign function. Since the data copy happens under a runtime check
// (for IsContiguous) the copy loops can hardly provide any value
// to optimizations, instead, the optimizer just wastes compilation
// time on these loops.
//
// This internal option will force the loops generation, when set
// to true. It is false by default.
//
// Note that for copy-in/copy-out of non-boxed objects (e.g. for passing
// arguments by value) we always generate loops. Since the memory for
// such objects is contiguous, it may be better to expose them
// to the optimizer.
static llvm::cl::opt<bool> inlineCopyInOutForBoxes(
    "inline-copyinout-for-boxes",
    llvm::cl::desc(
        "generate loops for copy-in/copy-out of objects with descriptors"),
    llvm::cl::init(false));

/// The various semantics of a program constituent (or a part thereof) as it may
/// appear in an expression.
///
/// Given the following Fortran declarations.
/// ```fortran
///   REAL :: v1, v2, v3
///   REAL, POINTER :: vp1
///   REAL :: a1(c), a2(c)
///   REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
///   FUNCTION f2(arg)                ! array -> array
///   vp1 => v3       ! 1
///   v1 = v2 * vp1   ! 2
///   a1 = a1 + a2    ! 3
///   a1 = f1(a2)     ! 4
///   a1 = f2(a2)     ! 5
/// ```
///
/// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
/// constructed from the DataAddr of `v3`.
/// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
/// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
/// dereference in the `vp1` case.
/// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
/// is CopyInCopyOut as `a1` is replaced elementally by the additions.
/// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
/// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
/// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
///  In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
///  `a1` on the lhs is again CopyInCopyOut.
enum class ConstituentSemantics {
  // Scalar data reference semantics.
  //
  // For these let `v` be the location in memory of a variable with value `x`
  DataValue, // refers to the value `x`
  DataAddr,  // refers to the address `v`
  BoxValue,  // refers to a box value containing `v`
  BoxAddr,   // refers to the address of a box value containing `v`

  // Array data reference semantics.
  //
  // For these let `a` be the location in memory of a sequence of value `[xs]`.
  // Let `x_i` be the `i`-th value in the sequence `[xs]`.

  // Referentially transparent. Refers to the array's value, `[xs]`.
  RefTransparent,
  // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
  // note 2). (Passing a copy by reference to simulate pass-by-value.)
  ByValueArg,
  // Refers to the merge of array value `[xs]` with another array value `[ys]`.
  // This merged array value will be written into memory location `a`.
  CopyInCopyOut,
  // Similar to CopyInCopyOut but `a` may be a transient projection (rather than
  // a whole array).
  ProjectedCopyInCopyOut,
  // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
  // automatically by the framework. Instead, and address for `[xs]` is made
  // accessible so that custom assignments to `[xs]` can be implemented.
  CustomCopyInCopyOut,
  // Referentially opaque. Refers to the address of `x_i`.
  RefOpaque
};

/// Convert parser's INTEGER relational operators to MLIR.  TODO: using
/// unordered, but we may want to cons ordered in certain situation.
static mlir::arith::CmpIPredicate
translateRelational(Fortran::common::RelationalOperator rop) {
  switch (rop) {
  case Fortran::common::RelationalOperator::LT:
    return mlir::arith::CmpIPredicate::slt;
  case Fortran::common::RelationalOperator::LE:
    return mlir::arith::CmpIPredicate::sle;
  case Fortran::common::RelationalOperator::EQ:
    return mlir::arith::CmpIPredicate::eq;
  case Fortran::common::RelationalOperator::NE:
    return mlir::arith::CmpIPredicate::ne;
  case Fortran::common::RelationalOperator::GT:
    return mlir::arith::CmpIPredicate::sgt;
  case Fortran::common::RelationalOperator::GE:
    return mlir::arith::CmpIPredicate::sge;
  }
  llvm_unreachable("unhandled INTEGER relational operator");
}

/// Convert parser's REAL relational operators to MLIR.
/// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
/// requirements in the IEEE context (table 17.1 of F2018). This choice is
/// also applied in other contexts because it is easier and in line with
/// other Fortran compilers.
/// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
/// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
/// whether the comparison will signal or not in case of quiet NaN argument.
static mlir::arith::CmpFPredicate
translateFloatRelational(Fortran::common::RelationalOperator rop) {
  switch (rop) {
  case Fortran::common::RelationalOperator::LT:
    return mlir::arith::CmpFPredicate::OLT;
  case Fortran::common::RelationalOperator::LE:
    return mlir::arith::CmpFPredicate::OLE;
  case Fortran::common::RelationalOperator::EQ:
    return mlir::arith::CmpFPredicate::OEQ;
  case Fortran::common::RelationalOperator::NE:
    return mlir::arith::CmpFPredicate::UNE;
  case Fortran::common::RelationalOperator::GT:
    return mlir::arith::CmpFPredicate::OGT;
  case Fortran::common::RelationalOperator::GE:
    return mlir::arith::CmpFPredicate::OGE;
  }
  llvm_unreachable("unhandled REAL relational operator");
}

static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
                                          mlir::Location loc,
                                          fir::ExtendedValue actual) {
  if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
    return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
                                                        *ptrOrAlloc);
  // Optional case (not that optional allocatable/pointer cannot be absent
  // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
  // therefore possible to catch them in the `then` case above.
  return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
                                          fir::getBase(actual));
}

/// Convert the array_load, `load`, to an extended value. If `path` is not
/// empty, then traverse through the components designated. The base value is
/// `newBase`. This does not accept an array_load with a slice operand.
static fir::ExtendedValue
arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc,
                  fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path,
                  mlir::Value newBase, mlir::Value newLen = {}) {
  // Recover the extended value from the load.
  if (load.getSlice())
    fir::emitFatalError(loc, "array_load with slice is not allowed");
  mlir::Type arrTy = load.getType();
  if (!path.empty()) {
    mlir::Type ty = fir::applyPathToType(arrTy, path);
    if (!ty)
      fir::emitFatalError(loc, "path does not apply to type");
    if (!ty.isa<fir::SequenceType>()) {
      if (fir::isa_char(ty)) {
        mlir::Value len = newLen;
        if (!len)
          len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
              load.getMemref());
        if (!len) {
          assert(load.getTypeparams().size() == 1 &&
                 "length must be in array_load");
          len = load.getTypeparams()[0];
        }
        return fir::CharBoxValue{newBase, len};
      }
      return newBase;
    }
    arrTy = ty.cast<fir::SequenceType>();
  }

  auto arrayToExtendedValue =
      [&](const llvm::SmallVector<mlir::Value> &extents,
          const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue {
    mlir::Type eleTy = fir::unwrapSequenceType(arrTy);
    if (fir::isa_char(eleTy)) {
      mlir::Value len = newLen;
      if (!len)
        len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
            load.getMemref());
      if (!len) {
        assert(load.getTypeparams().size() == 1 &&
               "length must be in array_load");
        len = load.getTypeparams()[0];
      }
      return fir::CharArrayBoxValue(newBase, len, extents, origins);
    }
    return fir::ArrayBoxValue(newBase, extents, origins);
  };
  // Use the shape op, if there is one.
  mlir::Value shapeVal = load.getShape();
  if (shapeVal) {
    if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) {
      auto extents = fir::factory::getExtents(shapeVal);
      auto origins = fir::factory::getOrigins(shapeVal);
      return arrayToExtendedValue(extents, origins);
    }
    if (!fir::isa_box_type(load.getMemref().getType()))
      fir::emitFatalError(loc, "shift op is invalid in this context");
  }

  // If we're dealing with the array_load op (not a subobject) and the load does
  // not have any type parameters, then read the extents from the original box.
  // The origin may be either from the box or a shift operation. Create and
  // return the array extended value.
  if (path.empty() && load.getTypeparams().empty()) {
    auto oldBox = load.getMemref();
    fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox);
    auto extents = fir::factory::getExtents(loc, builder, exv);
    auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv);
    if (shapeVal) {
      // shapeVal is a ShiftOp and load.memref() is a boxed value.
      newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox,
                                             shapeVal, /*slice=*/mlir::Value{});
      origins = fir::factory::getOrigins(shapeVal);
    }
    return fir::substBase(arrayToExtendedValue(extents, origins), newBase);
  }
  TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires "
            "dereferencing; generating the type parameters is a hard "
            "requirement for correctness.");
}

/// Place \p exv in memory if it is not already a memory reference. If
/// \p forceValueType is provided, the value is first casted to the provided
/// type before being stored (this is mainly intended for logicals whose value
/// may be `i1` but needed to be stored as Fortran logicals).
static fir::ExtendedValue
placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
                         const fir::ExtendedValue &exv,
                         mlir::Type storageType) {
  mlir::Value valBase = fir::getBase(exv);
  if (fir::conformsWithPassByRef(valBase.getType()))
    return exv;

  assert(!fir::hasDynamicSize(storageType) &&
         "only expect statically sized scalars to be by value");

  // Since `a` is not itself a valid referent, determine its value and
  // create a temporary location at the beginning of the function for
  // referencing.
  mlir::Value val = builder.createConvert(loc, storageType, valBase);
  mlir::Value temp = builder.createTemporary(
      loc, storageType,
      llvm::ArrayRef<mlir::NamedAttribute>{
          Fortran::lower::getAdaptToByRefAttr(builder)});
  builder.create<fir::StoreOp>(loc, val, temp);
  return fir::substBase(exv, temp);
}

// Copy a copy of scalar \p exv in a new temporary.
static fir::ExtendedValue
createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
                         const fir::ExtendedValue &exv) {
  assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
  if (exv.getCharBox() != nullptr)
    return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
  if (fir::isDerivedWithLenParameters(exv))
    TODO(loc, "copy derived type with length parameters");
  mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
  fir::ExtendedValue temp = builder.createTemporary(loc, type);
  fir::factory::genScalarAssignment(builder, loc, temp, exv);
  return temp;
}

// An expression with non-zero rank is an array expression.
template <typename A>
static bool isArray(const A &x) {
  return x.Rank() != 0;
}

/// Is this a variable wrapped in parentheses?
template <typename A>
static bool isParenthesizedVariable(const A &) {
  return false;
}
template <typename T>
static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
  using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
  using Parentheses = Fortran::evaluate::Parentheses<T>;
  if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
    if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
      return Fortran::evaluate::IsVariable(parentheses->left());
    return false;
  } else {
    return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
                      expr.u);
  }
}

/// Generate a load of a value from an address. Beware that this will lose
/// any dynamic type information for polymorphic entities (note that unlimited
/// polymorphic cannot be loaded and must not be provided here).
static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
                                  mlir::Location loc,
                                  const fir::ExtendedValue &addr) {
  return addr.match(
      [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
      [&](const fir::PolymorphicValue &p) -> fir::ExtendedValue {
        if (fir::unwrapRefType(fir::getBase(p).getType())
                .isa<fir::RecordType>())
          return p;
        mlir::Value load = builder.create<fir::LoadOp>(loc, fir::getBase(p));
        return fir::PolymorphicValue(load, p.getSourceBox());
      },
      [&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
        if (fir::unwrapRefType(fir::getBase(v).getType())
                .isa<fir::RecordType>())
          return v;
        return builder.create<fir::LoadOp>(loc, fir::getBase(v));
      },
      [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
        return genLoad(builder, loc,
                       fir::factory::genMutableBoxRead(builder, loc, box));
      },
      [&](const fir::BoxValue &box) -> fir::ExtendedValue {
        return genLoad(builder, loc,
                       fir::factory::readBoxValue(builder, loc, box));
      },
      [&](const auto &) -> fir::ExtendedValue {
        fir::emitFatalError(
            loc, "attempting to load whole array or procedure address");
      });
}

/// Create an optional dummy argument value from entity \p exv that may be
/// absent. This can only be called with numerical or logical scalar \p exv.
/// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
/// value is zero (or false), otherwise it is the value of \p exv.
static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
                                           mlir::Location loc,
                                           const fir::ExtendedValue &exv,
                                           mlir::Value isPresent) {
  mlir::Type eleType = fir::getBaseTypeOf(exv);
  assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
         "must be a numerical or logical scalar");
  return builder
      .genIfOp(loc, {eleType}, isPresent,
               /*withElseRegion=*/true)
      .genThen([&]() {
        mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
        builder.create<fir::ResultOp>(loc, val);
      })
      .genElse([&]() {
        mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
        builder.create<fir::ResultOp>(loc, zero);
      })
      .getResults()[0];
}

/// Create an optional dummy argument address from entity \p exv that may be
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
/// returned value is a null pointer, otherwise it is the address of \p exv.
static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
                                          mlir::Location loc,
                                          const fir::ExtendedValue &exv,
                                          mlir::Value isPresent) {
  // If it is an exv pointer/allocatable, then it cannot be absent
  // because it is passed to a non-pointer/non-allocatable.
  if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
    return fir::factory::genMutableBoxRead(builder, loc, *box);
  // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
  // address and can be passed directly.
  return exv;
}

/// Create an optional dummy argument address from entity \p exv that may be
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
/// returned value is an absent fir.box, otherwise it is a fir.box describing \p
/// exv.
static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
                                         mlir::Location loc,
                                         const fir::ExtendedValue &exv,
                                         mlir::Value isPresent) {
  // Non allocatable/pointer optional box -> simply forward
  if (exv.getBoxOf<fir::BoxValue>())
    return exv;

  fir::ExtendedValue newExv = exv;
  // Optional allocatable/pointer -> Cannot be absent, but need to translate
  // unallocated/diassociated into absent fir.box.
  if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
    newExv = fir::factory::genMutableBoxRead(builder, loc, *box);

  // createBox will not do create any invalid memory dereferences if exv is
  // absent. The created fir.box will not be usable, but the SelectOp below
  // ensures it won't be.
  mlir::Value box = builder.createBox(loc, newExv);
  mlir::Type boxType = box.getType();
  auto absent = builder.create<fir::AbsentOp>(loc, boxType);
  auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
      loc, boxType, isPresent, box, absent);
  return fir::BoxValue(boxOrAbsent);
}

/// Is this a call to an elemental procedure with at least one array argument?
static bool
isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
  if (procRef.IsElemental())
    for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
         procRef.arguments())
      if (arg && arg->Rank() != 0)
        return true;
  return false;
}
template <typename T>
static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
  return false;
}
template <>
bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
  if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
    return isElementalProcWithArrayArgs(*procRef);
  return false;
}

/// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
/// \p funcAddr argument to a boxproc value, with the host-association as
/// required. Call the factory function to finish creating the tuple value.
static mlir::Value
createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter,
                       mlir::Type argTy, mlir::Value funcAddr,
                       mlir::Value charLen) {
  auto boxTy =
      argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>();
  mlir::Location loc = converter.getCurrentLocation();
  auto &builder = converter.getFirOpBuilder();

  // While character procedure arguments are expected here, Fortran allows
  // actual arguments of other types to be passed instead.
  // To support this, we cast any reference to the expected type or extract
  // procedures from their boxes if needed.
  mlir::Type fromTy = funcAddr.getType();
  mlir::Type toTy = boxTy.getEleTy();
  if (fir::isa_ref_type(fromTy))
    funcAddr = builder.createConvert(loc, toTy, funcAddr);
  else if (fromTy.isa<fir::BoxProcType>())
    funcAddr = builder.create<fir::BoxAddrOp>(loc, toTy, funcAddr);

  auto boxProc = [&]() -> mlir::Value {
    if (auto host = Fortran::lower::argumentHostAssocs(converter, funcAddr))
      return builder.create<fir::EmboxProcOp>(
          loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host});
    return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr);
  }();
  return fir::factory::createCharacterProcedureTuple(builder, loc, argTy,
                                                     boxProc, charLen);
}

/// Given an optional fir.box, returns an fir.box that is the original one if
/// it is present and it otherwise an unallocated box.
/// Absent fir.box are implemented as a null pointer descriptor. Generated
/// code may need to unconditionally read a fir.box that can be absent.
/// This helper allows creating a fir.box that can be read in all cases
/// outside of a fir.if (isPresent) region. However, the usages of the value
/// read from such box should still only be done in a fir.if(isPresent).
static fir::ExtendedValue
absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
                          const fir::ExtendedValue &exv,
                          mlir::Value isPresent) {
  mlir::Value box = fir::getBase(exv);
  mlir::Type boxType = box.getType();
  assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
  mlir::Value emptyBox =
      fir::factory::createUnallocatedBox(builder, loc, boxType, std::nullopt);
  auto safeToReadBox =
      builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
  return fir::substBase(exv, safeToReadBox);
}

// Helper to get the ultimate first symbol. This works around the fact that
// symbol resolution in the front end doesn't always resolve a symbol to its
// ultimate symbol but may leave placeholder indirections for use and host
// associations.
template <typename A>
const Fortran::semantics::Symbol &getFirstSym(const A &obj) {
  return obj.GetFirstSymbol().GetUltimate();
}

// Helper to get the ultimate last symbol.
template <typename A>
const Fortran::semantics::Symbol &getLastSym(const A &obj) {
  return obj.GetLastSymbol().GetUltimate();
}

// Return true if TRANSPOSE should be lowered without a runtime call.
static bool
isTransposeOptEnabled(const Fortran::lower::AbstractConverter &converter) {
  return optimizeTranspose &&
         converter.getLoweringOptions().getOptimizeTranspose();
}

// A set of visitors to detect if the given expression
// is a TRANSPOSE call that should be lowered without using
// runtime TRANSPOSE implementation.
template <typename T>
static bool isOptimizableTranspose(const T &,
                                   const Fortran::lower::AbstractConverter &) {
  return false;
}

static bool
isOptimizableTranspose(const Fortran::evaluate::ProcedureRef &procRef,
                       const Fortran::lower::AbstractConverter &converter) {
  const Fortran::evaluate::SpecificIntrinsic *intrin =
      procRef.proc().GetSpecificIntrinsic();
  if (isTransposeOptEnabled(converter) && intrin &&
      intrin->name == "transpose") {
    const std::optional<Fortran::evaluate::ActualArgument> matrix =
        procRef.arguments().at(0);
    return !(matrix && matrix->GetType() && matrix->GetType()->IsPolymorphic());
  }
  return false;
}

template <typename T>
static bool
isOptimizableTranspose(const Fortran::evaluate::FunctionRef<T> &funcRef,
                       const Fortran::lower::AbstractConverter &converter) {
  return isOptimizableTranspose(
      static_cast<const Fortran::evaluate::ProcedureRef &>(funcRef), converter);
}

template <typename T>
static bool
isOptimizableTranspose(Fortran::evaluate::Expr<T> expr,
                       const Fortran::lower::AbstractConverter &converter) {
  // If optimizeTranspose is not enabled, return false right away.
  if (!isTransposeOptEnabled(converter))
    return false;

  return std::visit(
      [&](const auto &e) { return isOptimizableTranspose(e, converter); },
      expr.u);
}

namespace {

/// Lowering of Fortran::evaluate::Expr<T> expressions
class ScalarExprLowering {
public:
  using ExtValue = fir::ExtendedValue;

  explicit ScalarExprLowering(mlir::Location loc,
                              Fortran::lower::AbstractConverter &converter,
                              Fortran::lower::SymMap &symMap,
                              Fortran::lower::StatementContext &stmtCtx,
                              bool inInitializer = false)
      : location{loc}, converter{converter},
        builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
        inInitializer{inInitializer} {}

  ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
    return gen(expr);
  }

  /// Lower `expr` to be passed as a fir.box argument. Do not create a temp
  /// for the expr if it is a variable that can be described as a fir.box.
  ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
    bool saveUseBoxArg = useBoxArg;
    useBoxArg = true;
    ExtValue result = gen(expr);
    useBoxArg = saveUseBoxArg;
    return result;
  }

  ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
    return genval(expr);
  }

  /// Lower an expression that is a pointer or an allocatable to a
  /// MutableBoxValue.
  fir::MutableBoxValue
  genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
    // Pointers and allocatables can only be:
    //    - a simple designator "x"
    //    - a component designator "a%b(i,j)%x"
    //    - a function reference "foo()"
    //    - result of NULL() or NULL(MOLD) intrinsic.
    //    NULL() requires some context to be lowered, so it is not handled
    //    here and must be lowered according to the context where it appears.
    ExtValue exv = std::visit(
        [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
    const fir::MutableBoxValue *mutableBox =
        exv.getBoxOf<fir::MutableBoxValue>();
    if (!mutableBox)
      fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
    return *mutableBox;
  }

  template <typename T>
  ExtValue genMutableBoxValueImpl(const T &) {
    // NULL() case should not be handled here.
    fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
  }

  /// A `NULL()` in a position where a mutable box is expected has the same
  /// semantics as an absent optional box value. Note: this code should
  /// be depreciated because the rank information is not known here. A
  /// scalar fir.box is created: it should not be cast to an array box type
  /// later, but there is no way to enforce that here.
  ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) {
    mlir::Location loc = getLoc();
    mlir::Type noneTy = mlir::NoneType::get(builder.getContext());
    mlir::Type polyRefTy = fir::PointerType::get(noneTy);
    mlir::Type boxType = fir::BoxType::get(polyRefTy);
    mlir::Value nullConst = builder.createNullConstant(loc, polyRefTy);
    mlir::Value tempBox =
        builder.createTemporary(loc, boxType, /*shape=*/mlir::ValueRange{});
    mlir::Value nullBox = builder.create<fir::EmboxOp>(loc, boxType, nullConst);
    builder.create<fir::StoreOp>(loc, nullBox, tempBox);
    return fir::MutableBoxValue(tempBox,
                                /*lenParameters=*/mlir::ValueRange{},
                                /*mutableProperties=*/{});
  }

  template <typename T>
  ExtValue
  genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
    return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
  }

  template <typename T>
  ExtValue
  genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
    return std::visit(
        Fortran::common::visitors{
            [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
              return converter.getSymbolExtendedValue(*sym, &symMap);
            },
            [&](const Fortran::evaluate::Component &comp) -> ExtValue {
              return genComponent(comp);
            },
            [&](const auto &) -> ExtValue {
              fir::emitFatalError(getLoc(),
                                  "not an allocatable or pointer designator");
            }},
        designator.u);
  }

  template <typename T>
  ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
    return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
                      expr.u);
  }

  mlir::Location getLoc() { return location; }

  template <typename A>
  mlir::Value genunbox(const A &expr) {
    ExtValue e = genval(expr);
    if (const fir::UnboxedValue *r = e.getUnboxed())
      return *r;
    fir::emitFatalError(getLoc(), "unboxed expression expected");
  }

  /// Generate an integral constant of `value`
  template <int KIND>
  mlir::Value genIntegerConstant(mlir::MLIRContext *context,
                                 std::int64_t value) {
    mlir::Type type =
        converter.genType(Fortran::common::TypeCategory::Integer, KIND);
    return builder.createIntegerConstant(getLoc(), type, value);
  }

  /// Generate a logical/boolean constant of `value`
  mlir::Value genBoolConstant(bool value) {
    return builder.createBool(getLoc(), value);
  }

  mlir::Type getSomeKindInteger() { return builder.getIndexType(); }

  mlir::func::FuncOp getFunction(llvm::StringRef name,
                                 mlir::FunctionType funTy) {
    if (mlir::func::FuncOp func = builder.getNamedFunction(name))
      return func;
    return builder.createFunction(getLoc(), name, funTy);
  }

  template <typename OpTy>
  mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
                              const ExtValue &left, const ExtValue &right) {
    if (const fir::UnboxedValue *lhs = left.getUnboxed())
      if (const fir::UnboxedValue *rhs = right.getUnboxed())
        return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
    fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
  }
  template <typename OpTy, typename A>
  mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
    ExtValue left = genval(ex.left());
    return createCompareOp<OpTy>(pred, left, genval(ex.right()));
  }

  template <typename OpTy>
  mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
                             const ExtValue &left, const ExtValue &right) {
    if (const fir::UnboxedValue *lhs = left.getUnboxed())
      if (const fir::UnboxedValue *rhs = right.getUnboxed())
        return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
    fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
  }
  template <typename OpTy, typename A>
  mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
    ExtValue left = genval(ex.left());
    return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
  }

  /// Create a call to the runtime to compare two CHARACTER values.
  /// Precondition: This assumes that the two values have `fir.boxchar` type.
  mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred,
                                const ExtValue &left, const ExtValue &right) {
    return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right);
  }

  template <typename A>
  mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) {
    ExtValue left = genval(ex.left());
    return createCharCompare(pred, left, genval(ex.right()));
  }

  /// Returns a reference to a symbol or its box/boxChar descriptor if it has
  /// one.
  ExtValue gen(Fortran::semantics::SymbolRef sym) {
    fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap);
    if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
      return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
    return exv;
  }

  ExtValue genLoad(const ExtValue &exv) {
    return ::genLoad(builder, getLoc(), exv);
  }

  ExtValue genval(Fortran::semantics::SymbolRef sym) {
    mlir::Location loc = getLoc();
    ExtValue var = gen(sym);
    if (const fir::UnboxedValue *s = var.getUnboxed())
      if (fir::isa_ref_type(s->getType())) {
        // A function with multiple entry points returning different types
        // tags all result variables with one of the largest types to allow
        // them to share the same storage.  A reference to a result variable
        // of one of the other types requires conversion to the actual type.
        fir::UnboxedValue addr = *s;
        if (Fortran::semantics::IsFunctionResult(sym)) {
          mlir::Type resultType = converter.genType(*sym);
          if (addr.getType() != resultType)
            addr = builder.createConvert(loc, builder.getRefType(resultType),
                                         addr);
        }
        return genLoad(addr);
      }
    return var;
  }

  ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
    TODO(getLoc(), "BOZ");
  }

  /// Return indirection to function designated in ProcedureDesignator.
  /// The type of the function indirection is not guaranteed to match the one
  /// of the ProcedureDesignator due to Fortran implicit typing rules.
  ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
    return Fortran::lower::convertProcedureDesignator(getLoc(), converter, proc,
                                                      symMap, stmtCtx);
  }
  ExtValue genval(const Fortran::evaluate::NullPointer &) {
    return builder.createNullConstant(getLoc());
  }

  static bool
  isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol &sym) {
    if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
      if (const Fortran::semantics::DerivedTypeSpec *derived =
              declTy->AsDerived())
        return Fortran::semantics::CountLenParameters(*derived) > 0;
    return false;
  }

  /// A structure constructor is lowered two ways. In an initializer context,
  /// the entire structure must be constant, so the aggregate value is
  /// constructed inline. This allows it to be the body of a GlobalOp.
  /// Otherwise, the structure constructor is in an expression. In that case, a
  /// temporary object is constructed in the stack frame of the procedure.
  ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
    mlir::Location loc = getLoc();
    if (inInitializer)
      return Fortran::lower::genInlinedStructureCtorLit(converter, loc, ctor);
    mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
    auto recTy = ty.cast<fir::RecordType>();
    auto fieldTy = fir::FieldType::get(ty.getContext());
    mlir::Value res = builder.createTemporary(loc, recTy);
    mlir::Value box = builder.createBox(loc, fir::ExtendedValue{res});
    fir::runtime::genDerivedTypeInitialize(builder, loc, box);

    for (const auto &value : ctor.values()) {
      const Fortran::semantics::Symbol &sym = *value.first;
      const Fortran::lower::SomeExpr &expr = value.second.value();
      if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) {
        ExtValue from = gen(expr);
        mlir::Type fromTy = fir::unwrapPassByRefType(
            fir::unwrapRefType(fir::getBase(from).getType()));
        mlir::Value resCast =
            builder.createConvert(loc, builder.getRefType(fromTy), res);
        fir::factory::genRecordAssignment(builder, loc, resCast, from);
        continue;
      }

      if (isDerivedTypeWithLenParameters(sym))
        TODO(loc, "component with length parameters in structure constructor");

      llvm::StringRef name = toStringRef(sym.name());
      // FIXME: type parameters must come from the derived-type-spec
      mlir::Value field = builder.create<fir::FieldIndexOp>(
          loc, fieldTy, name, ty,
          /*typeParams=*/mlir::ValueRange{} /*TODO*/);
      mlir::Type coorTy = builder.getRefType(recTy.getType(name));
      auto coor = builder.create<fir::CoordinateOp>(loc, coorTy,
                                                    fir::getBase(res), field);
      ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor);
      to.match(
          [&](const fir::UnboxedValue &toPtr) {
            ExtValue value = genval(expr);
            fir::factory::genScalarAssignment(builder, loc, to, value);
          },
          [&](const fir::CharBoxValue &) {
            ExtValue value = genval(expr);
            fir::factory::genScalarAssignment(builder, loc, to, value);
          },
          [&](const fir::ArrayBoxValue &) {
            Fortran::lower::createSomeArrayAssignment(converter, to, expr,
                                                      symMap, stmtCtx);
          },
          [&](const fir::CharArrayBoxValue &) {
            Fortran::lower::createSomeArrayAssignment(converter, to, expr,
                                                      symMap, stmtCtx);
          },
          [&](const fir::BoxValue &toBox) {
            fir::emitFatalError(loc, "derived type components must not be "
                                     "represented by fir::BoxValue");
          },
          [&](const fir::PolymorphicValue &) {
            TODO(loc, "polymorphic component in derived type assignment");
          },
          [&](const fir::MutableBoxValue &toBox) {
            if (toBox.isPointer()) {
              Fortran::lower::associateMutableBox(converter, loc, toBox, expr,
                                                  /*lbounds=*/std::nullopt,
                                                  stmtCtx);
              return;
            }
            // For allocatable components, a deep copy is needed.
            TODO(loc, "allocatable components in derived type assignment");
          },
          [&](const fir::ProcBoxValue &toBox) {
            TODO(loc, "procedure pointer component in derived type assignment");
          });
    }
    return res;
  }

  /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
  ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
    mlir::Value value = converter.impliedDoBinding(toStringRef(var.name));
    // The index value generated by the implied-do has Index type,
    // while computations based on it inside the loop body are using
    // the original data type. So we need to cast it appropriately.
    mlir::Type varTy = converter.genType(toEvExpr(var));
    return builder.createConvert(getLoc(), varTy, value);
  }

  ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
    ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base()))
                                          : gen(desc.base().GetComponent());
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Location loc = getLoc();
    auto castResult = [&](mlir::Value v) {
      using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
      return builder.createConvert(
          loc, converter.genType(ResTy::category, ResTy::kind), v);
    };
    switch (desc.field()) {
    case Fortran::evaluate::DescriptorInquiry::Field::Len:
      return castResult(fir::factory::readCharLen(builder, loc, exv));
    case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
      return castResult(fir::factory::readLowerBound(
          builder, loc, exv, desc.dimension(),
          builder.createIntegerConstant(loc, idxTy, 1)));
    case Fortran::evaluate::DescriptorInquiry::Field::Extent:
      return castResult(
          fir::factory::readExtent(builder, loc, exv, desc.dimension()));
    case Fortran::evaluate::DescriptorInquiry::Field::Rank:
      TODO(loc, "rank inquiry on assumed rank");
    case Fortran::evaluate::DescriptorInquiry::Field::Stride:
      // So far the front end does not generate this inquiry.
      TODO(loc, "stride inquiry");
    }
    llvm_unreachable("unknown descriptor inquiry");
  }

  ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
    TODO(getLoc(), "type parameter inquiry");
  }

  mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) {
    return fir::factory::Complex{builder, getLoc()}.extractComplexPart(
        cplx, isImagPart);
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
    return extractComplexPart(genunbox(part.left()), part.isImaginaryPart);
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Integer, KIND>> &op) {
    mlir::Value input = genunbox(op.left());
    // Like LLVM, integer negation is the binary op "0 - value"
    mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
    return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
  }
  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Real, KIND>> &op) {
    return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
  }
  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Complex, KIND>> &op) {
    return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
  }

  template <typename OpTy>
  mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
    assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
    mlir::Value lhs = fir::getBase(left);
    mlir::Value rhs = fir::getBase(right);
    assert(lhs.getType() == rhs.getType() && "types must be the same");
    return builder.create<OpTy>(getLoc(), lhs, rhs);
  }

  template <typename OpTy, typename A>
  mlir::Value createBinaryOp(const A &ex) {
    ExtValue left = genval(ex.left());
    return createBinaryOp<OpTy>(left, genval(ex.right()));
  }

#undef GENBIN
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
  template <int KIND>                                                          \
  ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
                      Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
    return createBinaryOp<GenBinFirOp>(x);                                     \
  }

  GENBIN(Add, Integer, mlir::arith::AddIOp)
  GENBIN(Add, Real, mlir::arith::AddFOp)
  GENBIN(Add, Complex, fir::AddcOp)
  GENBIN(Subtract, Integer, mlir::arith::SubIOp)
  GENBIN(Subtract, Real, mlir::arith::SubFOp)
  GENBIN(Subtract, Complex, fir::SubcOp)
  GENBIN(Multiply, Integer, mlir::arith::MulIOp)
  GENBIN(Multiply, Real, mlir::arith::MulFOp)
  GENBIN(Multiply, Complex, fir::MulcOp)
  GENBIN(Divide, Integer, mlir::arith::DivSIOp)
  GENBIN(Divide, Real, mlir::arith::DivFOp)
  GENBIN(Divide, Complex, fir::DivcOp)

  template <Fortran::common::TypeCategory TC, int KIND>
  ExtValue genval(
      const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
    mlir::Type ty = converter.genType(TC, KIND);
    mlir::Value lhs = genunbox(op.left());
    mlir::Value rhs = genunbox(op.right());
    return fir::genPow(builder, getLoc(), ty, lhs, rhs);
  }

  template <Fortran::common::TypeCategory TC, int KIND>
  ExtValue genval(
      const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
          &op) {
    mlir::Type ty = converter.genType(TC, KIND);
    mlir::Value lhs = genunbox(op.left());
    mlir::Value rhs = genunbox(op.right());
    return fir::genPow(builder, getLoc(), ty, lhs, rhs);
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
    mlir::Value realPartValue = genunbox(op.left());
    return fir::factory::Complex{builder, getLoc()}.createComplex(
        KIND, realPartValue, genunbox(op.right()));
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
    ExtValue lhs = genval(op.left());
    ExtValue rhs = genval(op.right());
    const fir::CharBoxValue *lhsChar = lhs.getCharBox();
    const fir::CharBoxValue *rhsChar = rhs.getCharBox();
    if (lhsChar && rhsChar)
      return fir::factory::CharacterExprHelper{builder, getLoc()}
          .createConcatenate(*lhsChar, *rhsChar);
    TODO(getLoc(), "character array concatenate");
  }

  /// MIN and MAX operations
  template <Fortran::common::TypeCategory TC, int KIND>
  ExtValue
  genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
             &op) {
    mlir::Value lhs = genunbox(op.left());
    mlir::Value rhs = genunbox(op.right());
    switch (op.ordering) {
    case Fortran::evaluate::Ordering::Greater:
      return fir::genMax(builder, getLoc(),
                         llvm::ArrayRef<mlir::Value>{lhs, rhs});
    case Fortran::evaluate::Ordering::Less:
      return fir::genMin(builder, getLoc(),
                         llvm::ArrayRef<mlir::Value>{lhs, rhs});
    case Fortran::evaluate::Ordering::Equal:
      llvm_unreachable("Equal is not a valid ordering in this context");
    }
    llvm_unreachable("unknown ordering");
  }

  // Change the dynamic length information without actually changing the
  // underlying character storage.
  fir::ExtendedValue
  replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar,
                               mlir::Value newLenValue) {
    mlir::Location loc = getLoc();
    const fir::CharBoxValue *charBox = scalarChar.getCharBox();
    if (!charBox)
      fir::emitFatalError(loc, "expected scalar character");
    mlir::Value charAddr = charBox->getAddr();
    auto charType =
        fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>();
    if (charType.hasConstantLen()) {
      // Erase previous constant length from the base type.
      fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen();
      mlir::Type newCharTy = fir::CharacterType::get(
          builder.getContext(), charType.getFKind(), newLen);
      mlir::Type newType = fir::ReferenceType::get(newCharTy);
      charAddr = builder.createConvert(loc, newType, charAddr);
      return fir::CharBoxValue{charAddr, newLenValue};
    }
    return fir::CharBoxValue{charAddr, newLenValue};
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
    mlir::Value newLenValue = genunbox(x.right());
    fir::ExtendedValue lhs = gen(x.left());
    fir::factory::CharacterExprHelper charHelper(builder, getLoc());
    fir::CharBoxValue temp = charHelper.createCharacterTemp(
        charHelper.getCharacterType(fir::getBase(lhs).getType()), newLenValue);
    charHelper.createAssign(temp, lhs);
    return fir::ExtendedValue{temp};
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Integer, KIND>> &op) {
    return createCompareOp<mlir::arith::CmpIOp>(op,
                                                translateRelational(op.opr));
  }
  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Real, KIND>> &op) {
    return createFltCmpOp<mlir::arith::CmpFOp>(
        op, translateFloatRelational(op.opr));
  }
  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Complex, KIND>> &op) {
    return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr));
  }
  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Character, KIND>> &op) {
    return createCharCompare(op, translateRelational(op.opr));
  }

  ExtValue
  genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
    return std::visit([&](const auto &x) { return genval(x); }, op.u);
  }

  template <Fortran::common::TypeCategory TC1, int KIND,
            Fortran::common::TypeCategory TC2>
  ExtValue
  genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
                                          TC2> &convert) {
    mlir::Type ty = converter.genType(TC1, KIND);
    auto fromExpr = genval(convert.left());
    auto loc = getLoc();
    return fromExpr.match(
        [&](const fir::CharBoxValue &boxchar) -> ExtValue {
          if constexpr (TC1 == Fortran::common::TypeCategory::Character &&
                        TC2 == TC1) {
            // Use char_convert. Each code point is translated from a
            // narrower/wider encoding to the target encoding. For example, 'A'
            // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol
            // for euro (0x20AC : i16) may be translated from a wide character
            // to "0xE2 0x82 0xAC" : UTF-8.
            mlir::Value bufferSize = boxchar.getLen();
            auto kindMap = builder.getKindMap();
            mlir::Value boxCharAddr = boxchar.getAddr();
            auto fromTy = boxCharAddr.getType();
            if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) {
              // boxchar is a value, not a variable. Turn it into a temporary.
              // As a value, it ought to have a constant LEN value.
              assert(charTy.hasConstantLen() && "must have constant length");
              mlir::Value tmp = builder.createTemporary(loc, charTy);
              builder.create<fir::StoreOp>(loc, boxCharAddr, tmp);
              boxCharAddr = tmp;
            }
            auto fromBits =
                kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy)
                                                .cast<fir::CharacterType>()
                                                .getFKind());
            auto toBits = kindMap.getCharacterBitsize(
                ty.cast<fir::CharacterType>().getFKind());
            if (toBits < fromBits) {
              // Scale by relative ratio to give a buffer of the same length.
              auto ratio = builder.createIntegerConstant(
                  loc, bufferSize.getType(), fromBits / toBits);
              bufferSize =
                  builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio);
            }
            auto dest = builder.create<fir::AllocaOp>(
                loc, ty, mlir::ValueRange{bufferSize});
            builder.create<fir::CharConvertOp>(loc, boxCharAddr,
                                               boxchar.getLen(), dest);
            return fir::CharBoxValue{dest, boxchar.getLen()};
          } else {
            fir::emitFatalError(
                loc, "unsupported evaluate::Convert between CHARACTER type "
                     "category and non-CHARACTER category");
          }
        },
        [&](const fir::UnboxedValue &value) -> ExtValue {
          return builder.convertWithSemantics(loc, ty, value);
        },
        [&](auto &) -> ExtValue {
          fir::emitFatalError(loc, "unsupported evaluate::Convert");
        });
  }

  template <typename A>
  ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
    ExtValue input = genval(op.left());
    mlir::Value base = fir::getBase(input);
    mlir::Value newBase =
        builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base);
    return fir::substBase(input, newBase);
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
    mlir::Value logical = genunbox(op.left());
    mlir::Value one = genBoolConstant(true);
    mlir::Value val =
        builder.createConvert(getLoc(), builder.getI1Type(), logical);
    return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
    mlir::IntegerType i1Type = builder.getI1Type();
    mlir::Value slhs = genunbox(op.left());
    mlir::Value srhs = genunbox(op.right());
    mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
    mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
    switch (op.logicalOperator) {
    case Fortran::evaluate::LogicalOperator::And:
      return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
    case Fortran::evaluate::LogicalOperator::Or:
      return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
    case Fortran::evaluate::LogicalOperator::Eqv:
      return createCompareOp<mlir::arith::CmpIOp>(
          mlir::arith::CmpIPredicate::eq, lhs, rhs);
    case Fortran::evaluate::LogicalOperator::Neqv:
      return createCompareOp<mlir::arith::CmpIOp>(
          mlir::arith::CmpIPredicate::ne, lhs, rhs);
    case Fortran::evaluate::LogicalOperator::Not:
      // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
      llvm_unreachable(".NOT. is not a binary operator");
    }
    llvm_unreachable("unhandled logical operation");
  }

  template <Fortran::common::TypeCategory TC, int KIND>
  ExtValue
  genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
             &con) {
    return Fortran::lower::convertConstant(
        converter, getLoc(), con,
        /*outlineBigConstantsInReadOnlyMemory=*/!inInitializer);
  }

  fir::ExtendedValue genval(
      const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
    if (auto ctor = con.GetScalarValue())
      return genval(*ctor);
    return Fortran::lower::convertConstant(
        converter, getLoc(), con,
        /*outlineBigConstantsInReadOnlyMemory=*/false);
  }

  template <typename A>
  ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
    fir::emitFatalError(getLoc(), "array constructor: should not reach here");
  }

  ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
    mlir::Location loc = getLoc();
    auto idxTy = builder.getI32Type();
    ExtValue exv = gen(x.complex());
    mlir::Value base = fir::getBase(exv);
    fir::factory::Complex helper{builder, loc};
    mlir::Type eleTy =
        helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType()));
    mlir::Value offset = builder.createIntegerConstant(
        loc, idxTy,
        x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
    mlir::Value result = builder.create<fir::CoordinateOp>(
        loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset});
    return {result};
  }
  ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
    return genLoad(gen(x));
  }

  /// Reference to a substring.
  ExtValue gen(const Fortran::evaluate::Substring &s) {
    // Get base string
    auto baseString = std::visit(
        Fortran::common::visitors{
            [&](const Fortran::evaluate::DataRef &x) { return gen(x); },
            [&](const Fortran::evaluate::StaticDataObject::Pointer &p)
                -> ExtValue {
              if (std::optional<std::string> str = p->AsString())
                return fir::factory::createStringLiteral(builder, getLoc(),
                                                         *str);
              // TODO: convert StaticDataObject to Constant<T> and use normal
              // constant path. Beware that StaticDataObject data() takes into
              // account build machine endianness.
              TODO(getLoc(),
                   "StaticDataObject::Pointer substring with kind > 1");
            },
        },
        s.parent());
    llvm::SmallVector<mlir::Value> bounds;
    mlir::Value lower = genunbox(s.lower());
    bounds.push_back(lower);
    if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) {
      mlir::Value upper = genunbox(*upperBound);
      bounds.push_back(upper);
    }
    fir::factory::CharacterExprHelper charHelper{builder, getLoc()};
    return baseString.match(
        [&](const fir::CharBoxValue &x) -> ExtValue {
          return charHelper.createSubstring(x, bounds);
        },
        [&](const fir::CharArrayBoxValue &) -> ExtValue {
          fir::emitFatalError(
              getLoc(),
              "array substring should be handled in array expression");
        },
        [&](const auto &) -> ExtValue {
          fir::emitFatalError(getLoc(), "substring base is not a CharBox");
        });
  }

  /// The value of a substring.
  ExtValue genval(const Fortran::evaluate::Substring &ss) {
    // FIXME: why is the value of a substring being lowered the same as the
    // address of a substring?
    return gen(ss);
  }

  ExtValue genval(const Fortran::evaluate::Subscript &subs) {
    if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
            &subs.u)) {
      if (s->value().Rank() > 0)
        fir::emitFatalError(getLoc(), "vector subscript is not scalar");
      return {genval(s->value())};
    }
    fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
  }
  ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
    return genval(subs);
  }

  ExtValue gen(const Fortran::evaluate::DataRef &dref) {
    return std::visit([&](const auto &x) { return gen(x); }, dref.u);
  }
  ExtValue genval(const Fortran::evaluate::DataRef &dref) {
    return std::visit([&](const auto &x) { return genval(x); }, dref.u);
  }

  // Helper function to turn the Component structure into a list of nested
  // components, ordered from largest/leftmost to smallest/rightmost:
  //  - where only the smallest/rightmost item may be allocatable or a pointer
  //    (nested allocatable/pointer components require nested coordinate_of ops)
  //  - that does not contain any parent components
  //    (the front end places parent components directly in the object)
  // Return the object used as the base coordinate for the component chain.
  static Fortran::evaluate::DataRef const *
  reverseComponents(const Fortran::evaluate::Component &cmpt,
                    std::list<const Fortran::evaluate::Component *> &list) {
    if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp))
      list.push_front(&cmpt);
    return std::visit(
        Fortran::common::visitors{
            [&](const Fortran::evaluate::Component &x) {
              if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x)))
                return &cmpt.base();
              return reverseComponents(x, list);
            },
            [&](auto &) { return &cmpt.base(); },
        },
        cmpt.base().u);
  }

  // Return the coordinate of the component reference
  ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
    std::list<const Fortran::evaluate::Component *> list;
    const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
    llvm::SmallVector<mlir::Value> coorArgs;
    ExtValue obj = gen(*base);
    mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
    mlir::Location loc = getLoc();
    auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
    // FIXME: need to thread the LEN type parameters here.
    for (const Fortran::evaluate::Component *field : list) {
      auto recTy = ty.cast<fir::RecordType>();
      const Fortran::semantics::Symbol &sym = getLastSym(*field);
      llvm::StringRef name = toStringRef(sym.name());
      coorArgs.push_back(builder.create<fir::FieldIndexOp>(
          loc, fldTy, name, recTy, fir::getTypeParams(obj)));
      ty = recTy.getType(name);
    }
    // If parent component is referred then it has no coordinate argument.
    if (coorArgs.size() == 0)
      return obj;
    ty = builder.getRefType(ty);
    return fir::factory::componentToExtendedValue(
        builder, loc,
        builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
                                          coorArgs));
  }

  ExtValue gen(const Fortran::evaluate::Component &cmpt) {
    // Components may be pointer or allocatable. In the gen() path, the mutable
    // aspect is lost to simplify handling on the client side. To retain the
    // mutable aspect, genMutableBoxValue should be used.
    return genComponent(cmpt).match(
        [&](const fir::MutableBoxValue &mutableBox) {
          return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox);
        },
        [](auto &box) -> ExtValue { return box; });
  }

  ExtValue genval(const Fortran::evaluate::Component &cmpt) {
    return genLoad(gen(cmpt));
  }

  // Determine the result type after removing `dims` dimensions from the array
  // type `arrTy`
  mlir::Type genSubType(mlir::Type arrTy, unsigned dims) {
    mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy);
    assert(unwrapTy && "must be a pointer or box type");
    auto seqTy = unwrapTy.cast<fir::SequenceType>();
    llvm::ArrayRef<int64_t> shape = seqTy.getShape();
    assert(shape.size() > 0 && "removing columns for sequence sans shape");
    assert(dims <= shape.size() && "removing more columns than exist");
    fir::SequenceType::Shape newBnds;
    // follow Fortran semantics and remove columns (from right)
    std::size_t e = shape.size() - dims;
    for (decltype(e) i = 0; i < e; ++i)
      newBnds.push_back(shape[i]);
    if (!newBnds.empty())
      return fir::SequenceType::get(newBnds, seqTy.getEleTy());
    return seqTy.getEleTy();
  }

  // Generate the code for a Bound value.
  ExtValue genval(const Fortran::semantics::Bound &bound) {
    if (bound.isExplicit()) {
      Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit();
      if (sub.has_value())
        return genval(*sub);
      return genIntegerConstant<8>(builder.getContext(), 1);
    }
    TODO(getLoc(), "non explicit semantics::Bound implementation");
  }

  static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
    for (const Fortran::evaluate::Subscript &sub : aref.subscript())
      if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
        return true;
    return false;
  }

  /// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
  ExtValue genCoordinateOp(const ExtValue &array,
                           const Fortran::evaluate::ArrayRef &aref) {
    mlir::Location loc = getLoc();
    // References to array of rank > 1 with non constant shape that are not
    // fir.box must be collapsed into an offset computation in lowering already.
    // The same is needed with dynamic length character arrays of all ranks.
    mlir::Type baseType =
        fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
    if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
        fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
      if (!array.getBoxOf<fir::BoxValue>())
        return genOffsetAndCoordinateOp(array, aref);
    // Generate a fir.coordinate_of with zero based array indexes.
    llvm::SmallVector<mlir::Value> args;
    for (const auto &subsc : llvm::enumerate(aref.subscript())) {
      ExtValue subVal = genSubscript(subsc.value());
      assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
      mlir::Value val = fir::getBase(subVal);
      mlir::Type ty = val.getType();
      mlir::Value lb = getLBound(array, subsc.index(), ty);
      args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
    }
    mlir::Value base = fir::getBase(array);
    mlir::Type eleTy = fir::dyn_cast_ptrOrBoxEleTy(base.getType());
    if (auto classTy = eleTy.dyn_cast<fir::ClassType>())
      eleTy = classTy.getEleTy();
    auto seqTy = eleTy.cast<fir::SequenceType>();
    assert(args.size() == seqTy.getDimension());
    mlir::Type ty = builder.getRefType(seqTy.getEleTy());
    auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
    return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
  }

  /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
  /// of array indexes.
  /// This generates offset computation from the indexes and length parameters,
  /// and use the offset to access the element with a fir.coordinate_of. This
  /// must only be used if it is not possible to generate a normal
  /// fir.coordinate_of using array indexes (i.e. when the shape information is
  /// unavailable in the IR).
  ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
                                    const Fortran::evaluate::ArrayRef &aref) {
    mlir::Location loc = getLoc();
    mlir::Value addr = fir::getBase(array);
    mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
    auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
    mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
    mlir::Type refTy = builder.getRefType(eleTy);
    mlir::Value base = builder.createConvert(loc, seqTy, addr);
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
    mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
    auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
      return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
    };
    auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
      mlir::Value total = zero;
      assert(arr.getExtents().size() == aref.subscript().size());
      delta = builder.createConvert(loc, idxTy, delta);
      unsigned dim = 0;
      for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
        ExtValue subVal = genSubscript(sub);
        assert(fir::isUnboxedValue(subVal));
        mlir::Value val =
            builder.createConvert(loc, idxTy, fir::getBase(subVal));
        mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
        mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
        mlir::Value prod =
            builder.create<mlir::arith::MulIOp>(loc, delta, diff);
        total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
        if (ext)
          delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
        ++dim;
      }
      mlir::Type origRefTy = refTy;
      if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
        fir::CharacterType chTy =
            fir::factory::CharacterExprHelper::getCharacterType(refTy);
        if (fir::characterWithDynamicLen(chTy)) {
          mlir::MLIRContext *ctx = builder.getContext();
          fir::KindTy kind =
              fir::factory::CharacterExprHelper::getCharacterKind(chTy);
          fir::CharacterType singleTy =
              fir::CharacterType::getSingleton(ctx, kind);
          refTy = builder.getRefType(singleTy);
          mlir::Type seqRefTy =
              builder.getRefType(builder.getVarLenSeqTy(singleTy));
          base = builder.createConvert(loc, seqRefTy, base);
        }
      }
      auto coor = builder.create<fir::CoordinateOp>(
          loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
      // Convert to expected, original type after address arithmetic.
      return builder.createConvert(loc, origRefTy, coor);
    };
    return array.match(
        [&](const fir::ArrayBoxValue &arr) -> ExtValue {
          // FIXME: this check can be removed when slicing is implemented
          if (isSlice(aref))
            fir::emitFatalError(
                getLoc(),
                "slice should be handled in array expression context");
          return genFullDim(arr, one);
        },
        [&](const fir::CharArrayBoxValue &arr) -> ExtValue {
          mlir::Value delta = arr.getLen();
          // If the length is known in the type, fir.coordinate_of will
          // already take the length into account.
          if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
            delta = one;
          return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
        },
        [&](const fir::BoxValue &arr) -> ExtValue {
          // CoordinateOp for BoxValue is not generated here. The dimensions
          // must be kept in the fir.coordinate_op so that potential fir.box
          // strides can be applied by codegen.
          fir::emitFatalError(
              loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
        },
        [&](const auto &) -> ExtValue {
          fir::emitFatalError(loc, "internal: array processing failed");
        });
  }

  /// Lower an ArrayRef to a fir.array_coor.
  ExtValue genArrayCoorOp(const ExtValue &exv,
                          const Fortran::evaluate::ArrayRef &aref) {
    mlir::Location loc = getLoc();
    mlir::Value addr = fir::getBase(exv);
    mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
    mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
    mlir::Type refTy = builder.getRefType(eleTy);
    mlir::IndexType idxTy = builder.getIndexType();
    llvm::SmallVector<mlir::Value> arrayCoorArgs;
    // The ArrayRef is expected to be scalar here, arrays are handled in array
    // expression lowering. So no vector subscript or triplet is expected here.
    for (const auto &sub : aref.subscript()) {
      ExtValue subVal = genSubscript(sub);
      assert(fir::isUnboxedValue(subVal));
      arrayCoorArgs.push_back(
          builder.createConvert(loc, idxTy, fir::getBase(subVal)));
    }
    mlir::Value shape = builder.createShape(loc, exv);
    mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>(
        loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs,
        fir::getTypeParams(exv));
    return fir::factory::arrayElementToExtendedValue(builder, loc, exv,
                                                     elementAddr);
  }

  /// Return the coordinate of the array reference.
  ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
    ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base()))
                                           : gen(aref.base().GetComponent());
    // Check for command-line override to use array_coor op.
    if (generateArrayCoordinate)
      return genArrayCoorOp(base, aref);
    // Otherwise, use coordinate_of op.
    return genCoordinateOp(base, aref);
  }

  /// Return lower bounds of \p box in dimension \p dim. The returned value
  /// has type \ty.
  mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
    assert(box.rank() > 0 && "must be an array");
    mlir::Location loc = getLoc();
    mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
    mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
    return builder.createConvert(loc, ty, lb);
  }

  ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
    return genLoad(gen(aref));
  }

  ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
    return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
        .genAddr(coref);
  }

  ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
    return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
        .genValue(coref);
  }

  template <typename A>
  ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
    return std::visit([&](const auto &x) { return gen(x); }, des.u);
  }
  template <typename A>
  ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
    return std::visit([&](const auto &x) { return genval(x); }, des.u);
  }

  mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
    if (dt.category() != Fortran::common::TypeCategory::Derived)
      return converter.genType(dt.category(), dt.kind());
    if (dt.IsUnlimitedPolymorphic())
      return mlir::NoneType::get(&converter.getMLIRContext());
    return converter.genType(dt.GetDerivedTypeSpec());
  }

  /// Lower a function reference
  template <typename A>
  ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
    if (!funcRef.GetType().has_value())
      fir::emitFatalError(getLoc(), "a function must have a type");
    mlir::Type resTy = genType(*funcRef.GetType());
    return genProcedureRef(funcRef, {resTy});
  }

  /// Lower function call `funcRef` and return a reference to the resultant
  /// value. This is required for lowering expressions such as `f1(f2(v))`.
  template <typename A>
  ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
    ExtValue retVal = genFunctionRef(funcRef);
    mlir::Type resultType = converter.genType(toEvExpr(funcRef));
    return placeScalarValueInMemory(builder, getLoc(), retVal, resultType);
  }

  /// Helper to lower intrinsic arguments for inquiry intrinsic.
  ExtValue
  lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
    if (Fortran::evaluate::IsAllocatableOrPointerObject(
            expr, converter.getFoldingContext()))
      return genMutableBoxValue(expr);
    /// Do not create temps for array sections whose properties only need to be
    /// inquired: create a descriptor that will be inquired.
    if (Fortran::evaluate::IsVariable(expr) && isArray(expr) &&
        !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr))
      return lowerIntrinsicArgumentAsBox(expr);
    return gen(expr);
  }

  /// Helper to lower intrinsic arguments to a fir::BoxValue.
  /// It preserves all the non default lower bounds/non deferred length
  /// parameter information.
  ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
    mlir::Location loc = getLoc();
    ExtValue exv = genBoxArg(expr);
    auto exvTy = fir::getBase(exv).getType();
    if (exvTy.isa<mlir::FunctionType>()) {
      auto boxProcTy = builder.getBoxProcType(exvTy.cast<mlir::FunctionType>());
      return builder.create<fir::EmboxProcOp>(loc, boxProcTy,
                                              fir::getBase(exv));
    }
    mlir::Value box = builder.createBox(loc, exv, exv.isPolymorphic());
    if (Fortran::lower::isParentComponent(expr)) {
      fir::ExtendedValue newExv =
          Fortran::lower::updateBoxForParentComponent(converter, box, expr);
      box = fir::getBase(newExv);
    }
    return fir::BoxValue(
        box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
        fir::factory::getNonDeferredLenParams(exv));
  }

  /// Generate a call to a Fortran intrinsic or intrinsic module procedure.
  ExtValue genIntrinsicRef(
      const Fortran::evaluate::ProcedureRef &procRef,
      std::optional<mlir::Type> resultType,
      std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
          std::nullopt) {
    llvm::SmallVector<ExtValue> operands;

    std::string name =
        intrinsic ? intrinsic->name
                  : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
    mlir::Location loc = getLoc();
    if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
                         procRef, *intrinsic, converter)) {
      using ExvAndPresence = std::pair<ExtValue, std::optional<mlir::Value>>;
      llvm::SmallVector<ExvAndPresence, 4> operands;
      auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
        ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr);
        mlir::Value isPresent =
            genActualIsPresentTest(builder, loc, optionalArg);
        operands.emplace_back(optionalArg, isPresent);
      };
      auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
                                 fir::LowerIntrinsicArgAs lowerAs) {
        switch (lowerAs) {
        case fir::LowerIntrinsicArgAs::Value:
          operands.emplace_back(genval(expr), std::nullopt);
          return;
        case fir::LowerIntrinsicArgAs::Addr:
          operands.emplace_back(gen(expr), std::nullopt);
          return;
        case fir::LowerIntrinsicArgAs::Box:
          operands.emplace_back(lowerIntrinsicArgumentAsBox(expr),
                                std::nullopt);
          return;
        case fir::LowerIntrinsicArgAs::Inquired:
          operands.emplace_back(lowerIntrinsicArgumentAsInquired(expr),
                                std::nullopt);
          return;
        }
      };
      Fortran::lower::prepareCustomIntrinsicArgument(
          procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg,
          converter);

      auto getArgument = [&](std::size_t i, bool loadArg) -> ExtValue {
        if (loadArg && fir::conformsWithPassByRef(
                           fir::getBase(operands[i].first).getType()))
          return genLoad(operands[i].first);
        return operands[i].first;
      };
      auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> {
        return operands[i].second;
      };
      return Fortran::lower::lowerCustomIntrinsic(
          builder, loc, name, resultType, isPresent, getArgument,
          operands.size(), stmtCtx);
    }

    const fir::IntrinsicArgumentLoweringRules *argLowering =
        fir::getIntrinsicArgumentLowering(name);
    for (const auto &arg : llvm::enumerate(procRef.arguments())) {
      auto *expr =
          Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());

      if (!expr && arg.value() && arg.value()->GetAssumedTypeDummy()) {
        // Assumed type optional.
        const Fortran::evaluate::Symbol *assumedTypeSym =
            arg.value()->GetAssumedTypeDummy();
        auto symBox = symMap.lookupSymbol(*assumedTypeSym);
        ExtValue exv =
            converter.getSymbolExtendedValue(*assumedTypeSym, &symMap);
        if (argLowering) {
          fir::ArgLoweringRule argRules =
              fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
          // Note: usages of TYPE(*) is limited by C710 but C_LOC and
          // IS_CONTIGUOUS may require an assumed size TYPE(*) to be passed to
          // the intrinsic library utility as a fir.box.
          if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box &&
              !fir::getBase(exv).getType().isa<fir::BaseBoxType>()) {
            operands.emplace_back(
                fir::factory::createBoxValue(builder, loc, exv));
            continue;
          }
        }
        operands.emplace_back(std::move(exv));
        continue;
      }
      if (!expr) {
        // Absent optional.
        operands.emplace_back(fir::getAbsentIntrinsicArgument());
        continue;
      }
      if (!argLowering) {
        // No argument lowering instruction, lower by value.
        operands.emplace_back(genval(*expr));
        continue;
      }
      // Ad-hoc argument lowering handling.
      fir::ArgLoweringRule argRules =
          fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
      if (argRules.handleDynamicOptional &&
          Fortran::evaluate::MayBePassedAsAbsentOptional(
              *expr, converter.getFoldingContext())) {
        ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
        mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
        switch (argRules.lowerAs) {
        case fir::LowerIntrinsicArgAs::Value:
          operands.emplace_back(
              genOptionalValue(builder, loc, optional, isPresent));
          continue;
        case fir::LowerIntrinsicArgAs::Addr:
          operands.emplace_back(
              genOptionalAddr(builder, loc, optional, isPresent));
          continue;
        case fir::LowerIntrinsicArgAs::Box:
          operands.emplace_back(
              genOptionalBox(builder, loc, optional, isPresent));
          continue;
        case fir::LowerIntrinsicArgAs::Inquired:
          operands.emplace_back(optional);
          continue;
        }
        llvm_unreachable("bad switch");
      }
      switch (argRules.lowerAs) {
      case fir::LowerIntrinsicArgAs::Value:
        operands.emplace_back(genval(*expr));
        continue;
      case fir::LowerIntrinsicArgAs::Addr:
        operands.emplace_back(gen(*expr));
        continue;
      case fir::LowerIntrinsicArgAs::Box:
        operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
        continue;
      case fir::LowerIntrinsicArgAs::Inquired:
        operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
        continue;
      }
      llvm_unreachable("bad switch");
    }
    // Let the intrinsic library lower the intrinsic procedure call
    return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
                                            operands, stmtCtx);
  }

  /// helper to detect statement functions
  static bool
  isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
    if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
      if (const auto *details =
              symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
        return details->stmtFunction().has_value();
    return false;
  }

  /// Generate Statement function calls
  ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) {
    const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
    assert(symbol && "expected symbol in ProcedureRef of statement functions");
    const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();

    // Statement functions have their own scope, we just need to associate
    // the dummy symbols to argument expressions. They are no
    // optional/alternate return arguments. Statement functions cannot be
    // recursive (directly or indirectly) so it is safe to add dummy symbols to
    // the local map here.
    symMap.pushScope();
    for (auto [arg, bind] :
         llvm::zip(details.dummyArgs(), procRef.arguments())) {
      assert(arg && "alternate return in statement function");
      assert(bind && "optional argument in statement function");
      const auto *expr = bind->UnwrapExpr();
      // TODO: assumed type in statement function, that surprisingly seems
      // allowed, probably because nobody thought of restricting this usage.
      // gfortran/ifort compiles this.
      assert(expr && "assumed type used as statement function argument");
      // As per Fortran 2018 C1580, statement function arguments can only be
      // scalars, so just pass the box with the address. The only care is to
      // to use the dummy character explicit length if any instead of the
      // actual argument length (that can be bigger).
      if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType())
        if (type->category() == Fortran::semantics::DeclTypeSpec::Character)
          if (const Fortran::semantics::MaybeIntExpr &lenExpr =
                  type->characterTypeSpec().length().GetExplicit()) {
            mlir::Value len = fir::getBase(genval(*lenExpr));
            // F2018 7.4.4.2 point 5.
            len = fir::factory::genMaxWithZero(builder, getLoc(), len);
            symMap.addSymbol(*arg,
                             replaceScalarCharacterLength(gen(*expr), len));
            continue;
          }
      symMap.addSymbol(*arg, gen(*expr));
    }

    // Explicitly map statement function host associated symbols to their
    // parent scope lowered symbol box.
    for (const Fortran::semantics::SymbolRef &sym :
         Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
      if (const auto *details =
              sym->detailsIf<Fortran::semantics::HostAssocDetails>())
        if (!symMap.lookupSymbol(*sym))
          symMap.addSymbol(*sym, gen(details->symbol()));

    ExtValue result = genval(details.stmtFunction().value());
    LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n');
    symMap.popScope();
    return result;
  }

  /// Create a contiguous temporary array with the same shape,
  /// length parameters and type as mold. It is up to the caller to deallocate
  /// the temporary.
  ExtValue genArrayTempFromMold(const ExtValue &mold,
                                llvm::StringRef tempName) {
    mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
    assert(type && "expected descriptor or memory type");
    mlir::Location loc = getLoc();
    llvm::SmallVector<mlir::Value> extents =
        fir::factory::getExtents(loc, builder, mold);
    llvm::SmallVector<mlir::Value> allocMemTypeParams =
        fir::getTypeParams(mold);
    mlir::Value charLen;
    mlir::Type elementType = fir::unwrapSequenceType(type);
    if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
      charLen = allocMemTypeParams.empty()
                    ? fir::factory::readCharLen(builder, loc, mold)
                    : allocMemTypeParams[0];
      if (charType.hasDynamicLen() && allocMemTypeParams.empty())
        allocMemTypeParams.push_back(charLen);
    } else if (fir::hasDynamicSize(elementType)) {
      TODO(loc, "creating temporary for derived type with length parameters");
    }

    mlir::Value temp = builder.create<fir::AllocMemOp>(
        loc, type, tempName, allocMemTypeParams, extents);
    if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
      return fir::CharArrayBoxValue{temp, charLen, extents};
    return fir::ArrayBoxValue{temp, extents};
  }

  /// Copy \p source array into \p dest array. Both arrays must be
  /// conforming, but neither array must be contiguous.
  void genArrayCopy(ExtValue dest, ExtValue source) {
    return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
  }

  /// Lower a non-elemental procedure reference and read allocatable and pointer
  /// results into normal values.
  ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
                           std::optional<mlir::Type> resultType) {
    ExtValue res = genRawProcedureRef(procRef, resultType);
    // In most contexts, pointers and allocatable do not appear as allocatable
    // or pointer variable on the caller side (see 8.5.3 note 1 for
    // allocatables). The few context where this can happen must call
    // genRawProcedureRef directly.
    if (const auto *box = res.getBoxOf<fir::MutableBoxValue>())
      return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
    return res;
  }

  /// Like genExtAddr, but ensure the address returned is a temporary even if \p
  /// expr is variable inside parentheses.
  ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
    // In general, genExtAddr might not create a temp for variable inside
    // parentheses to avoid creating array temporary in sub-expressions. It only
    // ensures the sub-expression is not re-associated with other parts of the
    // expression. In the call semantics, there is a difference between expr and
    // variable (see R1524). For expressions, a variable storage must not be
    // argument associated since it could be modified inside the call, or the
    // variable could also be modified by other means during the call.
    if (!isParenthesizedVariable(expr))
      return genExtAddr(expr);
    if (expr.Rank() > 0)
      return asArray(expr);
    mlir::Location loc = getLoc();
    return genExtValue(expr).match(
        [&](const fir::CharBoxValue &boxChar) -> ExtValue {
          return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(
              boxChar);
        },
        [&](const fir::UnboxedValue &v) -> ExtValue {
          mlir::Type type = v.getType();
          mlir::Value value = v;
          if (fir::isa_ref_type(type))
            value = builder.create<fir::LoadOp>(loc, value);
          mlir::Value temp = builder.createTemporary(loc, value.getType());
          builder.create<fir::StoreOp>(loc, value, temp);
          return temp;
        },
        [&](const fir::BoxValue &x) -> ExtValue {
          // Derived type scalar that may be polymorphic.
          if (fir::isPolymorphicType(fir::getBase(x).getType()))
            TODO(loc, "polymorphic array temporary");
          assert(!x.hasRank() && x.isDerived());
          if (x.isDerivedWithLenParameters())
            fir::emitFatalError(
                loc, "making temps for derived type with length parameters");
          // TODO: polymorphic aspects should be kept but for now the temp
          // created always has the declared type.
          mlir::Value var =
              fir::getBase(fir::factory::readBoxValue(builder, loc, x));
          auto value = builder.create<fir::LoadOp>(loc, var);
          mlir::Value temp = builder.createTemporary(loc, value.getType());
          builder.create<fir::StoreOp>(loc, value, temp);
          return temp;
        },
        [&](const fir::PolymorphicValue &p) -> ExtValue {
          TODO(loc, "creating polymorphic temporary");
        },
        [&](const auto &) -> ExtValue {
          fir::emitFatalError(loc, "expr is not a scalar value");
        });
  }

  /// Helper structure to track potential copy-in of non contiguous variable
  /// argument into a contiguous temp. It is used to deallocate the temp that
  /// may have been created as well as to the copy-out from the temp to the
  /// variable after the call.
  struct CopyOutPair {
    ExtValue var;
    ExtValue temp;
    // Flag to indicate if the argument may have been modified by the
    // callee, in which case it must be copied-out to the variable.
    bool argMayBeModifiedByCall;
    // Optional boolean value that, if present and false, prevents
    // the copy-out and temp deallocation.
    std::optional<mlir::Value> restrictCopyAndFreeAtRuntime;
  };
  using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;

  /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
  /// not based on fir.box.
  /// This will lose any non contiguous stride information and dynamic type and
  /// should only be called if \p exv is known to be contiguous or if its base
  /// address will be replaced by a contiguous one. If \p exv is not a
  /// fir::BoxValue, this is a no-op.
  ExtValue readIfBoxValue(const ExtValue &exv) {
    if (const auto *box = exv.getBoxOf<fir::BoxValue>())
      return fir::factory::readBoxValue(builder, getLoc(), *box);
    return exv;
  }

  /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
  /// creation of the temp and copy-in can be made conditional at runtime by
  /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
  /// the temp and copy will only be made if the value is true at runtime).
  ExtValue genCopyIn(const ExtValue &actualArg,
                     const Fortran::lower::CallerInterface::PassedEntity &arg,
                     CopyOutPairs &copyOutPairs,
                     std::optional<mlir::Value> restrictCopyAtRuntime,
                     bool byValue) {
    const bool doCopyOut = !byValue && arg.mayBeModifiedByCall();
    llvm::StringRef tempName = byValue ? ".copy" : ".copyinout";
    mlir::Location loc = getLoc();
    bool isActualArgBox = fir::isa_box_type(fir::getBase(actualArg).getType());
    mlir::Value isContiguousResult;
    mlir::Type addrType = fir::HeapType::get(
        fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));

    if (isActualArgBox) {
      // Check at runtime if the argument is contiguous so no copy is needed.
      isContiguousResult =
          fir::runtime::genIsContiguous(builder, loc, fir::getBase(actualArg));
    }

    auto doCopyIn = [&]() -> ExtValue {
      ExtValue temp = genArrayTempFromMold(actualArg, tempName);
      if (!arg.mayBeReadByCall()) {
        return temp;
      }
      if (!isActualArgBox || inlineCopyInOutForBoxes) {
        genArrayCopy(temp, actualArg);
        return temp;
      }

      // Generate Assign() call to copy data from the actualArg
      // to a temporary.
      mlir::Value destBox = fir::getBase(builder.createBox(loc, temp));
      mlir::Value boxRef = builder.createTemporary(loc, destBox.getType());
      builder.create<fir::StoreOp>(loc, destBox, boxRef);
      fir::runtime::genAssign(builder, loc, boxRef, fir::getBase(actualArg));
      return temp;
    };

    auto noCopy = [&]() {
      mlir::Value box = fir::getBase(actualArg);
      mlir::Value boxAddr = builder.create<fir::BoxAddrOp>(loc, addrType, box);
      builder.create<fir::ResultOp>(loc, boxAddr);
    };

    auto combinedCondition = [&]() {
      if (isActualArgBox) {
        mlir::Value zero =
            builder.createIntegerConstant(loc, builder.getI1Type(), 0);
        mlir::Value notContiguous = builder.create<mlir::arith::CmpIOp>(
            loc, mlir::arith::CmpIPredicate::eq, isContiguousResult, zero);
        if (!restrictCopyAtRuntime) {
          restrictCopyAtRuntime = notContiguous;
        } else {
          mlir::Value cond = builder.create<mlir::arith::AndIOp>(
              loc, *restrictCopyAtRuntime, notContiguous);
          restrictCopyAtRuntime = cond;
        }
      }
    };

    if (!restrictCopyAtRuntime) {
      if (isActualArgBox) {
        // isContiguousResult = genIsContiguousCall();
        mlir::Value addr =
            builder
                .genIfOp(loc, {addrType}, isContiguousResult,
                         /*withElseRegion=*/true)
                .genThen([&]() { noCopy(); })
                .genElse([&] {
                  ExtValue temp = doCopyIn();
                  builder.create<fir::ResultOp>(loc, fir::getBase(temp));
                })
                .getResults()[0];
        fir::ExtendedValue temp =
            fir::substBase(readIfBoxValue(actualArg), addr);
        combinedCondition();
        copyOutPairs.emplace_back(
            CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
        return temp;
      }

      ExtValue temp = doCopyIn();
      copyOutPairs.emplace_back(CopyOutPair{actualArg, temp, doCopyOut, {}});
      return temp;
    }

    // Otherwise, need to be careful to only copy-in if allowed at runtime.
    mlir::Value addr =
        builder
            .genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
                     /*withElseRegion=*/true)
            .genThen([&]() {
              if (isActualArgBox) {
                // isContiguousResult = genIsContiguousCall();
                // Avoid copyin if the argument is contiguous at runtime.
                mlir::Value addr1 =
                    builder
                        .genIfOp(loc, {addrType}, isContiguousResult,
                                 /*withElseRegion=*/true)
                        .genThen([&]() { noCopy(); })
                        .genElse([&]() {
                          ExtValue temp = doCopyIn();
                          builder.create<fir::ResultOp>(loc,
                                                        fir::getBase(temp));
                        })
                        .getResults()[0];
                builder.create<fir::ResultOp>(loc, addr1);
              } else {
                ExtValue temp = doCopyIn();
                builder.create<fir::ResultOp>(loc, fir::getBase(temp));
              }
            })
            .genElse([&]() {
              mlir::Value nullPtr = builder.createNullConstant(loc, addrType);
              builder.create<fir::ResultOp>(loc, nullPtr);
            })
            .getResults()[0];
    // Associate the temp address with actualArg lengths and extents if a
    // temporary is generated. Otherwise the same address is associated.
    fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
    combinedCondition();
    copyOutPairs.emplace_back(
        CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
    return temp;
  }

  /// Generate copy-out if needed and free the temporary for an argument that
  /// has been copied-in into a contiguous temp.
  void genCopyOut(const CopyOutPair &copyOutPair) {
    mlir::Location loc = getLoc();
    bool isActualArgBox =
        fir::isa_box_type(fir::getBase(copyOutPair.var).getType());
    auto doCopyOut = [&]() {
      if (!copyOutPair.argMayBeModifiedByCall) {
        return;
      }
      if (!isActualArgBox || inlineCopyInOutForBoxes) {
        genArrayCopy(copyOutPair.var, copyOutPair.temp);
        return;
      }
      // Generate Assign() call to copy data from the temporary
      // to the actualArg. Note that in case the actual argument
      // is ALLOCATABLE/POINTER the Assign() implementation
      // should not engage its reallocation, because the temporary
      // is rank, shape and type compatible with it.
      mlir::Value srcBox =
          fir::getBase(builder.createBox(loc, copyOutPair.temp));
      mlir::Value destBox =
          fir::getBase(builder.createBox(loc, copyOutPair.var));
      mlir::Value destBoxRef = builder.createTemporary(loc, destBox.getType());
      builder.create<fir::StoreOp>(loc, destBox, destBoxRef);
      fir::runtime::genAssign(builder, loc, destBoxRef, srcBox);
    };
    if (!copyOutPair.restrictCopyAndFreeAtRuntime) {
      doCopyOut();
      builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
      return;
    }

    builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime)
        .genThen([&]() {
          doCopyOut();
          builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
        })
        .end();
  }

  /// Lower a designator to a variable that may be absent at runtime into an
  /// ExtendedValue where all the properties (base address, shape and length
  /// parameters) can be safely read (set to zero if not present). It also
  /// returns a boolean mlir::Value telling if the variable is present at
  /// runtime.
  /// This is useful to later be able to do conditional copy-in/copy-out
  /// or to retrieve the base address without having to deal with the case
  /// where the actual may be an absent fir.box.
  std::pair<ExtValue, mlir::Value>
  prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) {
    mlir::Location loc = getLoc();
    if (Fortran::evaluate::IsAllocatableOrPointerObject(
            expr, converter.getFoldingContext())) {
      // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
      // it is as if the argument was absent. The main care here is to
      // not do a copy-in/copy-out because the temp address, even though
      // pointing to a null size storage, would not be a nullptr and
      // therefore the argument would not be considered absent on the
      // callee side. Note: if wholeSymbol is optional, it cannot be
      // absent as per 15.5.2.12 point 7. and 8. We rely on this to
      // un-conditionally read the allocatable/pointer descriptor here.
      fir::MutableBoxValue mutableBox = genMutableBoxValue(expr);
      mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest(
          builder, loc, mutableBox);
      fir::ExtendedValue actualArg =
          fir::factory::genMutableBoxRead(builder, loc, mutableBox);
      return {actualArg, isPresent};
    }
    // Absent descriptor cannot be read. To avoid any issue in
    // copy-in/copy-out, and when retrieving the address/length
    // create an descriptor pointing to a null address here if the
    // fir.box is absent.
    ExtValue actualArg = gen(expr);
    mlir::Value actualArgBase = fir::getBase(actualArg);
    mlir::Value isPresent = builder.create<fir::IsPresentOp>(
        loc, builder.getI1Type(), actualArgBase);
    if (!actualArgBase.getType().isa<fir::BoxType>())
      return {actualArg, isPresent};
    ExtValue safeToReadBox =
        absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent);
    return {safeToReadBox, isPresent};
  }

  /// Create a temp on the stack for scalar actual arguments that may be absent
  /// at runtime, but must be passed via a temp if they are presents.
  fir::ExtendedValue
  createScalarTempForArgThatMayBeAbsent(ExtValue actualArg,
                                        mlir::Value isPresent) {
    mlir::Location loc = getLoc();
    mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType());
    if (fir::isDerivedWithLenParameters(actualArg))
      TODO(loc, "parametrized derived type optional scalar argument copy-in");
    if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) {
      mlir::Value len = charBox->getLen();
      mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0);
      len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero);
      mlir::Value temp = builder.createTemporary(
          loc, type, /*name=*/{},
          /*shape=*/{}, mlir::ValueRange{len},
          llvm::ArrayRef<mlir::NamedAttribute>{
              Fortran::lower::getAdaptToByRefAttr(builder)});
      return fir::CharBoxValue{temp, len};
    }
    assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) &&
           "must be simple scalar");
    return builder.createTemporary(
        loc, type,
        llvm::ArrayRef<mlir::NamedAttribute>{
            Fortran::lower::getAdaptToByRefAttr(builder)});
  }

  template <typename A>
  bool isCharacterType(const A &exp) {
    if (auto type = exp.GetType())
      return type->category() == Fortran::common::TypeCategory::Character;
    return false;
  }

  /// Lower an actual argument that must be passed via an address.
  /// This generates of the copy-in/copy-out if the actual is not contiguous, or
  /// the creation of the temp if the actual is a variable and \p byValue is
  /// true. It handles the cases where the actual may be absent, and all of the
  /// copying has to be conditional at runtime.
  /// If the actual argument may be dynamically absent, return an additional
  /// boolean mlir::Value that if true means that the actual argument is
  /// present.
  std::pair<ExtValue, std::optional<mlir::Value>>
  prepareActualToBaseAddressLike(
      const Fortran::lower::SomeExpr &expr,
      const Fortran::lower::CallerInterface::PassedEntity &arg,
      CopyOutPairs &copyOutPairs, bool byValue) {
    mlir::Location loc = getLoc();
    const bool isArray = expr.Rank() > 0;
    const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr);
    // It must be possible to modify VALUE arguments on the callee side, even
    // if the actual argument is a literal or named constant. Hence, the
    // address of static storage must not be passed in that case, and a copy
    // must be made even if this is not a variable.
    // Note: isArray should be used here, but genBoxArg already creates copies
    // for it, so do not duplicate the copy until genBoxArg behavior is changed.
    const bool isStaticConstantByValue =
        byValue && Fortran::evaluate::IsActuallyConstant(expr) &&
        (isCharacterType(expr));
    const bool variableNeedsCopy =
        actualArgIsVariable &&
        (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous(
                                    expr, converter.getFoldingContext())));
    const bool needsCopy = isStaticConstantByValue || variableNeedsCopy;
    auto [argAddr, isPresent] =
        [&]() -> std::pair<ExtValue, std::optional<mlir::Value>> {
      if (!actualArgIsVariable && !needsCopy)
        // Actual argument is not a variable. Make sure a variable address is
        // not passed.
        return {genTempExtAddr(expr), std::nullopt};
      ExtValue baseAddr;
      if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
                                  expr, converter.getFoldingContext())) {
        auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr);
        const ExtValue &actualArg = actualArgBind;
        if (!needsCopy)
          return {actualArg, isPresent};

        if (isArray)
          return {genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue),
                  isPresent};
        // Scalars, create a temp, and use it conditionally at runtime if
        // the argument is present.
        ExtValue temp =
            createScalarTempForArgThatMayBeAbsent(actualArg, isPresent);
        mlir::Type tempAddrTy = fir::getBase(temp).getType();
        mlir::Value selectAddr =
            builder
                .genIfOp(loc, {tempAddrTy}, isPresent,
                         /*withElseRegion=*/true)
                .genThen([&]() {
                  fir::factory::genScalarAssignment(builder, loc, temp,
                                                    actualArg);
                  builder.create<fir::ResultOp>(loc, fir::getBase(temp));
                })
                .genElse([&]() {
                  mlir::Value absent =
                      builder.create<fir::AbsentOp>(loc, tempAddrTy);
                  builder.create<fir::ResultOp>(loc, absent);
                })
                .getResults()[0];
        return {fir::substBase(temp, selectAddr), isPresent};
      }
      // Actual cannot be absent, the actual argument can safely be
      // copied-in/copied-out without any care if needed.
      if (isArray) {
        ExtValue box = genBoxArg(expr);
        if (needsCopy)
          return {genCopyIn(box, arg, copyOutPairs,
                            /*restrictCopyAtRuntime=*/std::nullopt, byValue),
                  std::nullopt};
        // Contiguous: just use the box we created above!
        // This gets "unboxed" below, if needed.
        return {box, std::nullopt};
      }
      // Actual argument is a non-optional, non-pointer, non-allocatable
      // scalar.
      ExtValue actualArg = genExtAddr(expr);
      if (needsCopy)
        return {createInMemoryScalarCopy(builder, loc, actualArg),
                std::nullopt};
      return {actualArg, std::nullopt};
    }();
    // Scalar and contiguous expressions may be lowered to a fir.box,
    // either to account for potential polymorphism, or because lowering
    // did not account for some contiguity hints.
    // Here, polymorphism does not matter (an entity of the declared type
    // is passed, not one of the dynamic type), and the expr is known to
    // be simply contiguous, so it is safe to unbox it and pass the
    // address without making a copy.
    return {readIfBoxValue(argAddr), isPresent};
  }

  /// Lower a non-elemental procedure reference.
  ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
                              std::optional<mlir::Type> resultType) {
    mlir::Location loc = getLoc();
    if (isElementalProcWithArrayArgs(procRef))
      fir::emitFatalError(loc, "trying to lower elemental procedure with array "
                               "arguments as normal procedure");

    if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
            procRef.proc().GetSpecificIntrinsic())
      return genIntrinsicRef(procRef, resultType, *intrinsic);

    if (Fortran::lower::isIntrinsicModuleProcRef(procRef))
      return genIntrinsicRef(procRef, resultType);

    if (isStatementFunctionCall(procRef))
      return genStmtFunctionRef(procRef);

    Fortran::lower::CallerInterface caller(procRef, converter);
    using PassBy = Fortran::lower::CallerInterface::PassEntityBy;

    llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
    // List of <var, temp> where temp must be copied into var after the call.
    CopyOutPairs copyOutPairs;

    mlir::FunctionType callSiteType = caller.genFunctionType();

    // Lower the actual arguments and map the lowered values to the dummy
    // arguments.
    for (const Fortran::lower::CallInterface<
             Fortran::lower::CallerInterface>::PassedEntity &arg :
         caller.getPassedArguments()) {
      const auto *actual = arg.entity;
      mlir::Type argTy = callSiteType.getInput(arg.firArgument);
      if (!actual) {
        // Optional dummy argument for which there is no actual argument.
        caller.placeInput(arg, builder.genAbsentOp(loc, argTy));
        continue;
      }
      const auto *expr = actual->UnwrapExpr();
      if (!expr)
        TODO(loc, "assumed type actual argument");

      if (arg.passBy == PassBy::Value) {
        ExtValue argVal = genval(*expr);
        if (!fir::isUnboxedValue(argVal))
          fir::emitFatalError(
              loc, "internal error: passing non trivial value by value");
        caller.placeInput(arg, fir::getBase(argVal));
        continue;
      }

      if (arg.passBy == PassBy::MutableBox) {
        if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
                *expr)) {
          // If expr is NULL(), the mutableBox created must be a deallocated
          // pointer with the dummy argument characteristics (see table 16.5
          // in Fortran 2018 standard).
          // No length parameters are set for the created box because any non
          // deferred type parameters of the dummy will be evaluated on the
          // callee side, and it is illegal to use NULL without a MOLD if any
          // dummy length parameters are assumed.
          mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
          assert(boxTy && boxTy.isa<fir::BaseBoxType>() &&
                 "must be a fir.box type");
          mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
          mlir::Value nullBox = fir::factory::createUnallocatedBox(
              builder, loc, boxTy, /*nonDeferredParams=*/{});
          builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
          caller.placeInput(arg, boxStorage);
          continue;
        }
        if (fir::isPointerType(argTy) &&
            !Fortran::evaluate::IsObjectPointer(
                *expr, converter.getFoldingContext())) {
          // Passing a non POINTER actual argument to a POINTER dummy argument.
          // Create a pointer of the dummy argument type and assign the actual
          // argument to it.
          mlir::Value irBox =
              builder.createTemporary(loc, fir::unwrapRefType(argTy));
          // Non deferred parameters will be evaluated on the callee side.
          fir::MutableBoxValue pointer(irBox,
                                       /*nonDeferredParams=*/mlir::ValueRange{},
                                       /*mutableProperties=*/{});
          Fortran::lower::associateMutableBox(converter, loc, pointer, *expr,
                                              /*lbounds=*/std::nullopt,
                                              stmtCtx);
          caller.placeInput(arg, irBox);
          continue;
        }
        // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
        fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
        mlir::Value irBox =
            fir::factory::getMutableIRBox(builder, loc, mutableBox);
        caller.placeInput(arg, irBox);
        if (arg.mayBeModifiedByCall())
          mutableModifiedByCall.emplace_back(std::move(mutableBox));
        if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
            Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) {
          if (mutableBox.isDerived() || mutableBox.isPolymorphic() ||
              mutableBox.isUnlimitedPolymorphic()) {
            mlir::Value isAlloc = fir::factory::genIsAllocatedOrAssociatedTest(
                builder, loc, mutableBox);
            builder.genIfThen(loc, isAlloc)
                .genThen([&]() {
                  Fortran::lower::genDeallocateBox(converter, mutableBox, loc);
                })
                .end();
          } else {
            Fortran::lower::genDeallocateBox(converter, mutableBox, loc);
          }
        }
        continue;
      }
      if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar ||
          arg.passBy == PassBy::BaseAddressValueAttribute ||
          arg.passBy == PassBy::CharBoxValueAttribute) {
        const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute ||
                             arg.passBy == PassBy::CharBoxValueAttribute;
        ExtValue argAddr =
            prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue)
                .first;
        if (arg.passBy == PassBy::BaseAddress ||
            arg.passBy == PassBy::BaseAddressValueAttribute) {
          caller.placeInput(arg, fir::getBase(argAddr));
        } else {
          assert(arg.passBy == PassBy::BoxChar ||
                 arg.passBy == PassBy::CharBoxValueAttribute);
          auto helper = fir::factory::CharacterExprHelper{builder, loc};
          auto boxChar = argAddr.match(
              [&](const fir::CharBoxValue &x) -> mlir::Value {
                // If a character procedure was passed instead, handle the
                // mismatch.
                auto funcTy =
                    x.getAddr().getType().dyn_cast<mlir::FunctionType>();
                if (funcTy && funcTy.getNumResults() == 1 &&
                    funcTy.getResult(0).isa<fir::BoxCharType>()) {
                  auto boxTy = funcTy.getResult(0).cast<fir::BoxCharType>();
                  mlir::Value ref = builder.createConvert(
                      loc, builder.getRefType(boxTy.getEleTy()), x.getAddr());
                  auto len = builder.create<fir::UndefOp>(
                      loc, builder.getCharacterLengthType());
                  return builder.create<fir::EmboxCharOp>(loc, boxTy, ref, len);
                }
                return helper.createEmbox(x);
              },
              [&](const fir::CharArrayBoxValue &x) {
                return helper.createEmbox(x);
              },
              [&](const auto &x) -> mlir::Value {
                // Fortran allows an actual argument of a completely different
                // type to be passed to a procedure expecting a CHARACTER in the
                // dummy argument position. When this happens, the data pointer
                // argument is simply assumed to point to CHARACTER data and the
                // LEN argument used is garbage. Simulate this behavior by
                // free-casting the base address to be a !fir.char reference and
                // setting the LEN argument to undefined. What could go wrong?
                auto dataPtr = fir::getBase(x);
                assert(!dataPtr.getType().template isa<fir::BoxType>());
                return builder.convertWithSemantics(
                    loc, argTy, dataPtr,
                    /*allowCharacterConversion=*/true);
              });
          caller.placeInput(arg, boxChar);
        }
      } else if (arg.passBy == PassBy::Box) {
        if (arg.mustBeMadeContiguous() &&
            !Fortran::evaluate::IsSimplyContiguous(
                *expr, converter.getFoldingContext())) {
          // If the expression is a PDT, or a polymorphic entity, or an assumed
          // rank, it cannot currently be safely handled by
          // prepareActualToBaseAddressLike that is intended to prepare
          // arguments that can be passed as simple base address.
          if (auto dynamicType = expr->GetType())
            if (dynamicType->IsPolymorphic())
              TODO(loc, "passing a polymorphic entity to an OPTIONAL "
                        "CONTIGUOUS argument");
          if (fir::isRecordWithTypeParameters(
                  fir::unwrapSequenceType(fir::unwrapPassByRefType(argTy))))
            TODO(loc, "passing to an OPTIONAL CONTIGUOUS derived type argument "
                      "with length parameters");
          if (Fortran::evaluate::IsAssumedRank(*expr))
            TODO(loc, "passing an assumed rank entity to an OPTIONAL "
                      "CONTIGUOUS argument");
          // Assumed shape VALUE are currently TODO in the call interface
          // lowering.
          const bool byValue = false;
          auto [argAddr, isPresentValue] =
              prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue);
          mlir::Value box = builder.createBox(loc, argAddr);
          if (isPresentValue) {
            mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
            auto absent = builder.create<fir::AbsentOp>(loc, argTy);
            caller.placeInput(arg,
                              builder.create<mlir::arith::SelectOp>(
                                  loc, *isPresentValue, convertedBox, absent));
          } else {
            caller.placeInput(arg, builder.createBox(loc, argAddr));
          }

        } else if (arg.isOptional() &&
                   Fortran::evaluate::IsAllocatableOrPointerObject(
                       *expr, converter.getFoldingContext())) {
          // Before lowering to an address, handle the allocatable/pointer
          // actual argument to optional fir.box dummy. It is legal to pass
          // unallocated/disassociated entity to an optional. In this case, an
          // absent fir.box must be created instead of a fir.box with a null
          // value (Fortran 2018 15.5.2.12 point 1).
          //
          // Note that passing an absent allocatable to a non-allocatable
          // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
          // nothing has to be done to generate an absent argument in this case,
          // and it is OK to unconditionally read the mutable box here.
          fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
          mlir::Value isAllocated =
              fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
                                                           mutableBox);
          auto absent = builder.create<fir::AbsentOp>(loc, argTy);
          /// For now, assume it is not OK to pass the allocatable/pointer
          /// descriptor to a non pointer/allocatable dummy. That is a strict
          /// interpretation of 18.3.6 point 4 that stipulates the descriptor
          /// has the dummy attributes in BIND(C) contexts.
          mlir::Value box = builder.createBox(
              loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox));

          // NULL() passed as argument is passed as a !fir.box<none>. Since
          // select op requires the same type for its two argument, convert
          // !fir.box<none> to !fir.class<none> when the argument is
          // polymorphic.
          if (fir::isBoxNone(box.getType()) && fir::isPolymorphicType(argTy)) {
            box = builder.createConvert(
                loc,
                fir::ClassType::get(mlir::NoneType::get(builder.getContext())),
                box);
          } else if (box.getType().isa<fir::BoxType>() &&
                     fir::isPolymorphicType(argTy)) {
            box = builder.create<fir::ReboxOp>(loc, argTy, box, mlir::Value{},
                                               /*slice=*/mlir::Value{});
          }

          // Need the box types to be exactly similar for the selectOp.
          mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
          caller.placeInput(arg, builder.create<mlir::arith::SelectOp>(
                                     loc, isAllocated, convertedBox, absent));
        } else {
          auto dynamicType = expr->GetType();
          mlir::Value box;

          // Special case when an intrinsic scalar variable is passed to a
          // function expecting an optional unlimited polymorphic dummy
          // argument.
          // The presence test needs to be performed before emboxing otherwise
          // the program will crash.
          if (dynamicType->category() !=
                  Fortran::common::TypeCategory::Derived &&
              expr->Rank() == 0 && fir::isUnlimitedPolymorphicType(argTy) &&
              arg.isOptional()) {
            ExtValue opt = lowerIntrinsicArgumentAsInquired(*expr);
            mlir::Value isPresent = genActualIsPresentTest(builder, loc, opt);
            box =
                builder
                    .genIfOp(loc, {argTy}, isPresent, /*withElseRegion=*/true)
                    .genThen([&]() {
                      auto boxed = builder.createBox(
                          loc, genBoxArg(*expr), fir::isPolymorphicType(argTy));
                      builder.create<fir::ResultOp>(loc, boxed);
                    })
                    .genElse([&]() {
                      auto absent =
                          builder.create<fir::AbsentOp>(loc, argTy).getResult();
                      builder.create<fir::ResultOp>(loc, absent);
                    })
                    .getResults()[0];
          } else {
            // Make sure a variable address is only passed if the expression is
            // actually a variable.
            box = Fortran::evaluate::IsVariable(*expr)
                      ? builder.createBox(loc, genBoxArg(*expr),
                                          fir::isPolymorphicType(argTy),
                                          fir::isAssumedType(argTy))
                      : builder.createBox(getLoc(), genTempExtAddr(*expr),
                                          fir::isPolymorphicType(argTy),
                                          fir::isAssumedType(argTy));
            if (box.getType().isa<fir::BoxType>() &&
                fir::isPolymorphicType(argTy) && !fir::isAssumedType(argTy)) {
              mlir::Type actualTy = argTy;
              if (Fortran::lower::isParentComponent(*expr))
                actualTy = fir::BoxType::get(converter.genType(*expr));
              // Rebox can only be performed on a present argument.
              if (arg.isOptional()) {
                mlir::Value isPresent =
                    genActualIsPresentTest(builder, loc, box);
                box = builder
                          .genIfOp(loc, {actualTy}, isPresent,
                                   /*withElseRegion=*/true)
                          .genThen([&]() {
                            auto rebox =
                                builder
                                    .create<fir::ReboxOp>(
                                        loc, actualTy, box, mlir::Value{},
                                        /*slice=*/mlir::Value{})
                                    .getResult();
                            builder.create<fir::ResultOp>(loc, rebox);
                          })
                          .genElse([&]() {
                            auto absent =
                                builder.create<fir::AbsentOp>(loc, actualTy)
                                    .getResult();
                            builder.create<fir::ResultOp>(loc, absent);
                          })
                          .getResults()[0];
              } else {
                box = builder.create<fir::ReboxOp>(loc, actualTy, box,
                                                   mlir::Value{},
                                                   /*slice=*/mlir::Value{});
              }
            } else if (Fortran::lower::isParentComponent(*expr)) {
              fir::ExtendedValue newExv =
                  Fortran::lower::updateBoxForParentComponent(converter, box,
                                                              *expr);
              box = fir::getBase(newExv);
            }
          }
          caller.placeInput(arg, box);
        }
      } else if (arg.passBy == PassBy::AddressAndLength) {
        ExtValue argRef = genExtAddr(*expr);
        caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
                                          fir::getLen(argRef));
      } else if (arg.passBy == PassBy::CharProcTuple) {
        ExtValue argRef = genExtAddr(*expr);
        mlir::Value tuple = createBoxProcCharTuple(
            converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
        caller.placeInput(arg, tuple);
      } else {
        TODO(loc, "pass by value in non elemental function call");
      }
    }

    ExtValue result = Fortran::lower::genCallOpAndResult(
        loc, converter, symMap, stmtCtx, caller, callSiteType, resultType);

    // Sync pointers and allocatables that may have been modified during the
    // call.
    for (const auto &mutableBox : mutableModifiedByCall)
      fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox);
    // Handle case where result was passed as argument

    // Copy-out temps that were created for non contiguous variable arguments if
    // needed.
    for (const auto &copyOutPair : copyOutPairs)
      genCopyOut(copyOutPair);

    return result;
  }

  template <typename A>
  ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
    ExtValue result = genFunctionRef(funcRef);
    if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
      return genLoad(result);
    return result;
  }

  ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
    std::optional<mlir::Type> resTy;
    if (procRef.hasAlternateReturns())
      resTy = builder.getIndexType();
    return genProcedureRef(procRef, resTy);
  }

  template <typename A>
  bool isScalar(const A &x) {
    return x.Rank() == 0;
  }

  /// Helper to detect Transformational function reference.
  template <typename T>
  bool isTransformationalRef(const T &) {
    return false;
  }
  template <typename T>
  bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
    return !funcRef.IsElemental() && funcRef.Rank();
  }
  template <typename T>
  bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
    return std::visit([&](const auto &e) { return isTransformationalRef(e); },
                      expr.u);
  }

  template <typename A>
  ExtValue asArray(const A &x) {
    return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
                                                    symMap, stmtCtx);
  }

  /// Lower an array value as an argument. This argument can be passed as a box
  /// value, so it may be possible to avoid making a temporary.
  template <typename A>
  ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) {
    return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u);
  }
  template <typename A, typename B>
  ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) {
    return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u);
  }
  template <typename A, typename B>
  ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) {
    // Designator is being passed as an argument to a procedure. Lower the
    // expression to a boxed value.
    auto someExpr = toEvExpr(x);
    return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap,
                                          stmtCtx);
  }
  template <typename A, typename B>
  ExtValue asArrayArg(const A &, const B &x) {
    // If the expression to pass as an argument is not a designator, then create
    // an array temp.
    return asArray(x);
  }

  template <typename A>
  ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
    // Whole array symbols or components, and results of transformational
    // functions already have a storage and the scalar expression lowering path
    // is used to not create a new temporary storage.
    if (isScalar(x) ||
        Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
        (isTransformationalRef(x) && !isOptimizableTranspose(x, converter)))
      return std::visit([&](const auto &e) { return genref(e); }, x.u);
    if (useBoxArg)
      return asArrayArg(x);
    return asArray(x);
  }
  template <typename A>
  ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
    if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
        inInitializer)
      return std::visit([&](const auto &e) { return genval(e); }, x.u);
    return asArray(x);
  }

  template <int KIND>
  ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Logical, KIND>> &exp) {
    return std::visit([&](const auto &e) { return genval(e); }, exp.u);
  }

  using RefSet =
      std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
                 Fortran::evaluate::DataRef, Fortran::evaluate::Component,
                 Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
                 Fortran::semantics::SymbolRef>;
  template <typename A>
  static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;

  template <typename A, typename = std::enable_if_t<inRefSet<A>>>
  ExtValue genref(const A &a) {
    return gen(a);
  }
  template <typename A>
  ExtValue genref(const A &a) {
    if (inInitializer) {
      // Initialization expressions can never allocate memory.
      return genval(a);
    }
    mlir::Type storageType = converter.genType(toEvExpr(a));
    return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
  }

  template <typename A, template <typename> typename T,
            typename B = std::decay_t<T<A>>,
            std::enable_if_t<
                std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
                    std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
                    std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
                bool> = true>
  ExtValue genref(const T<A> &x) {
    return gen(x);
  }

private:
  mlir::Location location;
  Fortran::lower::AbstractConverter &converter;
  fir::FirOpBuilder &builder;
  Fortran::lower::StatementContext &stmtCtx;
  Fortran::lower::SymMap &symMap;
  bool inInitializer = false;
  bool useBoxArg = false; // expression lowered as argument
};
} // namespace

// Helper for changing the semantics in a given context. Preserves the current
// semantics which is resumed when the "push" goes out of scope.
#define PushSemantics(PushVal)                                                 \
  [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ =                 \
      Fortran::common::ScopedSet(semant, PushVal);

static bool isAdjustedArrayElementType(mlir::Type t) {
  return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
}
static bool elementTypeWasAdjusted(mlir::Type t) {
  if (auto ty = t.dyn_cast<fir::ReferenceType>())
    return isAdjustedArrayElementType(ty.getEleTy());
  return false;
}
static mlir::Type adjustedArrayElementType(mlir::Type t) {
  return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t;
}

/// Helper to generate calls to scalar user defined assignment procedures.
static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder,
                                               mlir::Location loc,
                                               mlir::func::FuncOp func,
                                               const fir::ExtendedValue &lhs,
                                               const fir::ExtendedValue &rhs) {
  auto prepareUserDefinedArg =
      [](fir::FirOpBuilder &builder, mlir::Location loc,
         const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value {
    if (argType.isa<fir::BoxCharType>()) {
      const fir::CharBoxValue *charBox = value.getCharBox();
      assert(charBox && "argument type mismatch in elemental user assignment");
      return fir::factory::CharacterExprHelper{builder, loc}.createEmbox(
          *charBox);
    }
    if (argType.isa<fir::BaseBoxType>()) {
      mlir::Value box =
          builder.createBox(loc, value, argType.isa<fir::ClassType>());
      return builder.createConvert(loc, argType, box);
    }
    // Simple pass by address.
    mlir::Type argBaseType = fir::unwrapRefType(argType);
    assert(!fir::hasDynamicSize(argBaseType));
    mlir::Value from = fir::getBase(value);
    if (argBaseType != fir::unwrapRefType(from.getType())) {
      // With logicals, it is possible that from is i1 here.
      if (fir::isa_ref_type(from.getType()))
        from = builder.create<fir::LoadOp>(loc, from);
      from = builder.createConvert(loc, argBaseType, from);
    }
    if (!fir::isa_ref_type(from.getType())) {
      mlir::Value temp = builder.createTemporary(loc, argBaseType);
      builder.create<fir::StoreOp>(loc, from, temp);
      from = temp;
    }
    return builder.createConvert(loc, argType, from);
  };
  assert(func.getNumArguments() == 2);
  mlir::Type lhsType = func.getFunctionType().getInput(0);
  mlir::Type rhsType = func.getFunctionType().getInput(1);
  mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType);
  mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType);
  builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg});
}

/// Convert the result of a fir.array_modify to an ExtendedValue given the
/// related fir.array_load.
static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder,
                                           mlir::Location loc,
                                           fir::ArrayLoadOp load,
                                           mlir::Value elementAddr) {
  mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType());
  if (fir::isa_char(eleTy)) {
    auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
        load.getMemref());
    if (!len) {
      assert(load.getTypeparams().size() == 1 &&
             "length must be in array_load");
      len = load.getTypeparams()[0];
    }
    return fir::CharBoxValue{elementAddr, len};
  }
  return elementAddr;
}

//===----------------------------------------------------------------------===//
//
// Lowering of scalar expressions in an explicit iteration space context.
//
//===----------------------------------------------------------------------===//

// Shared code for creating a copy of a derived type element. This function is
// called from a continuation.
inline static fir::ArrayAmendOp
createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
                        fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
                        const fir::ExtendedValue &elementExv, mlir::Type eleTy,
                        mlir::Value innerArg) {
  if (destLoad.getTypeparams().empty()) {
    fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
  } else {
    auto boxTy = fir::BoxType::get(eleTy);
    auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
                                              mlir::Value{}, mlir::Value{},
                                              destLoad.getTypeparams());
    auto fromBox = builder.create<fir::EmboxOp>(
        loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
        destLoad.getTypeparams());
    fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
                                      fir::BoxValue(fromBox));
  }
  return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
                                           destAcc);
}

inline static fir::ArrayAmendOp
createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
                     fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
                     const fir::ExtendedValue &srcExv, mlir::Value innerArg,
                     llvm::ArrayRef<mlir::Value> bounds) {
  fir::CharBoxValue dstChar(dstOp, dstLen);
  fir::factory::CharacterExprHelper helper{builder, loc};
  if (!bounds.empty()) {
    dstChar = helper.createSubstring(dstChar, bounds);
    fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
                                   dstChar.getAddr(), dstChar.getLen(), builder,
                                   loc);
    // Update the LEN to the substring's LEN.
    dstLen = dstChar.getLen();
  }
  // For a CHARACTER, we generate the element assignment loops inline.
  helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
  // Mark this array element as amended.
  mlir::Type ty = innerArg.getType();
  auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
  return amend;
}

/// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
/// the actual extents and lengths. This is only to allow their propagation as
/// ExtendedValue without triggering verifier failures when propagating
/// character/arrays as unboxed values. Only the base of the resulting
/// ExtendedValue should be used, it is undefined to use the length or extents
/// of the extended value returned,
inline static fir::ExtendedValue
convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
                       mlir::Value val, mlir::Value len) {
  mlir::Type ty = fir::unwrapRefType(val.getType());
  mlir::IndexType idxTy = builder.getIndexType();
  auto seqTy = ty.cast<fir::SequenceType>();
  auto undef = builder.create<fir::UndefOp>(loc, idxTy);
  llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
  if (fir::isa_char(seqTy.getEleTy()))
    return fir::CharArrayBoxValue(val, len ? len : undef, extents);
  return fir::ArrayBoxValue(val, extents);
}

//===----------------------------------------------------------------------===//
//
// Lowering of array expressions.
//
//===----------------------------------------------------------------------===//

namespace {
class ArrayExprLowering {
  using ExtValue = fir::ExtendedValue;

  /// Structure to keep track of lowered array operands in the
  /// array expression. Useful to later deduce the shape of the
  /// array expression.
  struct ArrayOperand {
    /// Array base (can be a fir.box).
    mlir::Value memref;
    /// ShapeOp, ShapeShiftOp or ShiftOp
    mlir::Value shape;
    /// SliceOp
    mlir::Value slice;
    /// Can this operand be absent ?
    bool mayBeAbsent = false;
  };

  using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
  using PathComponent = Fortran::lower::PathComponent;

  /// Active iteration space.
  using IterationSpace = Fortran::lower::IterationSpace;
  using IterSpace = const Fortran::lower::IterationSpace &;

  /// Current continuation. Function that will generate IR for a single
  /// iteration of the pending iterative loop structure.
  using CC = Fortran::lower::GenerateElementalArrayFunc;

  /// Projection continuation. Function that will project one iteration space
  /// into another.
  using PC = std::function<IterationSpace(IterSpace)>;
  using ArrayBaseTy =
      std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
                   const Fortran::evaluate::DataRef *>;
  using ComponentPath = Fortran::lower::ComponentPath;

public:
  //===--------------------------------------------------------------------===//
  // Regular array assignment
  //===--------------------------------------------------------------------===//

  /// Entry point for array assignments. Both the left-hand and right-hand sides
  /// can either be ExtendedValue or evaluate::Expr.
  template <typename TL, typename TR>
  static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
                                   Fortran::lower::SymMap &symMap,
                                   Fortran::lower::StatementContext &stmtCtx,
                                   const TL &lhs, const TR &rhs) {
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::CopyInCopyOut);
    ael.lowerArrayAssignment(lhs, rhs);
  }

  template <typename TL, typename TR>
  void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
    mlir::Location loc = getLoc();
    /// Here the target subspace is not necessarily contiguous. The ArrayUpdate
    /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
    /// in `destination`.
    PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
    ccStoreToDest = genarr(lhs);
    determineShapeOfDest(lhs);
    semant = ConstituentSemantics::RefTransparent;
    ExtValue exv = lowerArrayExpression(rhs);
    if (explicitSpaceIsActive()) {
      explicitSpace->finalizeContext();
      builder.create<fir::ResultOp>(loc, fir::getBase(exv));
    } else {
      builder.create<fir::ArrayMergeStoreOp>(
          loc, destination, fir::getBase(exv), destination.getMemref(),
          destination.getSlice(), destination.getTypeparams());
    }
  }

  //===--------------------------------------------------------------------===//
  // WHERE array assignment, FORALL assignment, and FORALL+WHERE array
  // assignment
  //===--------------------------------------------------------------------===//

  /// Entry point for array assignment when the iteration space is explicitly
  /// defined (Fortran's FORALL) with or without masks, and/or the implied
  /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
  /// space and implicit space with masks) may be present.
  static void lowerAnyMaskedArrayAssignment(
      Fortran::lower::AbstractConverter &converter,
      Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
      const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
      Fortran::lower::ExplicitIterSpace &explicitSpace,
      Fortran::lower::ImplicitIterSpace &implicitSpace) {
    if (explicitSpace.isActive() && lhs.Rank() == 0) {
      // Scalar assignment expression in a FORALL context.
      ArrayExprLowering ael(converter, stmtCtx, symMap,
                            ConstituentSemantics::RefTransparent,
                            &explicitSpace, &implicitSpace);
      ael.lowerScalarAssignment(lhs, rhs);
      return;
    }
    // Array assignment expression in a FORALL and/or WHERE context.
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::CopyInCopyOut, &explicitSpace,
                          &implicitSpace);
    ael.lowerArrayAssignment(lhs, rhs);
  }

  //===--------------------------------------------------------------------===//
  // Array assignment to array of pointer box values.
  //===--------------------------------------------------------------------===//

  /// Entry point for assignment to pointer in an array of pointers.
  static void lowerArrayOfPointerAssignment(
      Fortran::lower::AbstractConverter &converter,
      Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
      const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
      Fortran::lower::ExplicitIterSpace &explicitSpace,
      Fortran::lower::ImplicitIterSpace &implicitSpace,
      const llvm::SmallVector<mlir::Value> &lbounds,
      std::optional<llvm::SmallVector<mlir::Value>> ubounds) {
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::CopyInCopyOut, &explicitSpace,
                          &implicitSpace);
    ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds);
  }

  /// Scalar pointer assignment in an explicit iteration space.
  ///
  /// Pointers may be bound to targets in a FORALL context. This is a scalar
  /// assignment in the sense there is never an implied iteration space, even if
  /// the pointer is to a target with non-zero rank. Since the pointer
  /// assignment must appear in a FORALL construct, correctness may require that
  /// the array of pointers follow copy-in/copy-out semantics. The pointer
  /// assignment may include a bounds-spec (lower bounds), a bounds-remapping
  /// (lower and upper bounds), or neither.
  void lowerArrayOfPointerAssignment(
      const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
      const llvm::SmallVector<mlir::Value> &lbounds,
      std::optional<llvm::SmallVector<mlir::Value>> ubounds) {
    setPointerAssignmentBounds(lbounds, ubounds);
    if (rhs.Rank() == 0 ||
        (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) &&
         Fortran::evaluate::IsAllocatableOrPointerObject(
             rhs, converter.getFoldingContext()))) {
      lowerScalarAssignment(lhs, rhs);
      return;
    }
    TODO(getLoc(),
         "auto boxing of a ranked expression on RHS for pointer assignment");
  }

  //===--------------------------------------------------------------------===//
  // Array assignment to allocatable array
  //===--------------------------------------------------------------------===//

  /// Entry point for assignment to allocatable array.
  static void lowerAllocatableArrayAssignment(
      Fortran::lower::AbstractConverter &converter,
      Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
      const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
      Fortran::lower::ExplicitIterSpace &explicitSpace,
      Fortran::lower::ImplicitIterSpace &implicitSpace) {
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::CopyInCopyOut, &explicitSpace,
                          &implicitSpace);
    ael.lowerAllocatableArrayAssignment(lhs, rhs);
  }

  /// Lower an assignment to allocatable array, where the LHS array
  /// is represented with \p lhs extended value produced in different
  /// branches created in genReallocIfNeeded(). The RHS lowering
  /// is provided via \p rhsCC continuation.
  void lowerAllocatableArrayAssignment(ExtValue lhs, CC rhsCC) {
    mlir::Location loc = getLoc();
    // Check if the initial destShape is null, which means
    // it has not been computed from rhs (e.g. rhs is scalar).
    bool destShapeIsEmpty = destShape.empty();
    // Create ArrayLoad for the mutable box and save it into `destination`.
    PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
    ccStoreToDest = genarr(lhs);
    // destShape is either non-null on entry to this function,
    // or has been just set by lhs lowering.
    assert(!destShape.empty() && "destShape must have been set.");
    // Finish lowering the loop nest.
    assert(destination && "destination must have been set");
    ExtValue exv = lowerArrayExpression(rhsCC, destination.getType());
    if (!explicitSpaceIsActive())
      builder.create<fir::ArrayMergeStoreOp>(
          loc, destination, fir::getBase(exv), destination.getMemref(),
          destination.getSlice(), destination.getTypeparams());
    // destShape may originally be null, if rhs did not define a shape.
    // In this case the destShape is computed from lhs, and we may have
    // multiple different lhs values for different branches created
    // in genReallocIfNeeded(). We cannot reuse destShape computed
    // in different branches, so we have to reset it,
    // so that it is recomputed for the next branch FIR generation.
    if (destShapeIsEmpty)
      destShape.clear();
  }

  /// Assignment to allocatable array.
  ///
  /// The semantics are reverse that of a "regular" array assignment. The rhs
  /// defines the iteration space of the computation and the lhs is
  /// resized/reallocated to fit if necessary.
  void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
                                       const Fortran::lower::SomeExpr &rhs) {
    // With assignment to allocatable, we want to lower the rhs first and use
    // its shape to determine if we need to reallocate, etc.
    mlir::Location loc = getLoc();
    // FIXME: If the lhs is in an explicit iteration space, the assignment may
    // be to an array of allocatable arrays rather than a single allocatable
    // array.
    if (explicitSpaceIsActive() && lhs.Rank() > 0)
      TODO(loc, "assignment to whole allocatable array inside FORALL");

    fir::MutableBoxValue mutableBox =
        Fortran::lower::createMutableBox(loc, converter, lhs, symMap);
    if (rhs.Rank() > 0)
      determineShapeOfDest(rhs);
    auto rhsCC = [&]() {
      PushSemantics(ConstituentSemantics::RefTransparent);
      return genarr(rhs);
    }();

    llvm::SmallVector<mlir::Value> lengthParams;
    // Currently no safe way to gather length from rhs (at least for
    // character, it cannot be taken from array_loads since it may be
    // changed by concatenations).
    if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
        mutableBox.isDerivedWithLenParameters())
      TODO(loc, "gather rhs LEN parameters in assignment to allocatable");

    // The allocatable must take lower bounds from the expr if it is
    // reallocated and the right hand side is not a scalar.
    const bool takeLboundsIfRealloc = rhs.Rank() > 0;
    llvm::SmallVector<mlir::Value> lbounds;
    // When the reallocated LHS takes its lower bounds from the RHS,
    // they will be non default only if the RHS is a whole array
    // variable. Otherwise, lbounds is left empty and default lower bounds
    // will be used.
    if (takeLboundsIfRealloc &&
        Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
      assert(arrayOperands.size() == 1 &&
             "lbounds can only come from one array");
      auto lbs = fir::factory::getOrigins(arrayOperands[0].shape);
      lbounds.append(lbs.begin(), lbs.end());
    }
    auto assignToStorage = [&](fir::ExtendedValue newLhs) {
      // The lambda will be called repeatedly by genReallocIfNeeded().
      lowerAllocatableArrayAssignment(newLhs, rhsCC);
    };
    fir::factory::MutableBoxReallocation realloc =
        fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
                                         lengthParams, assignToStorage);
    if (explicitSpaceIsActive()) {
      explicitSpace->finalizeContext();
      builder.create<fir::ResultOp>(loc, fir::getBase(realloc.newValue));
    }
    fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
                                  takeLboundsIfRealloc, realloc);
  }

  /// Entry point for when an array expression appears in a context where the
  /// result must be boxed. (BoxValue semantics.)
  static ExtValue
  lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
                            Fortran::lower::SymMap &symMap,
                            Fortran::lower::StatementContext &stmtCtx,
                            const Fortran::lower::SomeExpr &expr) {
    ArrayExprLowering ael{converter, stmtCtx, symMap,
                          ConstituentSemantics::BoxValue};
    return ael.lowerBoxedArrayExpr(expr);
  }

  ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
    PushSemantics(ConstituentSemantics::BoxValue);
    return std::visit(
        [&](const auto &e) {
          auto f = genarr(e);
          ExtValue exv = f(IterationSpace{});
          if (fir::getBase(exv).getType().template isa<fir::BaseBoxType>())
            return exv;
          fir::emitFatalError(getLoc(), "array must be emboxed");
        },
        exp.u);
  }

  /// Entry point into lowering an expression with rank. This entry point is for
  /// lowering a rhs expression, for example. (RefTransparent semantics.)
  static ExtValue
  lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
                          Fortran::lower::SymMap &symMap,
                          Fortran::lower::StatementContext &stmtCtx,
                          const Fortran::lower::SomeExpr &expr) {
    ArrayExprLowering ael{converter, stmtCtx, symMap};
    ael.determineShapeOfDest(expr);
    ExtValue loopRes = ael.lowerArrayExpression(expr);
    fir::ArrayLoadOp dest = ael.destination;
    mlir::Value tempRes = dest.getMemref();
    fir::FirOpBuilder &builder = converter.getFirOpBuilder();
    mlir::Location loc = converter.getCurrentLocation();
    builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
                                           tempRes, dest.getSlice(),
                                           dest.getTypeparams());

    auto arrTy =
        fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
    if (auto charTy =
            arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
      if (fir::characterWithDynamicLen(charTy))
        TODO(loc, "CHARACTER does not have constant LEN");
      mlir::Value len = builder.createIntegerConstant(
          loc, builder.getCharacterLengthType(), charTy.getLen());
      return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
    }
    return fir::ArrayBoxValue(tempRes, dest.getExtents());
  }

  static void lowerLazyArrayExpression(
      Fortran::lower::AbstractConverter &converter,
      Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
      const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) {
    ArrayExprLowering ael(converter, stmtCtx, symMap);
    ael.lowerLazyArrayExpression(expr, raggedHeader);
  }

  /// Lower the expression \p expr into a buffer that is created on demand. The
  /// variable containing the pointer to the buffer is \p var and the variable
  /// containing the shape of the buffer is \p shapeBuffer.
  void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr,
                                mlir::Value header) {
    mlir::Location loc = getLoc();
    mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder);
    mlir::IntegerType i32Ty = builder.getIntegerType(32);

    // Once the loop extents have been computed, which may require being inside
    // some explicit loops, lazily allocate the expression on the heap. The
    // following continuation creates the buffer as needed.
    ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) {
      mlir::IntegerType i64Ty = builder.getIntegerType(64);
      mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1);
      fir::runtime::genRaggedArrayAllocate(
          loc, builder, header, /*asHeaders=*/false, byteSize, shape);
    };

    // Create a dummy array_load before the loop. We're storing to a lazy
    // temporary, so there will be no conflict and no copy-in. TODO: skip this
    // as there isn't any necessity for it.
    ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp {
      mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
      auto var = builder.create<fir::CoordinateOp>(
          loc, builder.getRefType(hdrTy.getType(1)), header, one);
      auto load = builder.create<fir::LoadOp>(loc, var);
      mlir::Type eleTy =
          fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
      auto seqTy = fir::SequenceType::get(eleTy, shape.size());
      mlir::Value castTo =
          builder.createConvert(loc, fir::HeapType::get(seqTy), load);
      mlir::Value shapeOp = builder.genShape(loc, shape);
      return builder.create<fir::ArrayLoadOp>(
          loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, std::nullopt);
    };
    // Custom lowering of the element store to deal with the extra indirection
    // to the lazy allocated buffer.
    ccStoreToDest = [=](IterSpace iters) {
      mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
      auto var = builder.create<fir::CoordinateOp>(
          loc, builder.getRefType(hdrTy.getType(1)), header, one);
      auto load = builder.create<fir::LoadOp>(loc, var);
      mlir::Type eleTy =
          fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
      auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size());
      auto toTy = fir::HeapType::get(seqTy);
      mlir::Value castTo = builder.createConvert(loc, toTy, load);
      mlir::Value shape = builder.genShape(loc, genIterationShape());
      llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
          loc, builder, castTo.getType(), shape, iters.iterVec());
      auto eleAddr = builder.create<fir::ArrayCoorOp>(
          loc, builder.getRefType(eleTy), castTo, shape,
          /*slice=*/mlir::Value{}, indices, destination.getTypeparams());
      mlir::Value eleVal =
          builder.createConvert(loc, eleTy, iters.getElement());
      builder.create<fir::StoreOp>(loc, eleVal, eleAddr);
      return iters.innerArgument();
    };

    // Lower the array expression now. Clean-up any temps that may have
    // been generated when lowering `expr` right after the lowered value
    // was stored to the ragged array temporary. The local temps will not
    // be needed afterwards.
    stmtCtx.pushScope();
    [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr);
    stmtCtx.finalizeAndPop();
    assert(fir::getBase(loopRes));
  }

  static void
  lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter,
                               Fortran::lower::SymMap &symMap,
                               Fortran::lower::StatementContext &stmtCtx,
                               Fortran::lower::ExplicitIterSpace &explicitSpace,
                               Fortran::lower::ImplicitIterSpace &implicitSpace,
                               const Fortran::evaluate::ProcedureRef &procRef) {
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::CustomCopyInCopyOut,
                          &explicitSpace, &implicitSpace);
    assert(procRef.arguments().size() == 2);
    const auto *lhs = procRef.arguments()[0].value().UnwrapExpr();
    const auto *rhs = procRef.arguments()[1].value().UnwrapExpr();
    assert(lhs && rhs &&
           "user defined assignment arguments must be expressions");
    mlir::func::FuncOp func =
        Fortran::lower::CallerInterface(procRef, converter).getFuncOp();
    ael.lowerElementalUserAssignment(func, *lhs, *rhs);
  }

  void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment,
                                    const Fortran::lower::SomeExpr &lhs,
                                    const Fortran::lower::SomeExpr &rhs) {
    mlir::Location loc = getLoc();
    PushSemantics(ConstituentSemantics::CustomCopyInCopyOut);
    auto genArrayModify = genarr(lhs);
    ccStoreToDest = [=](IterSpace iters) -> ExtValue {
      auto modifiedArray = genArrayModify(iters);
      auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>(
          fir::getBase(modifiedArray).getDefiningOp());
      assert(arrayModify && "must be created by ArrayModifyOp");
      fir::ExtendedValue lhs =
          arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0));
      genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs,
                                         iters.elementExv());
      return modifiedArray;
    };
    determineShapeOfDest(lhs);
    semant = ConstituentSemantics::RefTransparent;
    auto exv = lowerArrayExpression(rhs);
    if (explicitSpaceIsActive()) {
      explicitSpace->finalizeContext();
      builder.create<fir::ResultOp>(loc, fir::getBase(exv));
    } else {
      builder.create<fir::ArrayMergeStoreOp>(
          loc, destination, fir::getBase(exv), destination.getMemref(),
          destination.getSlice(), destination.getTypeparams());
    }
  }

  /// Lower an elemental subroutine call with at least one array argument.
  /// An elemental subroutine is an exception and does not have copy-in/copy-out
  /// semantics. See 15.8.3.
  /// Do NOT use this for user defined assignments.
  static void
  lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter,
                           Fortran::lower::SymMap &symMap,
                           Fortran::lower::StatementContext &stmtCtx,
                           const Fortran::lower::SomeExpr &call) {
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::RefTransparent);
    ael.lowerElementalSubroutine(call);
  }

  static const std::optional<Fortran::evaluate::ActualArgument>
  extractPassedArgFromProcRef(const Fortran::evaluate::ProcedureRef &procRef,
                              Fortran::lower::AbstractConverter &converter) {
    // First look for passed object in actual arguments.
    for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
         procRef.arguments())
      if (arg && arg->isPassedObject())
        return arg;

    // If passed object is not found by here, it means the call was fully
    // resolved to the correct procedure. Look for the pass object in the
    // dummy arguments. Pick the first polymorphic one.
    Fortran::lower::CallerInterface caller(procRef, converter);
    unsigned idx = 0;
    for (const auto &arg : caller.characterize().dummyArguments) {
      if (const auto *dummy =
              std::get_if<Fortran::evaluate::characteristics::DummyDataObject>(
                  &arg.u))
        if (dummy->type.type().IsPolymorphic())
          return procRef.arguments()[idx];
      ++idx;
    }
    return std::nullopt;
  }

  // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
  // This is skipping generation of copy-in/copy-out code for analysis that is
  // required when arguments are in parentheses.
  void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) {
    if (const auto *procRef =
            std::get_if<Fortran::evaluate::ProcedureRef>(&call.u))
      setLoweredProcRef(procRef);
    auto f = genarr(call);
    llvm::SmallVector<mlir::Value> shape = genIterationShape();
    auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{});
    f(iterSpace);
    finalizeElementCtx();
    builder.restoreInsertionPoint(insPt);
  }

  ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs,
                                 const Fortran::lower::SomeExpr &rhs) {
    PushSemantics(ConstituentSemantics::RefTransparent);
    // 1) Lower the rhs expression with array_fetch op(s).
    IterationSpace iters;
    iters.setElement(genarr(rhs)(iters));
    // 2) Lower the lhs expression to an array_update.
    semant = ConstituentSemantics::ProjectedCopyInCopyOut;
    auto lexv = genarr(lhs)(iters);
    // 3) Finalize the inner context.
    explicitSpace->finalizeContext();
    // 4) Thread the array value updated forward. Note: the lhs might be
    // ill-formed (performing scalar assignment in an array context),
    // in which case there is no array to thread.
    auto loc = getLoc();
    auto createResult = [&](auto op) {
      mlir::Value oldInnerArg = op.getSequence();
      std::size_t offset = explicitSpace->argPosition(oldInnerArg);
      explicitSpace->setInnerArg(offset, fir::getBase(lexv));
      finalizeElementCtx();
      builder.create<fir::ResultOp>(loc, fir::getBase(lexv));
    };
    if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) {
      llvm::TypeSwitch<mlir::Operation *>(defOp)
          .Case([&](fir::ArrayUpdateOp op) { createResult(op); })
          .Case([&](fir::ArrayAmendOp op) { createResult(op); })
          .Case([&](fir::ArrayModifyOp op) { createResult(op); })
          .Default([&](mlir::Operation *) { finalizeElementCtx(); });
    } else {
      // `lhs` isn't from a `fir.array_load`, so there is no array modifications
      // to thread through the iteration space.
      finalizeElementCtx();
    }
    return lexv;
  }

  static ExtValue lowerScalarUserAssignment(
      Fortran::lower::AbstractConverter &converter,
      Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
      Fortran::lower::ExplicitIterSpace &explicitIterSpace,
      mlir::func::FuncOp userAssignmentFunction,
      const Fortran::lower::SomeExpr &lhs,
      const Fortran::lower::SomeExpr &rhs) {
    Fortran::lower::ImplicitIterSpace implicit;
    ArrayExprLowering ael(converter, stmtCtx, symMap,
                          ConstituentSemantics::RefTransparent,
                          &explicitIterSpace, &implicit);
    return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs);
  }

  ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment,
                                     const Fortran::lower::SomeExpr &lhs,
                                     const Fortran::lower::SomeExpr &rhs) {
    mlir::Location loc = getLoc();
    if (rhs.Rank() > 0)
      TODO(loc, "user-defined elemental assigment from expression with rank");
    // 1) Lower the rhs expression with array_fetch op(s).
    IterationSpace iters;
    iters.setElement(genarr(rhs)(iters));
    fir::ExtendedValue elementalExv = iters.elementExv();
    // 2) Lower the lhs expression to an array_modify.
    semant = ConstituentSemantics::CustomCopyInCopyOut;
    auto lexv = genarr(lhs)(iters);
    bool isIllFormedLHS = false;
    // 3) Insert the call
    if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
            fir::getBase(lexv).getDefiningOp())) {
      mlir::Value oldInnerArg = modifyOp.getSequence();
      std::size_t offset = explicitSpace->argPosition(oldInnerArg);
      explicitSpace->setInnerArg(offset, fir::getBase(lexv));
      auto lhsLoad = explicitSpace->getLhsLoad(0);
      assert(lhsLoad.has_value());
      fir::ExtendedValue exv =
          arrayModifyToExv(builder, loc, *lhsLoad, modifyOp.getResult(0));
      genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv,
                                         elementalExv);
    } else {
      // LHS is ill formed, it is a scalar with no references to FORALL
      // subscripts, so there is actually no array assignment here. The user
      // code is probably bad, but still insert user assignment call since it
      // was not rejected by semantics (a warning was emitted).
      isIllFormedLHS = true;
      genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment,
                                         lexv, elementalExv);
    }
    // 4) Finalize the inner context.
    explicitSpace->finalizeContext();
    // 5). Thread the array value updated forward.
    if (!isIllFormedLHS) {
      finalizeElementCtx();
      builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
    }
    return lexv;
  }

private:
  void determineShapeOfDest(const fir::ExtendedValue &lhs) {
    destShape = fir::factory::getExtents(getLoc(), builder, lhs);
  }

  void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
    if (!destShape.empty())
      return;
    if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
      return;
    mlir::Type idxTy = builder.getIndexType();
    mlir::Location loc = getLoc();
    if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
            Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
                                                  lhs))
      for (Fortran::common::ConstantSubscript extent : *constantShape)
        destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
  }

  bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) {
    return false;
  }
  bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) {
    TODO(getLoc(), "coarray ref");
    return false;
  }
  bool genShapeFromDataRef(const Fortran::evaluate::Component &x) {
    return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false;
  }
  bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) {
    if (x.Rank() == 0)
      return false;
    if (x.base().Rank() > 0)
      if (genShapeFromDataRef(x.base()))
        return true;
    // x has rank and x.base did not produce a shape.
    ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base()))
                                       : asScalarRef(x.base().GetComponent());
    mlir::Location loc = getLoc();
    mlir::IndexType idxTy = builder.getIndexType();
    llvm::SmallVector<mlir::Value> definedShape =
        fir::factory::getExtents(loc, builder, exv);
    mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
    for (auto ss : llvm::enumerate(x.subscript())) {
      std::visit(Fortran::common::visitors{
                     [&](const Fortran::evaluate::Triplet &trip) {
                       // For a subscript of triple notation, we compute the
                       // range of this dimension of the iteration space.
                       auto lo = [&]() {
                         if (auto optLo = trip.lower())
                           return fir::getBase(asScalar(*optLo));
                         return getLBound(exv, ss.index(), one);
                       }();
                       auto hi = [&]() {
                         if (auto optHi = trip.upper())
                           return fir::getBase(asScalar(*optHi));
                         return getUBound(exv, ss.index(), one);
                       }();
                       auto step = builder.createConvert(
                           loc, idxTy, fir::getBase(asScalar(trip.stride())));
                       auto extent = builder.genExtentFromTriplet(loc, lo, hi,
                                                                  step, idxTy);
                       destShape.push_back(extent);
                     },
                     [&](auto) {}},
                 ss.value().u);
    }
    return true;
  }
  bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) {
    if (x.IsSymbol())
      return genShapeFromDataRef(getFirstSym(x));
    return genShapeFromDataRef(x.GetComponent());
  }
  bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) {
    return std::visit([&](const auto &v) { return genShapeFromDataRef(v); },
                      x.u);
  }

  /// When in an explicit space, the ranked component must be evaluated to
  /// determine the actual number of iterations when slicing triples are
  /// present. Lower these expressions here.
  bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) {
    LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
        llvm::dbgs() << "determine shape of:\n", lhs));
    // FIXME: We may not want to use ExtractDataRef here since it doesn't deal
    // with substrings, etc.
    std::optional<Fortran::evaluate::DataRef> dref =
        Fortran::evaluate::ExtractDataRef(lhs);
    return dref.has_value() ? genShapeFromDataRef(*dref) : false;
  }

  /// CHARACTER and derived type elements are treated as memory references. The
  /// numeric types are treated as values.
  static mlir::Type adjustedArraySubtype(mlir::Type ty,
                                         mlir::ValueRange indices) {
    mlir::Type pathTy = fir::applyPathToType(ty, indices);
    assert(pathTy && "indices failed to apply to type");
    return adjustedArrayElementType(pathTy);
  }

  /// Lower rhs of an array expression.
  ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
    mlir::Type resTy = converter.genType(exp);

    if (fir::isPolymorphicType(resTy) &&
        Fortran::evaluate::HasVectorSubscript(exp))
      TODO(getLoc(),
           "polymorphic array expression lowering with vector subscript");

    return std::visit(
        [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
        exp.u);
  }
  ExtValue lowerArrayExpression(const ExtValue &exv) {
    assert(!explicitSpace);
    mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
    return lowerArrayExpression(genarr(exv), resTy);
  }

  void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
                      const Fortran::evaluate::Substring *substring) {
    if (!substring)
      return;
    bounds.push_back(fir::getBase(asScalar(substring->lower())));
    if (auto upper = substring->upper())
      bounds.push_back(fir::getBase(asScalar(*upper)));
  }

  /// Convert the original value, \p origVal, to type \p eleTy. When in a
  /// pointer assignment context, generate an appropriate `fir.rebox` for
  /// dealing with any bounds parameters on the pointer assignment.
  mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy,
                                      mlir::Value origVal) {
    if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType()))
      if (origEleTy.isa<fir::BaseBoxType>()) {
        // If origVal is a box variable, load it so it is in the value domain.
        origVal = builder.create<fir::LoadOp>(loc, origVal);
      }
    if (origVal.getType().isa<fir::BoxType>() && !eleTy.isa<fir::BoxType>()) {
      if (isPointerAssignment())
        TODO(loc, "lhs of pointer assignment returned unexpected value");
      TODO(loc, "invalid box conversion in elemental computation");
    }
    if (isPointerAssignment() && eleTy.isa<fir::BoxType>() &&
        !origVal.getType().isa<fir::BoxType>()) {
      // This is a pointer assignment and the rhs is a raw reference to a TARGET
      // in memory. Embox the reference so it can be stored to the boxed
      // POINTER variable.
      assert(fir::isa_ref_type(origVal.getType()));
      if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType());
          fir::hasDynamicSize(eleTy))
        TODO(loc, "TARGET of pointer assignment with runtime size/shape");
      auto memrefTy = fir::boxMemRefType(eleTy.cast<fir::BoxType>());
      auto castTo = builder.createConvert(loc, memrefTy, origVal);
      origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo);
    }
    mlir::Value val = builder.createConvert(loc, eleTy, origVal);
    if (isBoundsSpec()) {
      assert(lbounds.has_value());
      auto lbs = *lbounds;
      if (lbs.size() > 0) {
        // Rebox the value with user-specified shift.
        auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size());
        mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs);
        val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp,
                                           mlir::Value{});
      }
    } else if (isBoundsRemap()) {
      assert(lbounds.has_value());
      auto lbs = *lbounds;
      if (lbs.size() > 0) {
        // Rebox the value with user-specified shift and shape.
        assert(ubounds.has_value());
        auto shapeShiftArgs = flatZip(lbs, *ubounds);
        auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size());
        mlir::Value shapeShift =
            builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs);
        val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift,
                                           mlir::Value{});
      }
    }
    return val;
  }

  /// Default store to destination implementation.
  /// This implements the default case, which is to assign the value in
  /// `iters.element` into the destination array, `iters.innerArgument`. Handles
  /// by value and by reference assignment.
  CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
    return [=](IterSpace iterSpace) -> ExtValue {
      mlir::Location loc = getLoc();
      mlir::Value innerArg = iterSpace.innerArgument();
      fir::ExtendedValue exv = iterSpace.elementExv();
      mlir::Type arrTy = innerArg.getType();
      mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
      if (isAdjustedArrayElementType(eleTy)) {
        // The elemental update is in the memref domain. Under this semantics,
        // we must always copy the computed new element from its location in
        // memory into the destination array.
        mlir::Type resRefTy = builder.getRefType(eleTy);
        // Get a reference to the array element to be amended.
        auto arrayOp = builder.create<fir::ArrayAccessOp>(
            loc, resRefTy, innerArg, iterSpace.iterVec(),
            fir::factory::getTypeParams(loc, builder, destination));
        if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
          llvm::SmallVector<mlir::Value> substringBounds;
          populateBounds(substringBounds, substring);
          mlir::Value dstLen = fir::factory::genLenOfCharacter(
              builder, loc, destination, iterSpace.iterVec(), substringBounds);
          fir::ArrayAmendOp amend = createCharArrayAmend(
              loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
          return abstractArrayExtValue(amend, dstLen);
        }
        if (fir::isa_derived(eleTy)) {
          fir::ArrayAmendOp amend = createDerivedArrayAmend(
              loc, destination, builder, arrayOp, exv, eleTy, innerArg);
          return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
        }
        assert(eleTy.isa<fir::SequenceType>() && "must be an array");
        TODO(loc, "array (as element) assignment");
      }
      // By value semantics. The element is being assigned by value.
      auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv));
      auto update = builder.create<fir::ArrayUpdateOp>(
          loc, arrTy, innerArg, ele, iterSpace.iterVec(),
          destination.getTypeparams());
      return abstractArrayExtValue(update);
    };
  }

  /// For an elemental array expression.
  ///   1. Lower the scalars and array loads.
  ///   2. Create the iteration space.
  ///   3. Create the element-by-element computation in the loop.
  ///   4. Return the resulting array value.
  /// If no destination was set in the array context, a temporary of
  /// \p resultTy will be created to hold the evaluated expression.
  /// Otherwise, \p resultTy is ignored and the expression is evaluated
  /// in the destination. \p f is a continuation built from an
  /// evaluate::Expr or an ExtendedValue.
  ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
    mlir::Location loc = getLoc();
    auto [iterSpace, insPt] = genIterSpace(resultTy);
    auto exv = f(iterSpace);
    iterSpace.setElement(std::move(exv));
    auto lambda = ccStoreToDest
                      ? *ccStoreToDest
                      : defaultStoreToDestination(/*substring=*/nullptr);
    mlir::Value updVal = fir::getBase(lambda(iterSpace));
    finalizeElementCtx();
    builder.create<fir::ResultOp>(loc, updVal);
    builder.restoreInsertionPoint(insPt);
    return abstractArrayExtValue(iterSpace.outerResult());
  }

  /// Compute the shape of a slice.
  llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) {
    llvm::SmallVector<mlir::Value> slicedShape;
    auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp());
    mlir::Operation::operand_range triples = slOp.getTriples();
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Location loc = getLoc();
    for (unsigned i = 0, end = triples.size(); i < end; i += 3) {
      if (!mlir::isa_and_nonnull<fir::UndefOp>(
              triples[i + 1].getDefiningOp())) {
        // (..., lb:ub:step, ...) case:  extent = max((ub-lb+step)/step, 0)
        // See Fortran 2018 9.5.3.3.2 section for more details.
        mlir::Value res = builder.genExtentFromTriplet(
            loc, triples[i], triples[i + 1], triples[i + 2], idxTy);
        slicedShape.emplace_back(res);
      } else {
        // do nothing. `..., i, ...` case, so dimension is dropped.
      }
    }
    return slicedShape;
  }

  /// Get the shape from an ArrayOperand. The shape of the array is adjusted if
  /// the array was sliced.
  llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
    if (array.slice)
      return computeSliceShape(array.slice);
    if (array.memref.getType().isa<fir::BaseBoxType>())
      return fir::factory::readExtents(builder, getLoc(),
                                       fir::BoxValue{array.memref});
    return fir::factory::getExtents(array.shape);
  }

  /// Get the shape from an ArrayLoad.
  llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
    return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
                                 arrayLoad.getSlice()});
  }

  /// Returns the first array operand that may not be absent. If all
  /// array operands may be absent, return the first one.
  const ArrayOperand &getInducingShapeArrayOperand() const {
    assert(!arrayOperands.empty());
    for (const ArrayOperand &op : arrayOperands)
      if (!op.mayBeAbsent)
        return op;
    // If all arrays operand appears in optional position, then none of them
    // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
    // first operands.
    // TODO: There is an opportunity to add a runtime check here that
    // this array is present as required.
    return arrayOperands[0];
  }

  /// Generate the shape of the iteration space over the array expression. The
  /// iteration space may be implicit, explicit, or both. If it is implied it is
  /// based on the destination and operand array loads, or an optional
  /// Fortran::evaluate::Shape from the front end. If the shape is explicit,
  /// this returns any implicit shape component, if it exists.
  llvm::SmallVector<mlir::Value> genIterationShape() {
    // Use the precomputed destination shape.
    if (!destShape.empty())
      return destShape;
    // Otherwise, use the destination's shape.
    if (destination)
      return getShape(destination);
    // Otherwise, use the first ArrayLoad operand shape.
    if (!arrayOperands.empty())
      return getShape(getInducingShapeArrayOperand());
    // Otherwise, in elemental context, try to find the passed object and
    // retrieve the iteration shape from it.
    if (loweredProcRef && loweredProcRef->IsElemental()) {
      const std::optional<Fortran::evaluate::ActualArgument> passArg =
          extractPassedArgFromProcRef(*loweredProcRef, converter);
      if (passArg) {
        ExtValue exv = asScalarRef(*passArg->UnwrapExpr());
        fir::FirOpBuilder *builder = &converter.getFirOpBuilder();
        auto extents = fir::factory::getExtents(getLoc(), *builder, exv);
        if (extents.size() == 0)
          TODO(getLoc(), "getting shape from polymorphic array in elemental "
                         "procedure reference");
        return extents;
      }
    }
    fir::emitFatalError(getLoc(),
                        "failed to compute the array expression shape");
  }

  bool explicitSpaceIsActive() const {
    return explicitSpace && explicitSpace->isActive();
  }

  bool implicitSpaceHasMasks() const {
    return implicitSpace && !implicitSpace->empty();
  }

  CC genMaskAccess(mlir::Value tmp, mlir::Value shape) {
    mlir::Location loc = getLoc();
    return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) {
      mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType());
      auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
      mlir::Type eleRefTy = builder->getRefType(eleTy);
      mlir::IntegerType i1Ty = builder->getI1Type();
      // Adjust indices for any shift of the origin of the array.
      llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
          loc, *builder, tmp.getType(), shape, iters.iterVec());
      auto addr =
          builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape,
                                            /*slice=*/mlir::Value{}, indices,
                                            /*typeParams=*/std::nullopt);
      auto load = builder->create<fir::LoadOp>(loc, addr);
      return builder->createConvert(loc, i1Ty, load);
    };
  }

  /// Construct the incremental instantiations of the ragged array structure.
  /// Rebind the lazy buffer variable, etc. as we go.
  template <bool withAllocation = false>
  mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) {
    assert(explicitSpaceIsActive());
    mlir::Location loc = getLoc();
    mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder);
    llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack =
        explicitSpace->getLoopStack();
    const std::size_t depth = loopStack.size();
    mlir::IntegerType i64Ty = builder.getIntegerType(64);
    [[maybe_unused]] mlir::Value byteSize =
        builder.createIntegerConstant(loc, i64Ty, 1);
    mlir::Value header = implicitSpace->lookupMaskHeader(expr);
    for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) {
      auto insPt = builder.saveInsertionPoint();
      if (i < depth - 1)
        builder.setInsertionPoint(loopStack[i + 1][0]);

      // Compute and gather the extents.
      llvm::SmallVector<mlir::Value> extents;
      for (auto doLoop : loopStack[i])
        extents.push_back(builder.genExtentFromTriplet(
            loc, doLoop.getLowerBound(), doLoop.getUpperBound(),
            doLoop.getStep(), i64Ty));
      if constexpr (withAllocation) {
        fir::runtime::genRaggedArrayAllocate(
            loc, builder, header, /*asHeader=*/true, byteSize, extents);
      }

      // Compute the dynamic position into the header.
      llvm::SmallVector<mlir::Value> offsets;
      for (auto doLoop : loopStack[i]) {
        auto m = builder.create<mlir::arith::SubIOp>(
            loc, doLoop.getInductionVar(), doLoop.getLowerBound());
        auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep());
        mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1);
        offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one));
      }
      mlir::IntegerType i32Ty = builder.getIntegerType(32);
      mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1);
      mlir::Type coorTy = builder.getRefType(raggedTy.getType(1));
      auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
      auto toTy = fir::SequenceType::get(raggedTy, offsets.size());
      mlir::Type toRefTy = builder.getRefType(toTy);
      auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff);
      mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr);
      auto shapeOp = builder.genShape(loc, extents);
      header = builder.create<fir::ArrayCoorOp>(
          loc, builder.getRefType(raggedTy), hdArr, shapeOp,
          /*slice=*/mlir::Value{}, offsets,
          /*typeparams=*/mlir::ValueRange{});
      auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
      auto inVar = builder.create<fir::LoadOp>(loc, hdrVar);
      mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
      mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2));
      auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two);
      auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh);
      // Replace the binding.
      implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr));
      if (i < depth - 1)
        builder.restoreInsertionPoint(insPt);
    }
    return header;
  }

  /// Lower mask expressions with implied iteration spaces from the variants of
  /// WHERE syntax. Since it is legal for mask expressions to have side-effects
  /// and modify values that will be used for the lhs, rhs, or both of
  /// subsequent assignments, the mask must be evaluated before the assignment
  /// is processed.
  /// Mask expressions are array expressions too.
  void genMasks() {
    // Lower the mask expressions, if any.
    if (implicitSpaceHasMasks()) {
      mlir::Location loc = getLoc();
      // Mask expressions are array expressions too.
      for (const auto *e : implicitSpace->getExprs())
        if (e && !implicitSpace->isLowered(e)) {
          if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) {
            // Allocate the mask buffer lazily.
            assert(explicitSpaceIsActive());
            mlir::Value header =
                prepareRaggedArrays</*withAllocations=*/true>(e);
            Fortran::lower::createLazyArrayTempValue(converter, *e, header,
                                                     symMap, stmtCtx);
            // Close the explicit loops.
            builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs());
            builder.setInsertionPointAfter(explicitSpace->getOuterLoop());
            // Open a new copy of the explicit loop nest.
            explicitSpace->genLoopNest();
            continue;
          }
          fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue(
              converter, *e, symMap, stmtCtx);
          mlir::Value shape = builder.createShape(loc, tmp);
          implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape));
        }

      // Set buffer from the header.
      for (const auto *e : implicitSpace->getExprs()) {
        if (!e)
          continue;
        if (implicitSpace->lookupMaskVariable(e)) {
          // Index into the ragged buffer to retrieve cached results.
          const int rank = e->Rank();
          assert(destShape.empty() ||
                 static_cast<std::size_t>(rank) == destShape.size());
          mlir::Value header = prepareRaggedArrays(e);
          mlir::TupleType raggedTy =
              fir::factory::getRaggedArrayHeaderType(builder);
          mlir::IntegerType i32Ty = builder.getIntegerType(32);
          mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
          auto coor1 = builder.create<fir::CoordinateOp>(
              loc, builder.getRefType(raggedTy.getType(1)), header, one);
          auto db = builder.create<fir::LoadOp>(loc, coor1);
          mlir::Type eleTy =
              fir::unwrapSequenceType(fir::unwrapRefType(db.getType()));
          mlir::Type buffTy =
              builder.getRefType(fir::SequenceType::get(eleTy, rank));
          // Address of ragged buffer data.
          mlir::Value buff = builder.createConvert(loc, buffTy, db);

          mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
          auto coor2 = builder.create<fir::CoordinateOp>(
              loc, builder.getRefType(raggedTy.getType(2)), header, two);
          auto shBuff = builder.create<fir::LoadOp>(loc, coor2);
          mlir::IntegerType i64Ty = builder.getIntegerType(64);
          mlir::IndexType idxTy = builder.getIndexType();
          llvm::SmallVector<mlir::Value> extents;
          for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) {
            mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i);
            auto coor = builder.create<fir::CoordinateOp>(
                loc, builder.getRefType(i64Ty), shBuff, off);
            auto ldExt = builder.create<fir::LoadOp>(loc, coor);
            extents.push_back(builder.createConvert(loc, idxTy, ldExt));
          }
          if (destShape.empty())
            destShape = extents;
          // Construct shape of buffer.
          mlir::Value shapeOp = builder.genShape(loc, extents);

          // Replace binding with the local result.
          implicitSpace->rebind(e, genMaskAccess(buff, shapeOp));
        }
      }
    }
  }

  // FIXME: should take multiple inner arguments.
  std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
  genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
    mlir::Location loc = getLoc();
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
    mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
    llvm::SmallVector<mlir::Value> loopUppers;

    // Convert any implied shape to closed interval form. The fir.do_loop will
    // run from 0 to `extent - 1` inclusive.
    for (auto extent : shape)
      loopUppers.push_back(
          builder.create<mlir::arith::SubIOp>(loc, extent, one));

    // Iteration space is created with outermost columns, innermost rows
    llvm::SmallVector<fir::DoLoopOp> loops;

    const std::size_t loopDepth = loopUppers.size();
    llvm::SmallVector<mlir::Value> ivars;

    for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
      if (i.index() > 0) {
        assert(!loops.empty());
        builder.setInsertionPointToStart(loops.back().getBody());
      }
      fir::DoLoopOp loop;
      if (innerArg) {
        loop = builder.create<fir::DoLoopOp>(
            loc, zero, i.value(), one, isUnordered(),
            /*finalCount=*/false, mlir::ValueRange{innerArg});
        innerArg = loop.getRegionIterArgs().front();
        if (explicitSpaceIsActive())
          explicitSpace->setInnerArg(0, innerArg);
      } else {
        loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
                                             isUnordered(),
                                             /*finalCount=*/false);
      }
      ivars.push_back(loop.getInductionVar());
      loops.push_back(loop);
    }

    if (innerArg)
      for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
           ++i) {
        builder.setInsertionPointToEnd(loops[i].getBody());
        builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
      }

    // Move insertion point to the start of the innermost loop in the nest.
    builder.setInsertionPointToStart(loops.back().getBody());
    // Set `afterLoopNest` to just after the entire loop nest.
    auto currPt = builder.saveInsertionPoint();
    builder.setInsertionPointAfter(loops[0]);
    auto afterLoopNest = builder.saveInsertionPoint();
    builder.restoreInsertionPoint(currPt);

    // Put the implicit loop variables in row to column order to match FIR's
    // Ops. (The loops were constructed from outermost column to innermost
    // row.)
    mlir::Value outerRes;
    if (loops[0].getNumResults() != 0)
      outerRes = loops[0].getResult(0);
    return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
            afterLoopNest};
  }

  /// Build the iteration space into which the array expression will be lowered.
  /// The resultType is used to create a temporary, if needed.
  std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
  genIterSpace(mlir::Type resultType) {
    mlir::Location loc = getLoc();
    llvm::SmallVector<mlir::Value> shape = genIterationShape();
    if (!destination) {
      // Allocate storage for the result if it is not already provided.
      destination = createAndLoadSomeArrayTemp(resultType, shape);
    }

    // Generate the lazy mask allocation, if one was given.
    if (ccPrelude)
      (*ccPrelude)(shape);

    // Now handle the implicit loops.
    mlir::Value inner = explicitSpaceIsActive()
                            ? explicitSpace->getInnerArgs().front()
                            : destination.getResult();
    auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
    mlir::Value innerArg = iters.innerArgument();

    // Generate the mask conditional structure, if there are masks. Unlike the
    // explicit masks, which are interleaved, these mask expression appear in
    // the innermost loop.
    if (implicitSpaceHasMasks()) {
      // Recover the cached condition from the mask buffer.
      auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
        return implicitSpace->getBoundClosure(e)(iters);
      };

      // Handle the negated conditions in topological order of the WHERE
      // clauses. See 10.2.3.2p4 as to why this control structure is produced.
      for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
           implicitSpace->getMasks()) {
        const std::size_t size = maskExprs.size() - 1;
        auto genFalseBlock = [&](const auto *e, auto &&cond) {
          auto ifOp = builder.create<fir::IfOp>(
              loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
              /*withElseRegion=*/true);
          builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
          builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
          builder.create<fir::ResultOp>(loc, innerArg);
          builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
        };
        auto genTrueBlock = [&](const auto *e, auto &&cond) {
          auto ifOp = builder.create<fir::IfOp>(
              loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
              /*withElseRegion=*/true);
          builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
          builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
          builder.create<fir::ResultOp>(loc, innerArg);
          builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
        };
        for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
          if (const auto *e = maskExprs[i])
            genFalseBlock(e, genCond(e, iters));

        // The last condition is either non-negated or unconditionally negated.
        if (const auto *e = maskExprs[size])
          genTrueBlock(e, genCond(e, iters));
      }
    }

    // We're ready to lower the body (an assignment statement) for this context
    // of loop nests at this point.
    return {iters, afterLoopNest};
  }

  fir::ArrayLoadOp
  createAndLoadSomeArrayTemp(mlir::Type type,
                             llvm::ArrayRef<mlir::Value> shape) {
    mlir::Location loc = getLoc();
    if (fir::isPolymorphicType(type))
      TODO(loc, "polymorphic array temporary");
    if (ccLoadDest)
      return (*ccLoadDest)(shape);
    auto seqTy = type.dyn_cast<fir::SequenceType>();
    assert(seqTy && "must be an array");
    // TODO: Need to thread the LEN parameters here. For character, they may
    // differ from the operands length (e.g concatenation). So the array loads
    // type parameters are not enough.
    if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
      if (charTy.hasDynamicLen())
        TODO(loc, "character array expression temp with dynamic length");
    if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
      if (recTy.getNumLenParams() > 0)
        TODO(loc, "derived type array expression temp with LEN parameters");
    if (mlir::Type eleTy = fir::unwrapSequenceType(type);
        fir::isRecordWithAllocatableMember(eleTy))
      TODO(loc, "creating an array temp where the element type has "
                "allocatable members");
    mlir::Value temp = !seqTy.hasDynamicExtents()
                           ? builder.create<fir::AllocMemOp>(loc, type)
                           : builder.create<fir::AllocMemOp>(
                                 loc, type, ".array.expr", std::nullopt, shape);
    fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
    stmtCtx.attachCleanup(
        [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
    mlir::Value shapeOp = genShapeOp(shape);
    return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
                                            /*slice=*/mlir::Value{},
                                            std::nullopt);
  }

  static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
                                 llvm::ArrayRef<mlir::Value> shape) {
    mlir::IndexType idxTy = builder.getIndexType();
    llvm::SmallVector<mlir::Value> idxShape;
    for (auto s : shape)
      idxShape.push_back(builder.createConvert(loc, idxTy, s));
    return builder.create<fir::ShapeOp>(loc, idxShape);
  }

  fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
    return genShapeOp(getLoc(), builder, shape);
  }

  //===--------------------------------------------------------------------===//
  // Expression traversal and lowering.
  //===--------------------------------------------------------------------===//

  /// Lower the expression, \p x, in a scalar context.
  template <typename A>
  ExtValue asScalar(const A &x) {
    return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
  }

  /// Lower the expression, \p x, in a scalar context. If this is an explicit
  /// space, the expression may be scalar and refer to an array. We want to
  /// raise the array access to array operations in FIR to analyze potential
  /// conflicts even when the result is a scalar element.
  template <typename A>
  ExtValue asScalarArray(const A &x) {
    return explicitSpaceIsActive() && !isPointerAssignment()
               ? genarr(x)(IterationSpace{})
               : asScalar(x);
  }

  /// Lower the expression in a scalar context to a memory reference.
  template <typename A>
  ExtValue asScalarRef(const A &x) {
    return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
  }

  /// Lower an expression without dereferencing any indirection that may be
  /// a nullptr (because this is an absent optional or unallocated/disassociated
  /// descriptor). The returned expression cannot be addressed directly, it is
  /// meant to inquire about its status before addressing the related entity.
  template <typename A>
  ExtValue asInquired(const A &x) {
    return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
        .lowerIntrinsicArgumentAsInquired(x);
  }

  /// Some temporaries are allocated on an element-by-element basis during the
  /// array expression evaluation. Collect the cleanups here so the resources
  /// can be freed before the next loop iteration, avoiding memory leaks. etc.
  Fortran::lower::StatementContext &getElementCtx() {
    if (!elementCtx) {
      stmtCtx.pushScope();
      elementCtx = true;
    }
    return stmtCtx;
  }

  /// If there were temporaries created for this element evaluation, finalize
  /// and deallocate the resources now. This should be done just prior the the
  /// fir::ResultOp at the end of the innermost loop.
  void finalizeElementCtx() {
    if (elementCtx) {
      stmtCtx.finalizeAndPop();
      elementCtx = false;
    }
  }

  /// Lower an elemental function array argument. This ensures array
  /// sub-expressions that are not variables and must be passed by address
  /// are lowered by value and placed in memory.
  template <typename A>
  CC genElementalArgument(const A &x) {
    // Ensure the returned element is in memory if this is what was requested.
    if ((semant == ConstituentSemantics::RefOpaque ||
         semant == ConstituentSemantics::DataAddr ||
         semant == ConstituentSemantics::ByValueArg)) {
      if (!Fortran::evaluate::IsVariable(x)) {
        PushSemantics(ConstituentSemantics::DataValue);
        CC cc = genarr(x);
        mlir::Location loc = getLoc();
        if (isParenthesizedVariable(x)) {
          // Parenthesised variables are lowered to a reference to the variable
          // storage. When passing it as an argument, a copy must be passed.
          return [=](IterSpace iters) -> ExtValue {
            return createInMemoryScalarCopy(builder, loc, cc(iters));
          };
        }
        mlir::Type storageType =
            fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
        return [=](IterSpace iters) -> ExtValue {
          return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
        };
      }
    }
    return genarr(x);
  }

  // A reference to a Fortran elemental intrinsic or intrinsic module procedure.
  CC genElementalIntrinsicProcRef(
      const Fortran::evaluate::ProcedureRef &procRef,
      std::optional<mlir::Type> retTy,
      std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
          std::nullopt) {

    llvm::SmallVector<CC> operands;
    std::string name =
        intrinsic ? intrinsic->name
                  : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
    const fir::IntrinsicArgumentLoweringRules *argLowering =
        fir::getIntrinsicArgumentLowering(name);
    mlir::Location loc = getLoc();
    if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
                         procRef, *intrinsic, converter)) {
      using CcPairT = std::pair<CC, std::optional<mlir::Value>>;
      llvm::SmallVector<CcPairT> operands;
      auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
        if (expr.Rank() == 0) {
          ExtValue optionalArg = this->asInquired(expr);
          mlir::Value isPresent =
              genActualIsPresentTest(builder, loc, optionalArg);
          operands.emplace_back(
              [=](IterSpace iters) -> ExtValue {
                return genLoad(builder, loc, optionalArg);
              },
              isPresent);
        } else {
          auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
          operands.emplace_back(cc, isPresent);
        }
      };
      auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
                                 fir::LowerIntrinsicArgAs lowerAs) {
        assert(lowerAs == fir::LowerIntrinsicArgAs::Value &&
               "expect value arguments for elemental intrinsic");
        PushSemantics(ConstituentSemantics::RefTransparent);
        operands.emplace_back(genElementalArgument(expr), std::nullopt);
      };
      Fortran::lower::prepareCustomIntrinsicArgument(
          procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
          converter);

      fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
      return [=](IterSpace iters) -> ExtValue {
        auto getArgument = [&](std::size_t i, bool) -> ExtValue {
          return operands[i].first(iters);
        };
        auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> {
          return operands[i].second;
        };
        return Fortran::lower::lowerCustomIntrinsic(
            *bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
            getElementCtx());
      };
    }
    /// Otherwise, pre-lower arguments and use intrinsic lowering utility.
    for (const auto &arg : llvm::enumerate(procRef.arguments())) {
      const auto *expr =
          Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
      if (!expr) {
        // Absent optional.
        operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
      } else if (!argLowering) {
        // No argument lowering instruction, lower by value.
        PushSemantics(ConstituentSemantics::RefTransparent);
        operands.emplace_back(genElementalArgument(*expr));
      } else {
        // Ad-hoc argument lowering handling.
        fir::ArgLoweringRule argRules =
            fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
        if (argRules.handleDynamicOptional &&
            Fortran::evaluate::MayBePassedAsAbsentOptional(
                *expr, converter.getFoldingContext())) {
          // Currently, there is not elemental intrinsic that requires lowering
          // a potentially absent argument to something else than a value (apart
          // from character MAX/MIN that are handled elsewhere.)
          if (argRules.lowerAs != fir::LowerIntrinsicArgAs::Value)
            TODO(loc, "non trivial optional elemental intrinsic array "
                      "argument");
          PushSemantics(ConstituentSemantics::RefTransparent);
          operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
          continue;
        }
        switch (argRules.lowerAs) {
        case fir::LowerIntrinsicArgAs::Value: {
          PushSemantics(ConstituentSemantics::RefTransparent);
          operands.emplace_back(genElementalArgument(*expr));
        } break;
        case fir::LowerIntrinsicArgAs::Addr: {
          // Note: assume does not have Fortran VALUE attribute semantics.
          PushSemantics(ConstituentSemantics::RefOpaque);
          operands.emplace_back(genElementalArgument(*expr));
        } break;
        case fir::LowerIntrinsicArgAs::Box: {
          PushSemantics(ConstituentSemantics::RefOpaque);
          auto lambda = genElementalArgument(*expr);
          operands.emplace_back([=](IterSpace iters) {
            return builder.createBox(loc, lambda(iters));
          });
        } break;
        case fir::LowerIntrinsicArgAs::Inquired:
          TODO(loc, "intrinsic function with inquired argument");
          break;
        }
      }
    }

    // Let the intrinsic library lower the intrinsic procedure call
    return [=](IterSpace iters) {
      llvm::SmallVector<ExtValue> args;
      for (const auto &cc : operands)
        args.push_back(cc(iters));
      return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
                                              getElementCtx());
    };
  }

  /// Lower a procedure reference to a user-defined elemental procedure.
  CC genElementalUserDefinedProcRef(
      const Fortran::evaluate::ProcedureRef &procRef,
      std::optional<mlir::Type> retTy) {
    using PassBy = Fortran::lower::CallerInterface::PassEntityBy;

    // 10.1.4 p5. Impure elemental procedures must be called in element order.
    if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol())
      if (!Fortran::semantics::IsPureProcedure(*procSym))
        setUnordered(false);

    Fortran::lower::CallerInterface caller(procRef, converter);
    llvm::SmallVector<CC> operands;
    operands.reserve(caller.getPassedArguments().size());
    mlir::Location loc = getLoc();
    mlir::FunctionType callSiteType = caller.genFunctionType();
    for (const Fortran::lower::CallInterface<
             Fortran::lower::CallerInterface>::PassedEntity &arg :
         caller.getPassedArguments()) {
      // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
      // arguments must be called in element order.
      if (arg.mayBeModifiedByCall())
        setUnordered(false);
      const auto *actual = arg.entity;
      mlir::Type argTy = callSiteType.getInput(arg.firArgument);
      if (!actual) {
        // Optional dummy argument for which there is no actual argument.
        auto absent = builder.create<fir::AbsentOp>(loc, argTy);
        operands.emplace_back([=](IterSpace) { return absent; });
        continue;
      }
      const auto *expr = actual->UnwrapExpr();
      if (!expr)
        TODO(loc, "assumed type actual argument");

      LLVM_DEBUG(expr->AsFortran(llvm::dbgs()
                                 << "argument: " << arg.firArgument << " = [")
                 << "]\n");
      if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
                                  *expr, converter.getFoldingContext()))
        TODO(loc,
             "passing dynamically optional argument to elemental procedures");
      switch (arg.passBy) {
      case PassBy::Value: {
        // True pass-by-value semantics.
        PushSemantics(ConstituentSemantics::RefTransparent);
        operands.emplace_back(genElementalArgument(*expr));
      } break;
      case PassBy::BaseAddressValueAttribute: {
        // VALUE attribute or pass-by-reference to a copy semantics. (byval*)
        if (isArray(*expr)) {
          PushSemantics(ConstituentSemantics::ByValueArg);
          operands.emplace_back(genElementalArgument(*expr));
        } else {
          // Store scalar value in a temp to fulfill VALUE attribute.
          mlir::Value val = fir::getBase(asScalar(*expr));
          mlir::Value temp = builder.createTemporary(
              loc, val.getType(),
              llvm::ArrayRef<mlir::NamedAttribute>{
                  Fortran::lower::getAdaptToByRefAttr(builder)});
          builder.create<fir::StoreOp>(loc, val, temp);
          operands.emplace_back(
              [=](IterSpace iters) -> ExtValue { return temp; });
        }
      } break;
      case PassBy::BaseAddress: {
        if (isArray(*expr)) {
          PushSemantics(ConstituentSemantics::RefOpaque);
          operands.emplace_back(genElementalArgument(*expr));
        } else {
          ExtValue exv = asScalarRef(*expr);
          operands.emplace_back([=](IterSpace iters) { return exv; });
        }
      } break;
      case PassBy::CharBoxValueAttribute: {
        if (isArray(*expr)) {
          PushSemantics(ConstituentSemantics::DataValue);
          auto lambda = genElementalArgument(*expr);
          operands.emplace_back([=](IterSpace iters) {
            return fir::factory::CharacterExprHelper{builder, loc}
                .createTempFrom(lambda(iters));
          });
        } else {
          fir::factory::CharacterExprHelper helper(builder, loc);
          fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr));
          operands.emplace_back(
              [=](IterSpace iters) -> ExtValue { return argVal; });
        }
      } break;
      case PassBy::BoxChar: {
        PushSemantics(ConstituentSemantics::RefOpaque);
        operands.emplace_back(genElementalArgument(*expr));
      } break;
      case PassBy::AddressAndLength:
        // PassBy::AddressAndLength is only used for character results. Results
        // are not handled here.
        fir::emitFatalError(
            loc, "unexpected PassBy::AddressAndLength in elemental call");
        break;
      case PassBy::CharProcTuple: {
        ExtValue argRef = asScalarRef(*expr);
        mlir::Value tuple = createBoxProcCharTuple(
            converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
        operands.emplace_back(
            [=](IterSpace iters) -> ExtValue { return tuple; });
      } break;
      case PassBy::Box:
      case PassBy::MutableBox:
        // Handle polymorphic passed object.
        if (fir::isPolymorphicType(argTy)) {
          if (isArray(*expr)) {
            ExtValue exv = asScalarRef(*expr);
            mlir::Value sourceBox;
            if (fir::isPolymorphicType(fir::getBase(exv).getType()))
              sourceBox = fir::getBase(exv);
            mlir::Type baseTy =
                fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType());
            mlir::Type innerTy = fir::unwrapSequenceType(baseTy);
            operands.emplace_back([=](IterSpace iters) -> ExtValue {
              mlir::Value coord = builder.create<fir::CoordinateOp>(
                  loc, fir::ReferenceType::get(innerTy), fir::getBase(exv),
                  iters.iterVec());
              mlir::Value empty;
              mlir::ValueRange emptyRange;
              return builder.create<fir::EmboxOp>(
                  loc, fir::ClassType::get(innerTy), coord, empty, empty,
                  emptyRange, sourceBox);
            });
          } else {
            ExtValue exv = asScalarRef(*expr);
            if (fir::getBase(exv).getType().isa<fir::BaseBoxType>()) {
              operands.emplace_back(
                  [=](IterSpace iters) -> ExtValue { return exv; });
            } else {
              mlir::Type baseTy =
                  fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType());
              operands.emplace_back([=](IterSpace iters) -> ExtValue {
                mlir::Value empty;
                mlir::ValueRange emptyRange;
                return builder.create<fir::EmboxOp>(
                    loc, fir::ClassType::get(baseTy), fir::getBase(exv), empty,
                    empty, emptyRange);
              });
            }
          }
          break;
        }
        // See C15100 and C15101
        fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE");
      }
    }

    if (caller.getIfIndirectCallSymbol())
      fir::emitFatalError(loc, "cannot be indirect call");

    // The lambda is mutable so that `caller` copy can be modified inside it.
    return [=,
            caller = std::move(caller)](IterSpace iters) mutable -> ExtValue {
      for (const auto &[cc, argIface] :
           llvm::zip(operands, caller.getPassedArguments())) {
        auto exv = cc(iters);
        auto arg = exv.match(
            [&](const fir::CharBoxValue &cb) -> mlir::Value {
              return fir::factory::CharacterExprHelper{builder, loc}
                  .createEmbox(cb);
            },
            [&](const auto &) { return fir::getBase(exv); });
        caller.placeInput(argIface, arg);
      }
      return Fortran::lower::genCallOpAndResult(
          loc, converter, symMap, getElementCtx(), caller, callSiteType, retTy);
    };
  }

  /// Lower TRANSPOSE call without using runtime TRANSPOSE.
  /// Return continuation for generating the TRANSPOSE result.
  /// The continuation just swaps the iteration space before
  /// invoking continuation for the argument.
  CC genTransposeProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
    assert(procRef.arguments().size() == 1 &&
           "TRANSPOSE must have one argument.");
    const auto *argExpr = procRef.arguments()[0].value().UnwrapExpr();
    assert(argExpr);

    llvm::SmallVector<mlir::Value> savedDestShape = destShape;
    assert((destShape.empty() || destShape.size() == 2) &&
           "TRANSPOSE destination must have rank 2.");

    if (!savedDestShape.empty())
      std::swap(destShape[0], destShape[1]);

    PushSemantics(ConstituentSemantics::RefTransparent);
    llvm::SmallVector<CC> operands{genElementalArgument(*argExpr)};

    if (!savedDestShape.empty()) {
      // If destShape was set before transpose lowering, then
      // restore it. Otherwise, ...
      destShape = savedDestShape;
    } else if (!destShape.empty()) {
      // ... if destShape has been set from the argument lowering,
      // then reverse it.
      assert(destShape.size() == 2 &&
             "TRANSPOSE destination must have rank 2.");
      std::swap(destShape[0], destShape[1]);
    }

    return [=](IterSpace iters) {
      assert(iters.iterVec().size() == 2 &&
             "TRANSPOSE expects 2D iterations space.");
      IterationSpace newIters(iters, {iters.iterValue(1), iters.iterValue(0)});
      return operands.front()(newIters);
    };
  }

  /// Generate a procedure reference. This code is shared for both functions and
  /// subroutines, the difference being reflected by `retTy`.
  CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
                std::optional<mlir::Type> retTy) {
    mlir::Location loc = getLoc();
    setLoweredProcRef(&procRef);

    if (isOptimizableTranspose(procRef, converter))
      return genTransposeProcRef(procRef);

    if (procRef.IsElemental()) {
      if (const Fortran::evaluate::SpecificIntrinsic *intrin =
              procRef.proc().GetSpecificIntrinsic()) {
        // All elemental intrinsic functions are pure and cannot modify their
        // arguments. The only elemental subroutine, MVBITS has an Intent(inout)
        // argument. So for this last one, loops must be in element order
        // according to 15.8.3 p1.
        if (!retTy)
          setUnordered(false);

        // Elemental intrinsic call.
        // The intrinsic procedure is called once per element of the array.
        return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
      }
      if (Fortran::lower::isIntrinsicModuleProcRef(procRef))
        return genElementalIntrinsicProcRef(procRef, retTy);
      if (ScalarExprLowering::isStatementFunctionCall(procRef))
        fir::emitFatalError(loc, "statement function cannot be elemental");

      // Elemental call.
      // The procedure is called once per element of the array argument(s).
      return genElementalUserDefinedProcRef(procRef, retTy);
    }

    // Transformational call.
    // The procedure is called once and produces a value of rank > 0.
    if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
            procRef.proc().GetSpecificIntrinsic()) {
      if (explicitSpaceIsActive() && procRef.Rank() == 0) {
        // Elide any implicit loop iters.
        return [=, &procRef](IterSpace) {
          return ScalarExprLowering{loc, converter, symMap, stmtCtx}
              .genIntrinsicRef(procRef, retTy, *intrinsic);
        };
      }
      return genarr(
          ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
              procRef, retTy, *intrinsic));
    }

    const bool isPtrAssn = isPointerAssignment();
    if (explicitSpaceIsActive() && procRef.Rank() == 0) {
      // Elide any implicit loop iters.
      return [=, &procRef](IterSpace) {
        ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
        return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
                         : sel.genProcedureRef(procRef, retTy);
      };
    }
    // In the default case, the call can be hoisted out of the loop nest. Apply
    // the iterations to the result, which may be an array value.
    ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
    auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
                         : sel.genProcedureRef(procRef, retTy);
    return genarr(exv);
  }

  CC genarr(const Fortran::evaluate::ProcedureDesignator &) {
    TODO(getLoc(), "procedure designator");
  }
  CC genarr(const Fortran::evaluate::ProcedureRef &x) {
    if (x.hasAlternateReturns())
      fir::emitFatalError(getLoc(),
                          "array procedure reference with alt-return");
    return genProcRef(x, std::nullopt);
  }
  template <typename A>
  CC genScalarAndForwardValue(const A &x) {
    ExtValue result = asScalar(x);
    return [=](IterSpace) { return result; };
  }
  template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
                            A, Fortran::evaluate::TypelessExpression>>>
  CC genarr(const A &x) {
    return genScalarAndForwardValue(x);
  }

  template <typename A>
  CC genarr(const Fortran::evaluate::Expr<A> &x) {
    LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
    if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) ||
        isElementalProcWithArrayArgs(x))
      return std::visit([&](const auto &e) { return genarr(e); }, x.u);
    if (explicitSpaceIsActive()) {
      assert(!isArray(x) && !isLeftHandSide());
      auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u);
      auto result = cc(IterationSpace{});
      return [=](IterSpace) { return result; };
    }
    return genScalarAndForwardValue(x);
  }

  // Converting a value of memory bound type requires creating a temp and
  // copying the value.
  static ExtValue convertAdjustedType(fir::FirOpBuilder &builder,
                                      mlir::Location loc, mlir::Type toType,
                                      const ExtValue &exv) {
    return exv.match(
        [&](const fir::CharBoxValue &cb) -> ExtValue {
          mlir::Value len = cb.getLen();
          auto mem =
              builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len});
          fir::CharBoxValue result(mem, len);
          fir::factory::CharacterExprHelper{builder, loc}.createAssign(
              ExtValue{result}, exv);
          return result;
        },
        [&](const auto &) -> ExtValue {
          fir::emitFatalError(loc, "convert on adjusted extended value");
        });
  }
  template <Fortran::common::TypeCategory TC1, int KIND,
            Fortran::common::TypeCategory TC2>
  CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
                                             TC2> &x) {
    mlir::Location loc = getLoc();
    auto lambda = genarr(x.left());
    mlir::Type ty = converter.genType(TC1, KIND);
    return [=](IterSpace iters) -> ExtValue {
      auto exv = lambda(iters);
      mlir::Value val = fir::getBase(exv);
      auto valTy = val.getType();
      if (elementTypeWasAdjusted(valTy) &&
          !(fir::isa_ref_type(valTy) && fir::isa_integer(ty)))
        return convertAdjustedType(builder, loc, ty, exv);
      return builder.createConvert(loc, ty, val);
    };
  }

  template <int KIND>
  CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
    mlir::Location loc = getLoc();
    auto lambda = genarr(x.left());
    bool isImagPart = x.isImaginaryPart;
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value lhs = fir::getBase(lambda(iters));
      return fir::factory::Complex{builder, loc}.extractComplexPart(lhs,
                                                                    isImagPart);
    };
  }

  template <typename T>
  CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
    mlir::Location loc = getLoc();
    if (isReferentiallyOpaque()) {
      // Context is a call argument in, for example, an elemental procedure
      // call. TODO: all array arguments should use array_load, array_access,
      // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
      // array_merge_store ops.
      TODO(loc, "parentheses on argument in elemental call");
    }
    auto f = genarr(x.left());
    return [=](IterSpace iters) -> ExtValue {
      auto val = f(iters);
      mlir::Value base = fir::getBase(val);
      auto newBase =
          builder.create<fir::NoReassocOp>(loc, base.getType(), base);
      return fir::substBase(val, newBase);
    };
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Integer, KIND>> &x) {
    mlir::Location loc = getLoc();
    auto f = genarr(x.left());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value val = fir::getBase(f(iters));
      mlir::Type ty =
          converter.genType(Fortran::common::TypeCategory::Integer, KIND);
      mlir::Value zero = builder.createIntegerConstant(loc, ty, 0);
      return builder.create<mlir::arith::SubIOp>(loc, zero, val);
    };
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Real, KIND>> &x) {
    mlir::Location loc = getLoc();
    auto f = genarr(x.left());
    return [=](IterSpace iters) -> ExtValue {
      return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters)));
    };
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Complex, KIND>> &x) {
    mlir::Location loc = getLoc();
    auto f = genarr(x.left());
    return [=](IterSpace iters) -> ExtValue {
      return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters)));
    };
  }

  //===--------------------------------------------------------------------===//
  // Binary elemental ops
  //===--------------------------------------------------------------------===//

  template <typename OP, typename A>
  CC createBinaryOp(const A &evEx) {
    mlir::Location loc = getLoc();
    auto lambda = genarr(evEx.left());
    auto rf = genarr(evEx.right());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value left = fir::getBase(lambda(iters));
      mlir::Value right = fir::getBase(rf(iters));
      return builder.create<OP>(loc, left, right);
    };
  }

#undef GENBIN
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
  template <int KIND>                                                          \
  CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type<       \
                Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) {       \
    return createBinaryOp<GenBinFirOp>(x);                                     \
  }

  GENBIN(Add, Integer, mlir::arith::AddIOp)
  GENBIN(Add, Real, mlir::arith::AddFOp)
  GENBIN(Add, Complex, fir::AddcOp)
  GENBIN(Subtract, Integer, mlir::arith::SubIOp)
  GENBIN(Subtract, Real, mlir::arith::SubFOp)
  GENBIN(Subtract, Complex, fir::SubcOp)
  GENBIN(Multiply, Integer, mlir::arith::MulIOp)
  GENBIN(Multiply, Real, mlir::arith::MulFOp)
  GENBIN(Multiply, Complex, fir::MulcOp)
  GENBIN(Divide, Integer, mlir::arith::DivSIOp)
  GENBIN(Divide, Real, mlir::arith::DivFOp)
  GENBIN(Divide, Complex, fir::DivcOp)

  template <Fortran::common::TypeCategory TC, int KIND>
  CC genarr(
      const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
    mlir::Location loc = getLoc();
    mlir::Type ty = converter.genType(TC, KIND);
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value lhs = fir::getBase(lf(iters));
      mlir::Value rhs = fir::getBase(rf(iters));
      return fir::genPow(builder, loc, ty, lhs, rhs);
    };
  }
  template <Fortran::common::TypeCategory TC, int KIND>
  CC genarr(
      const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
    mlir::Location loc = getLoc();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    switch (x.ordering) {
    case Fortran::evaluate::Ordering::Greater:
      return [=](IterSpace iters) -> ExtValue {
        mlir::Value lhs = fir::getBase(lf(iters));
        mlir::Value rhs = fir::getBase(rf(iters));
        return fir::genMax(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs});
      };
    case Fortran::evaluate::Ordering::Less:
      return [=](IterSpace iters) -> ExtValue {
        mlir::Value lhs = fir::getBase(lf(iters));
        mlir::Value rhs = fir::getBase(rf(iters));
        return fir::genMin(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs});
      };
    case Fortran::evaluate::Ordering::Equal:
      llvm_unreachable("Equal is not a valid ordering in this context");
    }
    llvm_unreachable("unknown ordering");
  }
  template <Fortran::common::TypeCategory TC, int KIND>
  CC genarr(
      const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
          &x) {
    mlir::Location loc = getLoc();
    auto ty = converter.genType(TC, KIND);
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) {
      mlir::Value lhs = fir::getBase(lf(iters));
      mlir::Value rhs = fir::getBase(rf(iters));
      return fir::genPow(builder, loc, ty, lhs, rhs);
    };
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
    mlir::Location loc = getLoc();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value lhs = fir::getBase(lf(iters));
      mlir::Value rhs = fir::getBase(rf(iters));
      return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs);
    };
  }

  /// Fortran's concatenation operator `//`.
  template <int KIND>
  CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
    mlir::Location loc = getLoc();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      auto lhs = lf(iters);
      auto rhs = rf(iters);
      const fir::CharBoxValue *lchr = lhs.getCharBox();
      const fir::CharBoxValue *rchr = rhs.getCharBox();
      if (lchr && rchr) {
        return fir::factory::CharacterExprHelper{builder, loc}
            .createConcatenate(*lchr, *rchr);
      }
      TODO(loc, "concat on unexpected extended values");
      return mlir::Value{};
    };
  }

  template <int KIND>
  CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
    auto lf = genarr(x.left());
    mlir::Value rhs = fir::getBase(asScalar(x.right()));
    fir::CharBoxValue temp =
        fir::factory::CharacterExprHelper(builder, getLoc())
            .createCharacterTemp(
                fir::CharacterType::getUnknownLen(builder.getContext(), KIND),
                rhs);
    return [=](IterSpace iters) -> ExtValue {
      fir::factory::CharacterExprHelper(builder, getLoc())
          .createAssign(temp, lf(iters));
      return temp;
    };
  }

  template <typename T>
  CC genarr(const Fortran::evaluate::Constant<T> &x) {
    if (x.Rank() == 0)
      return genScalarAndForwardValue(x);
    return genarr(Fortran::lower::convertConstant(
        converter, getLoc(), x,
        /*outlineBigConstantsInReadOnlyMemory=*/true));
  }

  //===--------------------------------------------------------------------===//
  // A vector subscript expression may be wrapped with a cast to INTEGER*8.
  // Get rid of it here so the vector can be loaded. Add it back when
  // generating the elemental evaluation (inside the loop nest).

  static Fortran::lower::SomeExpr
  ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
                      Fortran::common::TypeCategory::Integer, 8>> &x) {
    return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u);
  }
  template <Fortran::common::TypeCategory FROM>
  static Fortran::lower::SomeExpr ignoreEvConvert(
      const Fortran::evaluate::Convert<
          Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>,
          FROM> &x) {
    return toEvExpr(x.left());
  }
  template <typename A>
  static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) {
    return toEvExpr(x);
  }

  //===--------------------------------------------------------------------===//
  // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
  // be used to determine the lbound, ubound of the vector.

  template <typename A>
  static const Fortran::semantics::Symbol *
  extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) {
    return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); },
                      x.u);
  }
  template <typename A>
  static const Fortran::semantics::Symbol *
  extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) {
    return Fortran::evaluate::UnwrapWholeSymbolDataRef(x);
  }
  template <typename A>
  static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) {
    return nullptr;
  }

  //===--------------------------------------------------------------------===//

  /// Get the declared lower bound value of the array `x` in dimension `dim`.
  /// The argument `one` must be an ssa-value for the constant 1.
  mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) {
    return fir::factory::readLowerBound(builder, getLoc(), x, dim, one);
  }

  /// Get the declared upper bound value of the array `x` in dimension `dim`.
  /// The argument `one` must be an ssa-value for the constant 1.
  mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) {
    mlir::Location loc = getLoc();
    mlir::Value lb = getLBound(x, dim, one);
    mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim);
    auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent);
    return builder.create<mlir::arith::SubIOp>(loc, add, one);
  }

  /// Return the extent of the boxed array `x` in dimesion `dim`.
  mlir::Value getExtent(const ExtValue &x, unsigned dim) {
    return fir::factory::readExtent(builder, getLoc(), x, dim);
  }

  template <typename A>
  ExtValue genArrayBase(const A &base) {
    ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx};
    return base.IsSymbol() ? sel.gen(getFirstSym(base))
                           : sel.gen(base.GetComponent());
  }

  template <typename A>
  bool hasEvArrayRef(const A &x) {
    struct HasEvArrayRefHelper
        : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> {
      HasEvArrayRefHelper()
          : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {}
      using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator();
      bool operator()(const Fortran::evaluate::ArrayRef &) const {
        return true;
      }
    } helper;
    return helper(x);
  }

  CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr,
                                  std::size_t dim) {
    PushSemantics(ConstituentSemantics::RefTransparent);
    auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr);
    llvm::SmallVector<mlir::Value> savedDestShape = destShape;
    destShape.clear();
    auto result = genarr(expr);
    if (destShape.empty())
      TODO(getLoc(), "expected vector to have an extent");
    assert(destShape.size() == 1 && "vector has rank > 1");
    if (destShape[0] != savedDestShape[dim]) {
      // Not the same, so choose the smaller value.
      mlir::Location loc = getLoc();
      auto cmp = builder.create<mlir::arith::CmpIOp>(
          loc, mlir::arith::CmpIPredicate::sgt, destShape[0],
          savedDestShape[dim]);
      auto sel = builder.create<mlir::arith::SelectOp>(
          loc, cmp, savedDestShape[dim], destShape[0]);
      savedDestShape[dim] = sel;
      destShape = savedDestShape;
    }
    return result;
  }

  /// Generate an access by vector subscript using the index in the iteration
  /// vector at `dim`.
  mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch,
                                IterSpace iters, std::size_t dim) {
    IterationSpace vecIters(iters,
                            llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)});
    fir::ExtendedValue fetch = genArrFetch(vecIters);
    mlir::IndexType idxTy = builder.getIndexType();
    return builder.createConvert(loc, idxTy, fir::getBase(fetch));
  }

  /// When we have an array reference, the expressions specified in each
  /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
  /// (loop-invarianet) scalar expressions. This returns the base entity, the
  /// resulting type, and a continuation to adjust the default iteration space.
  void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv,
                       const Fortran::evaluate::ArrayRef &x, bool atBase) {
    mlir::Location loc = getLoc();
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
    llvm::SmallVector<mlir::Value> &trips = cmptData.trips;
    LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n');
    auto &pc = cmptData.pc;
    const bool useTripsForSlice = !explicitSpaceIsActive();
    const bool createDestShape = destShape.empty();
    bool useSlice = false;
    std::size_t shapeIndex = 0;
    for (auto sub : llvm::enumerate(x.subscript())) {
      const std::size_t subsIndex = sub.index();
      std::visit(
          Fortran::common::visitors{
              [&](const Fortran::evaluate::Triplet &t) {
                mlir::Value lowerBound;
                if (auto optLo = t.lower())
                  lowerBound = fir::getBase(asScalarArray(*optLo));
                else
                  lowerBound = getLBound(arrayExv, subsIndex, one);
                lowerBound = builder.createConvert(loc, idxTy, lowerBound);
                mlir::Value stride = fir::getBase(asScalarArray(t.stride()));
                stride = builder.createConvert(loc, idxTy, stride);
                if (useTripsForSlice || createDestShape) {
                  // Generate a slice operation for the triplet. The first and
                  // second position of the triplet may be omitted, and the
                  // declared lbound and/or ubound expression values,
                  // respectively, should be used instead.
                  trips.push_back(lowerBound);
                  mlir::Value upperBound;
                  if (auto optUp = t.upper())
                    upperBound = fir::getBase(asScalarArray(*optUp));
                  else
                    upperBound = getUBound(arrayExv, subsIndex, one);
                  upperBound = builder.createConvert(loc, idxTy, upperBound);
                  trips.push_back(upperBound);
                  trips.push_back(stride);
                  if (createDestShape) {
                    auto extent = builder.genExtentFromTriplet(
                        loc, lowerBound, upperBound, stride, idxTy);
                    destShape.push_back(extent);
                  }
                  useSlice = true;
                }
                if (!useTripsForSlice) {
                  auto currentPC = pc;
                  pc = [=](IterSpace iters) {
                    IterationSpace newIters = currentPC(iters);
                    mlir::Value impliedIter = newIters.iterValue(subsIndex);
                    // FIXME: must use the lower bound of this component.
                    auto arrLowerBound =
                        atBase ? getLBound(arrayExv, subsIndex, one) : one;
                    auto initial = builder.create<mlir::arith::SubIOp>(
                        loc, lowerBound, arrLowerBound);
                    auto prod = builder.create<mlir::arith::MulIOp>(
                        loc, impliedIter, stride);
                    auto result =
                        builder.create<mlir::arith::AddIOp>(loc, initial, prod);
                    newIters.setIndexValue(subsIndex, result);
                    return newIters;
                  };
                }
                shapeIndex++;
              },
              [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) {
                const auto &e = ie.value(); // dereference
                if (isArray(e)) {
                  // This is a vector subscript. Use the index values as read
                  // from a vector to determine the temporary array value.
                  // Note: 9.5.3.3.3(3) specifies undefined behavior for
                  // multiple updates to any specific array element through a
                  // vector subscript with replicated values.
                  assert(!isBoxValue() &&
                         "fir.box cannot be created with vector subscripts");
                  // TODO: Avoid creating a new evaluate::Expr here
                  auto arrExpr = ignoreEvConvert(e);
                  if (createDestShape) {
                    destShape.push_back(fir::factory::getExtentAtDimension(
                        loc, builder, arrayExv, subsIndex));
                  }
                  auto genArrFetch =
                      genVectorSubscriptArrayFetch(arrExpr, shapeIndex);
                  auto currentPC = pc;
                  pc = [=](IterSpace iters) {
                    IterationSpace newIters = currentPC(iters);
                    auto val = genAccessByVector(loc, genArrFetch, newIters,
                                                 subsIndex);
                    // Value read from vector subscript array and normalized
                    // using the base array's lower bound value.
                    mlir::Value lb = fir::factory::readLowerBound(
                        builder, loc, arrayExv, subsIndex, one);
                    auto origin = builder.create<mlir::arith::SubIOp>(
                        loc, idxTy, val, lb);
                    newIters.setIndexValue(subsIndex, origin);
                    return newIters;
                  };
                  if (useTripsForSlice) {
                    LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape =
                        getShape(arrayOperands.back());
                    auto undef = builder.create<fir::UndefOp>(loc, idxTy);
                    trips.push_back(undef);
                    trips.push_back(undef);
                    trips.push_back(undef);
                  }
                  shapeIndex++;
                } else {
                  // This is a regular scalar subscript.
                  if (useTripsForSlice) {
                    // A regular scalar index, which does not yield an array
                    // section. Use a degenerate slice operation
                    // `(e:undef:undef)` in this dimension as a placeholder.
                    // This does not necessarily change the rank of the original
                    // array, so the iteration space must also be extended to
                    // include this expression in this dimension to adjust to
                    // the array's declared rank.
                    mlir::Value v = fir::getBase(asScalarArray(e));
                    trips.push_back(v);
                    auto undef = builder.create<fir::UndefOp>(loc, idxTy);
                    trips.push_back(undef);
                    trips.push_back(undef);
                    auto currentPC = pc;
                    // Cast `e` to index type.
                    mlir::Value iv = builder.createConvert(loc, idxTy, v);
                    // Normalize `e` by subtracting the declared lbound.
                    mlir::Value lb = fir::factory::readLowerBound(
                        builder, loc, arrayExv, subsIndex, one);
                    mlir::Value ivAdj =
                        builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb);
                    // Add lbound adjusted value of `e` to the iteration vector
                    // (except when creating a box because the iteration vector
                    // is empty).
                    if (!isBoxValue())
                      pc = [=](IterSpace iters) {
                        IterationSpace newIters = currentPC(iters);
                        newIters.insertIndexValue(subsIndex, ivAdj);
                        return newIters;
                      };
                  } else {
                    auto currentPC = pc;
                    mlir::Value newValue = fir::getBase(asScalarArray(e));
                    mlir::Value result =
                        builder.createConvert(loc, idxTy, newValue);
                    mlir::Value lb = fir::factory::readLowerBound(
                        builder, loc, arrayExv, subsIndex, one);
                    result = builder.create<mlir::arith::SubIOp>(loc, idxTy,
                                                                 result, lb);
                    pc = [=](IterSpace iters) {
                      IterationSpace newIters = currentPC(iters);
                      newIters.insertIndexValue(subsIndex, result);
                      return newIters;
                    };
                  }
                }
              }},
          sub.value().u);
    }
    if (!useSlice)
      trips.clear();
  }

  static mlir::Type unwrapBoxEleTy(mlir::Type ty) {
    if (auto boxTy = ty.dyn_cast<fir::BaseBoxType>())
      return fir::unwrapRefType(boxTy.getEleTy());
    return ty;
  }

  llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) {
    llvm::SmallVector<mlir::Value> result;
    ty = unwrapBoxEleTy(ty);
    mlir::Location loc = getLoc();
    mlir::IndexType idxTy = builder.getIndexType();
    for (auto extent : ty.cast<fir::SequenceType>().getShape()) {
      auto v = extent == fir::SequenceType::getUnknownExtent()
                   ? builder.create<fir::UndefOp>(loc, idxTy).getResult()
                   : builder.createIntegerConstant(loc, idxTy, extent);
      result.push_back(v);
    }
    return result;
  }

  CC genarr(const Fortran::semantics::SymbolRef &sym,
            ComponentPath &components) {
    return genarr(sym.get(), components);
  }

  ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
    return convertToArrayBoxValue(getLoc(), builder, val, len);
  }

  CC genarr(const ExtValue &extMemref) {
    ComponentPath dummy(/*isImplicit=*/true);
    return genarr(extMemref, dummy);
  }

  // If the slice values are given then use them. Otherwise, generate triples
  // that cover the entire shape specified by \p shapeVal.
  inline llvm::SmallVector<mlir::Value>
  padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) {
    llvm::SmallVector<mlir::Value> result;
    mlir::Location loc = getLoc();
    if (triples.size()) {
      result.assign(triples.begin(), triples.end());
    } else {
      auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1);
      if (!shapeVal) {
        TODO(loc, "shape must be recovered from box");
      } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>(
                     shapeVal.getDefiningOp())) {
        for (auto ext : shapeOp.getExtents()) {
          result.push_back(one);
          result.push_back(ext);
          result.push_back(one);
        }
      } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>(
                     shapeVal.getDefiningOp())) {
        for (auto [lb, ext] :
             llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) {
          result.push_back(lb);
          result.push_back(ext);
          result.push_back(one);
        }
      } else {
        TODO(loc, "shape must be recovered from box");
      }
    }
    return result;
  }

  /// Base case of generating an array reference,
  CC genarr(const ExtValue &extMemref, ComponentPath &components) {
    mlir::Location loc = getLoc();
    mlir::Value memref = fir::getBase(extMemref);
    mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
    assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
    mlir::Value shape = builder.createShape(loc, extMemref);
    mlir::Value slice;
    if (components.isSlice()) {
      if (isBoxValue() && components.substring) {
        // Append the substring operator to emboxing Op as it will become an
        // interior adjustment (add offset, adjust LEN) to the CHARACTER value
        // being referenced in the descriptor.
        llvm::SmallVector<mlir::Value> substringBounds;
        populateBounds(substringBounds, components.substring);
        // Convert to (offset, size)
        mlir::Type iTy = substringBounds[0].getType();
        if (substringBounds.size() != 2) {
          fir::CharacterType charTy =
              fir::factory::CharacterExprHelper::getCharType(arrTy);
          if (charTy.hasConstantLen()) {
            mlir::IndexType idxTy = builder.getIndexType();
            fir::CharacterType::LenType charLen = charTy.getLen();
            mlir::Value lenValue =
                builder.createIntegerConstant(loc, idxTy, charLen);
            substringBounds.push_back(lenValue);
          } else {
            llvm::SmallVector<mlir::Value> typeparams =
                fir::getTypeParams(extMemref);
            substringBounds.push_back(typeparams.back());
          }
        }
        // Convert the lower bound to 0-based substring.
        mlir::Value one =
            builder.createIntegerConstant(loc, substringBounds[0].getType(), 1);
        substringBounds[0] =
            builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one);
        // Convert the upper bound to a length.
        mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]);
        mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0);
        auto size =
            builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]);
        auto cmp = builder.create<mlir::arith::CmpIOp>(
            loc, mlir::arith::CmpIPredicate::sgt, size, zero);
        // size = MAX(upper - (lower - 1), 0)
        substringBounds[1] =
            builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
        slice = builder.create<fir::SliceOp>(
            loc, padSlice(components.trips, shape), components.suffixComponents,
            substringBounds);
      } else {
        slice = builder.createSlice(loc, extMemref, components.trips,
                                    components.suffixComponents);
      }
      if (components.hasComponents()) {
        auto seqTy = arrTy.cast<fir::SequenceType>();
        mlir::Type eleTy =
            fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents);
        if (!eleTy)
          fir::emitFatalError(loc, "slicing path is ill-formed");
        if (auto realTy = eleTy.dyn_cast<fir::RealType>())
          eleTy = Fortran::lower::convertReal(realTy.getContext(),
                                              realTy.getFKind());

        // create the type of the projected array.
        arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy);
        LLVM_DEBUG(llvm::dbgs()
                   << "type of array projection from component slicing: "
                   << eleTy << ", " << arrTy << '\n');
      }
    }
    arrayOperands.push_back(ArrayOperand{memref, shape, slice});
    if (destShape.empty())
      destShape = getShape(arrayOperands.back());
    if (isBoxValue()) {
      // Semantics are a reference to a boxed array.
      // This case just requires that an embox operation be created to box the
      // value. The value of the box is forwarded in the continuation.
      mlir::Type reduceTy = reduceRank(arrTy, slice);
      mlir::Type boxTy = fir::BoxType::get(reduceTy);
      if (memref.getType().isa<fir::ClassType>() && !components.hasComponents())
        boxTy = fir::ClassType::get(reduceTy);
      if (components.substring) {
        // Adjust char length to substring size.
        fir::CharacterType charTy =
            fir::factory::CharacterExprHelper::getCharType(reduceTy);
        auto seqTy = reduceTy.cast<fir::SequenceType>();
        // TODO: Use a constant for fir.char LEN if we can compute it.
        boxTy = fir::BoxType::get(
            fir::SequenceType::get(fir::CharacterType::getUnknownLen(
                                       builder.getContext(), charTy.getFKind()),
                                   seqTy.getDimension()));
      }
      llvm::SmallVector<mlir::Value> lbounds;
      llvm::SmallVector<mlir::Value> nonDeferredLenParams;
      if (!slice) {
        lbounds =
            fir::factory::getNonDefaultLowerBounds(builder, loc, extMemref);
        nonDeferredLenParams = fir::factory::getNonDeferredLenParams(extMemref);
      }
      mlir::Value embox =
          memref.getType().isa<fir::BaseBoxType>()
              ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
                    .getResult()
              : builder
                    .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
                                          fir::getTypeParams(extMemref))
                    .getResult();
      return [=](IterSpace) -> ExtValue {
        return fir::BoxValue(embox, lbounds, nonDeferredLenParams);
      };
    }
    auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
    if (isReferentiallyOpaque()) {
      // Semantics are an opaque reference to an array.
      // This case forwards a continuation that will generate the address
      // arithmetic to the array element. This does not have copy-in/copy-out
      // semantics. No attempt to copy the array value will be made during the
      // interpretation of the Fortran statement.
      mlir::Type refEleTy = builder.getRefType(eleTy);
      return [=](IterSpace iters) -> ExtValue {
        // ArrayCoorOp does not expect zero based indices.
        llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
            loc, builder, memref.getType(), shape, iters.iterVec());
        mlir::Value coor = builder.create<fir::ArrayCoorOp>(
            loc, refEleTy, memref, shape, slice, indices,
            fir::getTypeParams(extMemref));
        if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
          llvm::SmallVector<mlir::Value> substringBounds;
          populateBounds(substringBounds, components.substring);
          if (!substringBounds.empty()) {
            mlir::Value dstLen = fir::factory::genLenOfCharacter(
                builder, loc, arrTy.cast<fir::SequenceType>(), memref,
                fir::getTypeParams(extMemref), iters.iterVec(),
                substringBounds);
            fir::CharBoxValue dstChar(coor, dstLen);
            return fir::factory::CharacterExprHelper{builder, loc}
                .createSubstring(dstChar, substringBounds);
          }
        }
        return fir::factory::arraySectionElementToExtendedValue(
            builder, loc, extMemref, coor, slice);
      };
    }
    auto arrLoad = builder.create<fir::ArrayLoadOp>(
        loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
    mlir::Value arrLd = arrLoad.getResult();
    if (isProjectedCopyInCopyOut()) {
      // Semantics are projected copy-in copy-out.
      // The backing store of the destination of an array expression may be
      // partially modified. These updates are recorded in FIR by forwarding a
      // continuation that generates an `array_update` Op. The destination is
      // always loaded at the beginning of the statement and merged at the
      // end.
      destination = arrLoad;
      auto lambda = ccStoreToDest
                        ? *ccStoreToDest
                        : defaultStoreToDestination(components.substring);
      return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
    }
    if (isCustomCopyInCopyOut()) {
      // Create an array_modify to get the LHS element address and indicate
      // the assignment, the actual assignment must be implemented in
      // ccStoreToDest.
      destination = arrLoad;
      return [=](IterSpace iters) -> ExtValue {
        mlir::Value innerArg = iters.innerArgument();
        mlir::Type resTy = innerArg.getType();
        mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec());
        mlir::Type refEleTy =
            fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
        auto arrModify = builder.create<fir::ArrayModifyOp>(
            loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(),
            destination.getTypeparams());
        return abstractArrayExtValue(arrModify.getResult(1));
      };
    }
    if (isCopyInCopyOut()) {
      // Semantics are copy-in copy-out.
      // The continuation simply forwards the result of the `array_load` Op,
      // which is the value of the array as it was when loaded. All data
      // references with rank > 0 in an array expression typically have
      // copy-in copy-out semantics.
      return [=](IterSpace) -> ExtValue { return arrLd; };
    }
    llvm::SmallVector<mlir::Value> arrLdTypeParams =
        fir::factory::getTypeParams(loc, builder, arrLoad);
    if (isValueAttribute()) {
      // Semantics are value attribute.
      // Here the continuation will `array_fetch` a value from an array and
      // then store that value in a temporary. One can thus imitate pass by
      // value even when the call is pass by reference.
      return [=](IterSpace iters) -> ExtValue {
        mlir::Value base;
        mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
        if (isAdjustedArrayElementType(eleTy)) {
          mlir::Type eleRefTy = builder.getRefType(eleTy);
          base = builder.create<fir::ArrayAccessOp>(
              loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
        } else {
          base = builder.create<fir::ArrayFetchOp>(
              loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
        }
        mlir::Value temp = builder.createTemporary(
            loc, base.getType(),
            llvm::ArrayRef<mlir::NamedAttribute>{
                Fortran::lower::getAdaptToByRefAttr(builder)});
        builder.create<fir::StoreOp>(loc, base, temp);
        return fir::factory::arraySectionElementToExtendedValue(
            builder, loc, extMemref, temp, slice);
      };
    }
    // In the default case, the array reference forwards an `array_fetch` or
    // `array_access` Op in the continuation.
    return [=](IterSpace iters) -> ExtValue {
      mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
      if (isAdjustedArrayElementType(eleTy)) {
        mlir::Type eleRefTy = builder.getRefType(eleTy);
        mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
            loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
        if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
          llvm::SmallVector<mlir::Value> substringBounds;
          populateBounds(substringBounds, components.substring);
          if (!substringBounds.empty()) {
            mlir::Value dstLen = fir::factory::genLenOfCharacter(
                builder, loc, arrLoad, iters.iterVec(), substringBounds);
            fir::CharBoxValue dstChar(arrayOp, dstLen);
            return fir::factory::CharacterExprHelper{builder, loc}
                .createSubstring(dstChar, substringBounds);
          }
        }
        return fir::factory::arraySectionElementToExtendedValue(
            builder, loc, extMemref, arrayOp, slice);
      }
      auto arrFetch = builder.create<fir::ArrayFetchOp>(
          loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
      return fir::factory::arraySectionElementToExtendedValue(
          builder, loc, extMemref, arrFetch, slice);
    };
  }

  std::tuple<CC, mlir::Value, mlir::Type>
  genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
    assert(expr.Rank() > 0 && "expr must be an array");
    mlir::Location loc = getLoc();
    ExtValue optionalArg = asInquired(expr);
    mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
    // Generate an array load and access to an array that may be an absent
    // optional or an unallocated optional.
    mlir::Value base = getBase(optionalArg);
    const bool hasOptionalAttr =
        fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
    mlir::Type baseType = fir::unwrapRefType(base.getType());
    const bool isBox = baseType.isa<fir::BoxType>();
    const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
        expr, converter.getFoldingContext());
    mlir::Type arrType = fir::unwrapPassByRefType(baseType);
    mlir::Type eleType = fir::unwrapSequenceType(arrType);
    ExtValue exv = optionalArg;
    if (hasOptionalAttr && isBox && !isAllocOrPtr) {
      // Elemental argument cannot be allocatable or pointers (C15100).
      // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
      // Pointer optional arrays cannot be absent. The only kind of entities
      // that can get here are optional assumed shape and polymorphic entities.
      exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent);
    }
    // All the properties can be read from any fir.box but the read values may
    // be undefined and should only be used inside a fir.if (canBeRead) region.
    if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
      exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);

    mlir::Value memref = fir::getBase(exv);
    mlir::Value shape = builder.createShape(loc, exv);
    mlir::Value noSlice;
    auto arrLoad = builder.create<fir::ArrayLoadOp>(
        loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
    mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
    mlir::Value arrLd = arrLoad.getResult();
    // Mark the load to tell later passes it is unsafe to use this array_load
    // shape unconditionally.
    arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());

    // Place the array as optional on the arrayOperands stack so that its
    // shape will only be used as a fallback to induce the implicit loop nest
    // (that is if there is no non optional array arguments).
    arrayOperands.push_back(
        ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});

    // By value semantics.
    auto cc = [=](IterSpace iters) -> ExtValue {
      auto arrFetch = builder.create<fir::ArrayFetchOp>(
          loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
      return fir::factory::arraySectionElementToExtendedValue(
          builder, loc, exv, arrFetch, noSlice);
    };
    return {cc, isPresent, eleType};
  }

  /// Generate a continuation to pass \p expr to an OPTIONAL argument of an
  /// elemental procedure. This is meant to handle the cases where \p expr might
  /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
  /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
  /// directly be called instead.
  CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
    mlir::Location loc = getLoc();
    // Only by-value numerical and logical so far.
    if (semant != ConstituentSemantics::RefTransparent)
      TODO(loc, "optional arguments in user defined elemental procedures");

    // Handle scalar argument case (the if-then-else is generated outside of the
    // implicit loop nest).
    if (expr.Rank() == 0) {
      ExtValue optionalArg = asInquired(expr);
      mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
      mlir::Value elementValue =
          fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
      return [=](IterSpace iters) -> ExtValue { return elementValue; };
    }

    CC cc;
    mlir::Value isPresent;
    mlir::Type eleType;
    std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value elementValue =
          builder
              .genIfOp(loc, {eleType}, isPresent,
                       /*withElseRegion=*/true)
              .genThen([&]() {
                builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
              })
              .genElse([&]() {
                mlir::Value zero =
                    fir::factory::createZeroValue(builder, loc, eleType);
                builder.create<fir::ResultOp>(loc, zero);
              })
              .getResults()[0];
      return elementValue;
    };
  }

  /// Reduce the rank of a array to be boxed based on the slice's operands.
  static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
    if (slice) {
      auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
      assert(slOp && "expected slice op");
      auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
      assert(seqTy && "expected array type");
      mlir::Operation::operand_range triples = slOp.getTriples();
      fir::SequenceType::Shape shape;
      // reduce the rank for each invariant dimension
      for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
        if (auto extent = fir::factory::getExtentFromTriplet(
                triples[i - 1], triples[i], triples[i + 1]))
          shape.push_back(*extent);
        else if (!mlir::isa_and_nonnull<fir::UndefOp>(
                     triples[i].getDefiningOp()))
          shape.push_back(fir::SequenceType::getUnknownExtent());
      }
      return fir::SequenceType::get(shape, seqTy.getEleTy());
    }
    // not sliced, so no change in rank
    return arrTy;
  }

  /// Example: <code>array%RE</code>
  CC genarr(const Fortran::evaluate::ComplexPart &x,
            ComponentPath &components) {
    components.reversePath.push_back(&x);
    return genarr(x.complex(), components);
  }

  template <typename A>
  CC genSlicePath(const A &x, ComponentPath &components) {
    return genarr(x, components);
  }

  CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
            ComponentPath &components) {
    TODO(getLoc(), "substring of static object inside FORALL");
  }

  /// Substrings (see 9.4.1)
  CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
    components.substring = &x;
    return std::visit([&](const auto &v) { return genarr(v, components); },
                      x.parent());
  }

  template <typename T>
  CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
    // Note that it's possible that the function being called returns either an
    // array or a scalar.  In the first case, use the element type of the array.
    return genProcRef(
        funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
  }

  //===--------------------------------------------------------------------===//
  // Array construction
  //===--------------------------------------------------------------------===//

  /// Target agnostic computation of the size of an element in the array.
  /// Returns the size in bytes with type `index` or a null Value if the element
  /// size is not constant.
  mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
                                 mlir::Type resTy) {
    mlir::Location loc = getLoc();
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
    if (fir::hasDynamicSize(eleTy)) {
      if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
        // Array of char with dynamic LEN parameter. Downcast to an array
        // of singleton char, and scale by the len type parameter from
        // `exv`.
        exv.match(
            [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
            [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
            [&](const fir::BoxValue &box) {
              multiplier = fir::factory::CharacterExprHelper(builder, loc)
                               .readLengthFromBox(box.getAddr());
            },
            [&](const fir::MutableBoxValue &box) {
              multiplier = fir::factory::CharacterExprHelper(builder, loc)
                               .readLengthFromBox(box.getAddr());
            },
            [&](const auto &) {
              fir::emitFatalError(loc,
                                  "array constructor element has unknown size");
            });
        fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
            eleTy.getContext(), charTy.getFKind());
        if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
          assert(eleTy == seqTy.getEleTy());
          resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
        }
        eleTy = newEleTy;
      } else {
        TODO(loc, "dynamic sized type");
      }
    }
    mlir::Type eleRefTy = builder.getRefType(eleTy);
    mlir::Type resRefTy = builder.getRefType(resTy);
    mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
    auto offset = builder.create<fir::CoordinateOp>(
        loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
    return builder.createConvert(loc, idxTy, offset);
  }

  /// Get the function signature of the LLVM memcpy intrinsic.
  mlir::FunctionType memcpyType() {
    return fir::factory::getLlvmMemcpy(builder).getFunctionType();
  }

  /// Create a call to the LLVM memcpy intrinsic.
  void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
    mlir::Location loc = getLoc();
    mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
    mlir::SymbolRefAttr funcSymAttr =
        builder.getSymbolRefAttr(memcpyFunc.getName());
    mlir::FunctionType funcTy = memcpyFunc.getFunctionType();
    builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
  }

  // Construct code to check for a buffer overrun and realloc the buffer when
  // space is depleted. This is done between each item in the ac-value-list.
  mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
                         mlir::Value bufferSize, mlir::Value buffSize,
                         mlir::Value eleSz) {
    mlir::Location loc = getLoc();
    mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder);
    auto cond = builder.create<mlir::arith::CmpIOp>(
        loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
    auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
                                          /*withElseRegion=*/true);
    auto insPt = builder.saveInsertionPoint();
    builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
    // Not enough space, resize the buffer.
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
    auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
    builder.create<fir::StoreOp>(loc, newSz, buffSize);
    mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
    mlir::SymbolRefAttr funcSymAttr =
        builder.getSymbolRefAttr(reallocFunc.getName());
    mlir::FunctionType funcTy = reallocFunc.getFunctionType();
    auto newMem = builder.create<fir::CallOp>(
        loc, funcTy.getResults(), funcSymAttr,
        llvm::ArrayRef<mlir::Value>{
            builder.createConvert(loc, funcTy.getInputs()[0], mem),
            builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
    mlir::Value castNewMem =
        builder.createConvert(loc, mem.getType(), newMem.getResult(0));
    builder.create<fir::ResultOp>(loc, castNewMem);
    builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
    // Otherwise, just forward the buffer.
    builder.create<fir::ResultOp>(loc, mem);
    builder.restoreInsertionPoint(insPt);
    return ifOp.getResult(0);
  }

  /// Copy the next value (or vector of values) into the array being
  /// constructed.
  mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
                                       mlir::Value buffSize, mlir::Value mem,
                                       mlir::Value eleSz, mlir::Type eleTy,
                                       mlir::Type eleRefTy, mlir::Type resTy) {
    mlir::Location loc = getLoc();
    auto off = builder.create<fir::LoadOp>(loc, buffPos);
    auto limit = builder.create<fir::LoadOp>(loc, buffSize);
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);

    if (fir::isRecordWithAllocatableMember(eleTy))
      TODO(loc, "deep copy on allocatable members");

    if (!eleSz) {
      // Compute the element size at runtime.
      assert(fir::hasDynamicSize(eleTy));
      if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
        auto charBytes =
            builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
        mlir::Value bytes =
            builder.createIntegerConstant(loc, idxTy, charBytes);
        mlir::Value length = fir::getLen(exv);
        if (!length)
          fir::emitFatalError(loc, "result is not boxed character");
        eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
      } else {
        TODO(loc, "PDT size");
        // Will call the PDT's size function with the type parameters.
      }
    }

    // Compute the coordinate using `fir.coordinate_of`, or, if the type has
    // dynamic size, generating the pointer arithmetic.
    auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
      mlir::Type refTy = eleRefTy;
      if (fir::hasDynamicSize(eleTy)) {
        if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
          // Scale a simple pointer using dynamic length and offset values.
          auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
                                                       charTy.getFKind());
          refTy = builder.getRefType(chTy);
          mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
          buff = builder.createConvert(loc, toTy, buff);
          off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
        } else {
          TODO(loc, "PDT offset");
        }
      }
      auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
                                                    mlir::ValueRange{off});
      return builder.createConvert(loc, eleRefTy, coor);
    };

    // Lambda to lower an abstract array box value.
    auto doAbstractArray = [&](const auto &v) {
      // Compute the array size.
      mlir::Value arrSz = one;
      for (auto ext : v.getExtents())
        arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);

      // Grow the buffer as needed.
      auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
      mem = growBuffer(mem, endOff, limit, buffSize, eleSz);

      // Copy the elements to the buffer.
      mlir::Value byteSz =
          builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
      auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
      mlir::Value buffi = computeCoordinate(buff, off);
      llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
          builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
          /*volatile=*/builder.createBool(loc, false));
      createCallMemcpy(args);

      // Save the incremented buffer position.
      builder.create<fir::StoreOp>(loc, endOff, buffPos);
    };

    // Copy a trivial scalar value into the buffer.
    auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
      // Increment the buffer position.
      auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);

      // Grow the buffer as needed.
      mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);

      // Store the element in the buffer.
      mlir::Value buff =
          builder.createConvert(loc, fir::HeapType::get(resTy), mem);
      auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
                                                     mlir::ValueRange{off});
      fir::factory::genScalarAssignment(
          builder, loc,
          [&]() -> ExtValue {
            if (len)
              return fir::CharBoxValue(buffi, len);
            return buffi;
          }(),
          v);
      builder.create<fir::StoreOp>(loc, plusOne, buffPos);
    };

    // Copy the value.
    exv.match(
        [&](mlir::Value) { doTrivialScalar(exv); },
        [&](const fir::CharBoxValue &v) {
          auto buffer = v.getBuffer();
          if (fir::isa_char(buffer.getType())) {
            doTrivialScalar(exv, eleSz);
          } else {
            // Increment the buffer position.
            auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);

            // Grow the buffer as needed.
            mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);

            // Store the element in the buffer.
            mlir::Value buff =
                builder.createConvert(loc, fir::HeapType::get(resTy), mem);
            mlir::Value buffi = computeCoordinate(buff, off);
            llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
                builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
                /*volatile=*/builder.createBool(loc, false));
            createCallMemcpy(args);

            builder.create<fir::StoreOp>(loc, plusOne, buffPos);
          }
        },
        [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
        [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
        [&](const auto &) {
          TODO(loc, "unhandled array constructor expression");
        });
    return mem;
  }

  // Lower the expr cases in an ac-value-list.
  template <typename A>
  std::pair<ExtValue, bool>
  genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
                          mlir::Value, mlir::Value, mlir::Value,
                          Fortran::lower::StatementContext &stmtCtx) {
    if (isArray(x))
      return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
              /*needCopy=*/true};
    return {asScalar(x), /*needCopy=*/true};
  }

  // Lower an ac-implied-do in an ac-value-list.
  template <typename A>
  std::pair<ExtValue, bool>
  genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
                          mlir::Type resTy, mlir::Value mem,
                          mlir::Value buffPos, mlir::Value buffSize,
                          Fortran::lower::StatementContext &) {
    mlir::Location loc = getLoc();
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value lo =
        builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
    mlir::Value up =
        builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
    mlir::Value step =
        builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
    auto seqTy = resTy.template cast<fir::SequenceType>();
    mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
    auto loop =
        builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
                                      /*finalCount=*/false, mem);
    // create a new binding for x.name(), to ac-do-variable, to the iteration
    // value.
    symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
    auto insPt = builder.saveInsertionPoint();
    builder.setInsertionPointToStart(loop.getBody());
    // Thread mem inside the loop via loop argument.
    mem = loop.getRegionIterArgs()[0];

    mlir::Type eleRefTy = builder.getRefType(eleTy);

    // Any temps created in the loop body must be freed inside the loop body.
    stmtCtx.pushScope();
    std::optional<mlir::Value> charLen;
    for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
      auto [exv, copyNeeded] = std::visit(
          [&](const auto &v) {
            return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
                                           stmtCtx);
          },
          acv.u);
      mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
      mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
                                                  eleSz, eleTy, eleRefTy, resTy)
                       : fir::getBase(exv);
      if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
        charLen = builder.createTemporary(loc, builder.getI64Type());
        mlir::Value castLen =
            builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
        assert(charLen.has_value());
        builder.create<fir::StoreOp>(loc, castLen, *charLen);
      }
    }
    stmtCtx.finalizeAndPop();

    builder.create<fir::ResultOp>(loc, mem);
    builder.restoreInsertionPoint(insPt);
    mem = loop.getResult(0);
    symMap.popImpliedDoBinding();
    llvm::SmallVector<mlir::Value> extents = {
        builder.create<fir::LoadOp>(loc, buffPos).getResult()};

    // Convert to extended value.
    if (fir::isa_char(seqTy.getEleTy())) {
      assert(charLen.has_value());
      auto len = builder.create<fir::LoadOp>(loc, *charLen);
      return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
    }
    return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
  }

  // To simplify the handling and interaction between the various cases, array
  // constructors are always lowered to the incremental construction code
  // pattern, even if the extent of the array value is constant. After the
  // MemToReg pass and constant folding, the optimizer should be able to
  // determine that all the buffer overrun tests are false when the
  // incremental construction wasn't actually required.
  template <typename A>
  CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
    mlir::Location loc = getLoc();
    auto evExpr = toEvExpr(x);
    mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
    mlir::IndexType idxTy = builder.getIndexType();
    auto seqTy = resTy.template cast<fir::SequenceType>();
    mlir::Type eleTy = fir::unwrapSequenceType(resTy);
    mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
    mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
    mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
    builder.create<fir::StoreOp>(loc, zero, buffPos);
    // Allocate space for the array to be constructed.
    mlir::Value mem;
    if (fir::hasDynamicSize(resTy)) {
      if (fir::hasDynamicSize(eleTy)) {
        // The size of each element may depend on a general expression. Defer
        // creating the buffer until after the expression is evaluated.
        mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
        builder.create<fir::StoreOp>(loc, zero, buffSize);
      } else {
        mlir::Value initBuffSz =
            builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
        mem = builder.create<fir::AllocMemOp>(
            loc, eleTy, /*typeparams=*/std::nullopt, initBuffSz);
        builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
      }
    } else {
      mem = builder.create<fir::AllocMemOp>(loc, resTy);
      int64_t buffSz = 1;
      for (auto extent : seqTy.getShape())
        buffSz *= extent;
      mlir::Value initBuffSz =
          builder.createIntegerConstant(loc, idxTy, buffSz);
      builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
    }
    // Compute size of element
    mlir::Type eleRefTy = builder.getRefType(eleTy);

    // Populate the buffer with the elements, growing as necessary.
    std::optional<mlir::Value> charLen;
    for (const auto &expr : x) {
      auto [exv, copyNeeded] = std::visit(
          [&](const auto &e) {
            return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
                                           stmtCtx);
          },
          expr.u);
      mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
      mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
                                                  eleSz, eleTy, eleRefTy, resTy)
                       : fir::getBase(exv);
      if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
        charLen = builder.createTemporary(loc, builder.getI64Type());
        mlir::Value castLen =
            builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
        builder.create<fir::StoreOp>(loc, castLen, *charLen);
      }
    }
    mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
    llvm::SmallVector<mlir::Value> extents = {
        builder.create<fir::LoadOp>(loc, buffPos)};

    // Cleanup the temporary.
    fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
    stmtCtx.attachCleanup(
        [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });

    // Return the continuation.
    if (fir::isa_char(seqTy.getEleTy())) {
      if (charLen) {
        auto len = builder.create<fir::LoadOp>(loc, *charLen);
        return genarr(fir::CharArrayBoxValue{mem, len, extents});
      }
      return genarr(fir::CharArrayBoxValue{mem, zero, extents});
    }
    return genarr(fir::ArrayBoxValue{mem, extents});
  }

  CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
    fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0");
  }
  CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
    TODO(getLoc(), "array expr type parameter inquiry");
    return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
  }
  CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
    TODO(getLoc(), "array expr descriptor inquiry");
    return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
  }
  CC genarr(const Fortran::evaluate::StructureConstructor &x) {
    TODO(getLoc(), "structure constructor");
    return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
  }

  //===--------------------------------------------------------------------===//
  // LOCICAL operators (.NOT., .AND., .EQV., etc.)
  //===--------------------------------------------------------------------===//

  template <int KIND>
  CC genarr(const Fortran::evaluate::Not<KIND> &x) {
    mlir::Location loc = getLoc();
    mlir::IntegerType i1Ty = builder.getI1Type();
    auto lambda = genarr(x.left());
    mlir::Value truth = builder.createBool(loc, true);
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value logical = fir::getBase(lambda(iters));
      mlir::Value val = builder.createConvert(loc, i1Ty, logical);
      return builder.create<mlir::arith::XOrIOp>(loc, val, truth);
    };
  }
  template <typename OP, typename A>
  CC createBinaryBoolOp(const A &x) {
    mlir::Location loc = getLoc();
    mlir::IntegerType i1Ty = builder.getI1Type();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value left = fir::getBase(lf(iters));
      mlir::Value right = fir::getBase(rf(iters));
      mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
      mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
      return builder.create<OP>(loc, lhs, rhs);
    };
  }
  template <typename OP, typename A>
  CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) {
    mlir::Location loc = getLoc();
    mlir::IntegerType i1Ty = builder.getI1Type();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value left = fir::getBase(lf(iters));
      mlir::Value right = fir::getBase(rf(iters));
      mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
      mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
      return builder.create<OP>(loc, pred, lhs, rhs);
    };
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
    switch (x.logicalOperator) {
    case Fortran::evaluate::LogicalOperator::And:
      return createBinaryBoolOp<mlir::arith::AndIOp>(x);
    case Fortran::evaluate::LogicalOperator::Or:
      return createBinaryBoolOp<mlir::arith::OrIOp>(x);
    case Fortran::evaluate::LogicalOperator::Eqv:
      return createCompareBoolOp<mlir::arith::CmpIOp>(
          mlir::arith::CmpIPredicate::eq, x);
    case Fortran::evaluate::LogicalOperator::Neqv:
      return createCompareBoolOp<mlir::arith::CmpIOp>(
          mlir::arith::CmpIPredicate::ne, x);
    case Fortran::evaluate::LogicalOperator::Not:
      llvm_unreachable(".NOT. handled elsewhere");
    }
    llvm_unreachable("unhandled case");
  }

  //===--------------------------------------------------------------------===//
  // Relational operators (<, <=, ==, etc.)
  //===--------------------------------------------------------------------===//

  template <typename OP, typename PRED, typename A>
  CC createCompareOp(PRED pred, const A &x) {
    mlir::Location loc = getLoc();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      mlir::Value lhs = fir::getBase(lf(iters));
      mlir::Value rhs = fir::getBase(rf(iters));
      return builder.create<OP>(loc, pred, lhs, rhs);
    };
  }
  template <typename A>
  CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) {
    mlir::Location loc = getLoc();
    auto lf = genarr(x.left());
    auto rf = genarr(x.right());
    return [=](IterSpace iters) -> ExtValue {
      auto lhs = lf(iters);
      auto rhs = rf(iters);
      return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs);
    };
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Integer, KIND>> &x) {
    return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x);
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Character, KIND>> &x) {
    return createCompareCharOp(translateRelational(x.opr), x);
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Real, KIND>> &x) {
    return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr),
                                                x);
  }
  template <int KIND>
  CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
                Fortran::common::TypeCategory::Complex, KIND>> &x) {
    return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x);
  }
  CC genarr(
      const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
    return std::visit([&](const auto &x) { return genarr(x); }, r.u);
  }

  template <typename A>
  CC genarr(const Fortran::evaluate::Designator<A> &des) {
    ComponentPath components(des.Rank() > 0);
    return std::visit([&](const auto &x) { return genarr(x, components); },
                      des.u);
  }

  /// Is the path component rank > 0?
  static bool ranked(const PathComponent &x) {
    return std::visit(Fortran::common::visitors{
                          [](const ImplicitSubscripts &) { return false; },
                          [](const auto *v) { return v->Rank() > 0; }},
                      x);
  }

  void extendComponent(Fortran::lower::ComponentPath &component,
                       mlir::Type coorTy, mlir::ValueRange vals) {
    auto *bldr = &converter.getFirOpBuilder();
    llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end());
    auto currentFunc = component.getExtendCoorRef();
    auto loc = getLoc();
    auto newCoorRef = [bldr, coorTy, offsets, currentFunc,
                       loc](mlir::Value val) -> mlir::Value {
      return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy),
                                             currentFunc(val), offsets);
    };
    component.extendCoorRef = newCoorRef;
  }

  //===-------------------------------------------------------------------===//
  // Array data references in an explicit iteration space.
  //
  // Use the base array that was loaded before the loop nest.
  //===-------------------------------------------------------------------===//

  /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
  /// array_update op. \p ty is the initial type of the array
  /// (reference). Returns the type of the element after application of the
  /// path in \p components.
  ///
  /// TODO: This needs to deal with array's with initial bounds other than 1.
  /// TODO: Thread type parameters correctly.
  mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) {
    mlir::Location loc = getLoc();
    mlir::Type ty = fir::getBase(arrayExv).getType();
    auto &revPath = components.reversePath;
    ty = fir::unwrapPassByRefType(ty);
    bool prefix = true;
    bool deref = false;
    auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) {
      if (deref) {
        extendComponent(components, ty, vals);
      } else if (prefix) {
        for (auto v : vals)
          components.prefixComponents.push_back(v);
      } else {
        for (auto v : vals)
          components.suffixComponents.push_back(v);
      }
    };
    mlir::IndexType idxTy = builder.getIndexType();
    mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
    bool atBase = true;
    auto saveSemant = semant;
    if (isProjectedCopyInCopyOut())
      semant = ConstituentSemantics::RefTransparent;
    unsigned index = 0;
    for (const auto &v : llvm::reverse(revPath)) {
      std::visit(
          Fortran::common::visitors{
              [&](const ImplicitSubscripts &) {
                prefix = false;
                ty = fir::unwrapSequenceType(ty);
              },
              [&](const Fortran::evaluate::ComplexPart *x) {
                assert(!prefix && "complex part must be at end");
                mlir::Value offset = builder.createIntegerConstant(
                    loc, builder.getI32Type(),
                    x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0
                                                                          : 1);
                components.suffixComponents.push_back(offset);
                ty = fir::applyPathToType(ty, mlir::ValueRange{offset});
              },
              [&](const Fortran::evaluate::ArrayRef *x) {
                if (Fortran::lower::isRankedArrayAccess(*x)) {
                  genSliceIndices(components, arrayExv, *x, atBase);
                  ty = fir::unwrapSeqOrBoxedSeqType(ty);
                } else {
                  // Array access where the expressions are scalar and cannot
                  // depend upon the implied iteration space.
                  unsigned ssIndex = 0u;
                  llvm::SmallVector<mlir::Value> componentsToAdd;
                  for (const auto &ss : x->subscript()) {
                    std::visit(
                        Fortran::common::visitors{
                            [&](const Fortran::evaluate::
                                    IndirectSubscriptIntegerExpr &ie) {
                              const auto &e = ie.value();
                              if (isArray(e))
                                fir::emitFatalError(
                                    loc,
                                    "multiple components along single path "
                                    "generating array subexpressions");
                              // Lower scalar index expression, append it to
                              // subs.
                              mlir::Value subscriptVal =
                                  fir::getBase(asScalarArray(e));
                              // arrayExv is the base array. It needs to reflect
                              // the current array component instead.
                              // FIXME: must use lower bound of this component,
                              // not just the constant 1.
                              mlir::Value lb =
                                  atBase ? fir::factory::readLowerBound(
                                               builder, loc, arrayExv, ssIndex,
                                               one)
                                         : one;
                              mlir::Value val = builder.createConvert(
                                  loc, idxTy, subscriptVal);
                              mlir::Value ivAdj =
                                  builder.create<mlir::arith::SubIOp>(
                                      loc, idxTy, val, lb);
                              componentsToAdd.push_back(
                                  builder.createConvert(loc, idxTy, ivAdj));
                            },
                            [&](const auto &) {
                              fir::emitFatalError(
                                  loc, "multiple components along single path "
                                       "generating array subexpressions");
                            }},
                        ss.u);
                    ssIndex++;
                  }
                  ty = fir::unwrapSeqOrBoxedSeqType(ty);
                  addComponentList(ty, componentsToAdd);
                }
              },
              [&](const Fortran::evaluate::Component *x) {
                auto fieldTy = fir::FieldType::get(builder.getContext());
                llvm::StringRef name = toStringRef(getLastSym(*x).name());
                if (auto recTy = ty.dyn_cast<fir::RecordType>()) {
                  ty = recTy.getType(name);
                  auto fld = builder.create<fir::FieldIndexOp>(
                      loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
                  addComponentList(ty, {fld});
                  if (index != revPath.size() - 1 || !isPointerAssignment()) {
                    // Need an intermediate  dereference if the boxed value
                    // appears in the middle of the component path or if it is
                    // on the right and this is not a pointer assignment.
                    if (auto boxTy = ty.dyn_cast<fir::BaseBoxType>()) {
                      auto currentFunc = components.getExtendCoorRef();
                      auto loc = getLoc();
                      auto *bldr = &converter.getFirOpBuilder();
                      auto newCoorRef = [=](mlir::Value val) -> mlir::Value {
                        return bldr->create<fir::LoadOp>(loc, currentFunc(val));
                      };
                      components.extendCoorRef = newCoorRef;
                      deref = true;
                    }
                  }
                } else if (auto boxTy = ty.dyn_cast<fir::BaseBoxType>()) {
                  ty = fir::unwrapRefType(boxTy.getEleTy());
                  auto recTy = ty.cast<fir::RecordType>();
                  ty = recTy.getType(name);
                  auto fld = builder.create<fir::FieldIndexOp>(
                      loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
                  extendComponent(components, ty, {fld});
                } else {
                  TODO(loc, "other component type");
                }
              }},
          v);
      atBase = false;
      ++index;
    }
    semant = saveSemant;
    ty = fir::unwrapSequenceType(ty);
    components.applied = true;
    return ty;
  }

  llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) {
    llvm::SmallVector<mlir::Value> result;
    if (components.substring)
      populateBounds(result, components.substring);
    return result;
  }

  CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) {
    mlir::Location loc = getLoc();
    auto revPath = components.reversePath;
    fir::ExtendedValue arrayExv =
        arrayLoadExtValue(builder, loc, load, {}, load);
    mlir::Type eleTy = lowerPath(arrayExv, components);
    auto currentPC = components.pc;
    auto pc = [=, prefix = components.prefixComponents,
               suffix = components.suffixComponents](IterSpace iters) {
      // Add path prefix and suffix.
      return IterationSpace(currentPC(iters), prefix, suffix);
    };
    components.resetPC();
    llvm::SmallVector<mlir::Value> substringBounds =
        genSubstringBounds(components);
    if (isProjectedCopyInCopyOut()) {
      destination = load;
      auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable {
        mlir::Value innerArg = esp->findArgumentOfLoad(load);
        if (isAdjustedArrayElementType(eleTy)) {
          mlir::Type eleRefTy = builder.getRefType(eleTy);
          auto arrayOp = builder.create<fir::ArrayAccessOp>(
              loc, eleRefTy, innerArg, iters.iterVec(),
              fir::factory::getTypeParams(loc, builder, load));
          if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
            mlir::Value dstLen = fir::factory::genLenOfCharacter(
                builder, loc, load, iters.iterVec(), substringBounds);
            fir::ArrayAmendOp amend = createCharArrayAmend(
                loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg,
                substringBounds);
            return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend,
                                     dstLen);
          }
          if (fir::isa_derived(eleTy)) {
            fir::ArrayAmendOp amend =
                createDerivedArrayAmend(loc, load, builder, arrayOp,
                                        iters.elementExv(), eleTy, innerArg);
            return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
                                     amend);
          }
          assert(eleTy.isa<fir::SequenceType>());
          TODO(loc, "array (as element) assignment");
        }
        if (components.hasExtendCoorRef()) {
          auto eleBoxTy =
              fir::applyPathToType(innerArg.getType(), iters.iterVec());
          if (!eleBoxTy || !eleBoxTy.isa<fir::BoxType>())
            TODO(loc, "assignment in a FORALL involving a designator with a "
                      "POINTER or ALLOCATABLE component part-ref");
          auto arrayOp = builder.create<fir::ArrayAccessOp>(
              loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(),
              fir::factory::getTypeParams(loc, builder, load));
          mlir::Value addr = components.getExtendCoorRef()(arrayOp);
          components.resetExtendCoorRef();
          // When the lhs is a boxed value and the context is not a pointer
          // assignment, then insert the dereference of the box before any
          // conversion and store.
          if (!isPointerAssignment()) {
            if (auto boxTy = eleTy.dyn_cast<fir::BaseBoxType>()) {
              eleTy = fir::boxMemRefType(boxTy);
              addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr);
              eleTy = fir::unwrapRefType(eleTy);
            }
          }
          auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
          builder.create<fir::StoreOp>(loc, ele, addr);
          auto amend = builder.create<fir::ArrayAmendOp>(
              loc, innerArg.getType(), innerArg, arrayOp);
          return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend);
        }
        auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
        auto update = builder.create<fir::ArrayUpdateOp>(
            loc, innerArg.getType(), innerArg, ele, iters.iterVec(),
            fir::factory::getTypeParams(loc, builder, load));
        return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update);
      };
      return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
    }
    if (isCustomCopyInCopyOut()) {
      // Create an array_modify to get the LHS element address and indicate
      // the assignment, and create the call to the user defined assignment.
      destination = load;
      auto lambda = [=](IterSpace iters) mutable {
        mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load);
        mlir::Type refEleTy =
            fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
        auto arrModify = builder.create<fir::ArrayModifyOp>(
            loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg,
            iters.iterVec(), load.getTypeparams());
        return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
                                 arrModify.getResult(1));
      };
      return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
    }
    auto lambda = [=, semant = this->semant](IterSpace iters) mutable {
      if (semant == ConstituentSemantics::RefOpaque ||
          isAdjustedArrayElementType(eleTy)) {
        mlir::Type resTy = builder.getRefType(eleTy);
        // Use array element reference semantics.
        auto access = builder.create<fir::ArrayAccessOp>(
            loc, resTy, load, iters.iterVec(),
            fir::factory::getTypeParams(loc, builder, load));
        mlir::Value newBase = access;
        if (fir::isa_char(eleTy)) {
          mlir::Value dstLen = fir::factory::genLenOfCharacter(
              builder, loc, load, iters.iterVec(), substringBounds);
          if (!substringBounds.empty()) {
            fir::CharBoxValue charDst{access, dstLen};
            fir::factory::CharacterExprHelper helper{builder, loc};
            charDst = helper.createSubstring(charDst, substringBounds);
            newBase = charDst.getAddr();
          }
          return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase,
                                   dstLen);
        }
        return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase);
      }
      if (components.hasExtendCoorRef()) {
        auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec());
        if (!eleBoxTy || !eleBoxTy.isa<fir::BoxType>())
          TODO(loc, "assignment in a FORALL involving a designator with a "
                    "POINTER or ALLOCATABLE component part-ref");
        auto access = builder.create<fir::ArrayAccessOp>(
            loc, builder.getRefType(eleBoxTy), load, iters.iterVec(),
            fir::factory::getTypeParams(loc, builder, load));
        mlir::Value addr = components.getExtendCoorRef()(access);
        components.resetExtendCoorRef();
        return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr);
      }
      if (isPointerAssignment()) {
        auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec());
        if (!eleTy.isa<fir::BoxType>()) {
          // Rhs is a regular expression that will need to be boxed before
          // assigning to the boxed variable.
          auto typeParams = fir::factory::getTypeParams(loc, builder, load);
          auto access = builder.create<fir::ArrayAccessOp>(
              loc, builder.getRefType(eleTy), load, iters.iterVec(),
              typeParams);
          auto addr = components.getExtendCoorRef()(access);
          components.resetExtendCoorRef();
          auto ptrEleTy = fir::PointerType::get(eleTy);
          auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr);
          auto boxTy = fir::BoxType::get(ptrEleTy);
          // FIXME: The typeparams to the load may be different than those of
          // the subobject.
          if (components.hasExtendCoorRef())
            TODO(loc, "need to adjust typeparameter(s) to reflect the final "
                      "component");
          mlir::Value embox =
              builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr,
                                           /*shape=*/mlir::Value{},
                                           /*slice=*/mlir::Value{}, typeParams);
          return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox);
        }
      }
      auto fetch = builder.create<fir::ArrayFetchOp>(
          loc, eleTy, load, iters.iterVec(), load.getTypeparams());
      return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch);
    };
    return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
  }

  template <typename A>
  CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
    components.reversePath.push_back(ImplicitSubscripts{});
    ExtValue exv = asScalarRef(x);
    lowerPath(exv, components);
    auto lambda = genarr(exv, components);
    return [=](IterSpace iters) { return lambda(components.pc(iters)); };
  }
  CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
                            ComponentPath &components) {
    if (x.IsSymbol())
      return genImplicitArrayAccess(getFirstSym(x), components);
    return genImplicitArrayAccess(x.GetComponent(), components);
  }

  template <typename A>
  CC genAsScalar(const A &x) {
    mlir::Location loc = getLoc();
    if (isProjectedCopyInCopyOut()) {
      return [=, &x, builder = &converter.getFirOpBuilder()](
                 IterSpace iters) -> ExtValue {
        ExtValue exv = asScalarRef(x);
        mlir::Value addr = fir::getBase(exv);
        mlir::Type eleTy = fir::unwrapRefType(addr.getType());
        if (isAdjustedArrayElementType(eleTy)) {
          if (fir::isa_char(eleTy)) {
            fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
                exv, iters.elementExv());
          } else if (fir::isa_derived(eleTy)) {
            TODO(loc, "assignment of derived type");
          } else {
            fir::emitFatalError(loc, "array type not expected in scalar");
          }
        } else {
          auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement());
          builder->create<fir::StoreOp>(loc, eleVal, addr);
        }
        return exv;
      };
    }
    return [=, &x](IterSpace) { return asScalar(x); };
  }

  bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x,
                                        ComponentPath &components) {
    return isPointerAssignment() && Fortran::semantics::IsPointer(x) &&
           !components.hasComponents();
  }
  bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x,
                                        ComponentPath &components) {
    return tailIsPointerInPointerAssignment(getLastSym(x), components);
  }

  CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
    if (explicitSpaceIsActive()) {
      if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components))
        components.reversePath.push_back(ImplicitSubscripts{});
      if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
        return applyPathToArrayLoad(load, components);
    } else {
      return genImplicitArrayAccess(x, components);
    }
    if (pathIsEmpty(components))
      return components.substring ? genAsScalar(*components.substring)
                                  : genAsScalar(x);
    mlir::Location loc = getLoc();
    return [=](IterSpace) -> ExtValue {
      fir::emitFatalError(loc, "reached symbol with path");
    };
  }

  /// Lower a component path with or without rank.
  /// Example: <code>array%baz%qux%waldo</code>
  CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
    if (explicitSpaceIsActive()) {
      if (x.base().Rank() == 0 && x.Rank() > 0 &&
          !tailIsPointerInPointerAssignment(x, components))
        components.reversePath.push_back(ImplicitSubscripts{});
      if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
        return applyPathToArrayLoad(load, components);
    } else {
      if (x.base().Rank() == 0)
        return genImplicitArrayAccess(x, components);
    }
    bool atEnd = pathIsEmpty(components);
    if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp))
      // Skip parent components; their components are placed directly in the
      // object.
      components.reversePath.push_back(&x);
    auto result = genarr(x.base(), components);
    if (components.applied)
      return result;
    if (atEnd)
      return genAsScalar(x);
    mlir::Location loc = getLoc();
    return [=](IterSpace) -> ExtValue {
      fir::emitFatalError(loc, "reached component with path");
    };
  }

  /// Array reference with subscripts. If this has rank > 0, this is a form
  /// of an array section (slice).
  ///
  /// There are two "slicing" primitives that may be applied on a dimension by
  /// dimension basis: (1) triple notation and (2) vector addressing. Since
  /// dimensions can be selectively sliced, some dimensions may contain
  /// regular scalar expressions and those dimensions do not participate in
  /// the array expression evaluation.
  CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
    if (explicitSpaceIsActive()) {
      if (Fortran::lower::isRankedArrayAccess(x))
        components.reversePath.push_back(ImplicitSubscripts{});
      if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) {
        components.reversePath.push_back(&x);
        return applyPathToArrayLoad(load, components);
      }
    } else {
      if (Fortran::lower::isRankedArrayAccess(x)) {
        components.reversePath.push_back(&x);
        return genImplicitArrayAccess(x.base(), components);
      }
    }
    bool atEnd = pathIsEmpty(components);
    components.reversePath.push_back(&x);
    auto result = genarr(x.base(), components);
    if (components.applied)
      return result;
    mlir::Location loc = getLoc();
    if (atEnd) {
      if (x.Rank() == 0)
        return genAsScalar(x);
      fir::emitFatalError(loc, "expected scalar");
    }
    return [=](IterSpace) -> ExtValue {
      fir::emitFatalError(loc, "reached arrayref with path");
    };
  }

  CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
    TODO(getLoc(), "coarray reference");
  }

  CC genarr(const Fortran::evaluate::NamedEntity &x,
            ComponentPath &components) {
    return x.IsSymbol() ? genarr(getFirstSym(x), components)
                        : genarr(x.GetComponent(), components);
  }

  CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
    return std::visit([&](const auto &v) { return genarr(v, components); },
                      x.u);
  }

  bool pathIsEmpty(const ComponentPath &components) {
    return components.reversePath.empty();
  }

  explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
                             Fortran::lower::StatementContext &stmtCtx,
                             Fortran::lower::SymMap &symMap)
      : converter{converter}, builder{converter.getFirOpBuilder()},
        stmtCtx{stmtCtx}, symMap{symMap} {}

  explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
                             Fortran::lower::StatementContext &stmtCtx,
                             Fortran::lower::SymMap &symMap,
                             ConstituentSemantics sem)
      : converter{converter}, builder{converter.getFirOpBuilder()},
        stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}

  explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
                             Fortran::lower::StatementContext &stmtCtx,
                             Fortran::lower::SymMap &symMap,
                             ConstituentSemantics sem,
                             Fortran::lower::ExplicitIterSpace *expSpace,
                             Fortran::lower::ImplicitIterSpace *impSpace)
      : converter{converter}, builder{converter.getFirOpBuilder()},
        stmtCtx{stmtCtx}, symMap{symMap},
        explicitSpace((expSpace && expSpace->isActive()) ? expSpace : nullptr),
        implicitSpace((impSpace && !impSpace->empty()) ? impSpace : nullptr),
        semant{sem} {
    // Generate any mask expressions, as necessary. This is the compute step
    // that creates the effective masks. See 10.2.3.2 in particular.
    genMasks();
  }

  mlir::Location getLoc() { return converter.getCurrentLocation(); }

  /// Array appears in a lhs context such that it is assigned after the rhs is
  /// fully evaluated.
  inline bool isCopyInCopyOut() {
    return semant == ConstituentSemantics::CopyInCopyOut;
  }

  /// Array appears in a lhs (or temp) context such that a projected,
  /// discontiguous subspace of the array is assigned after the rhs is fully
  /// evaluated. That is, the rhs array value is merged into a section of the
  /// lhs array.
  inline bool isProjectedCopyInCopyOut() {
    return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
  }

  // ???: Do we still need this?
  inline bool isCustomCopyInCopyOut() {
    return semant == ConstituentSemantics::CustomCopyInCopyOut;
  }

  /// Are we lowering in a left-hand side context?
  inline bool isLeftHandSide() {
    return isCopyInCopyOut() || isProjectedCopyInCopyOut() ||
           isCustomCopyInCopyOut();
  }

  /// Array appears in a context where it must be boxed.
  inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }

  /// Array appears in a context where differences in the memory reference can
  /// be observable in the computational results. For example, an array
  /// element is passed to an impure procedure.
  inline bool isReferentiallyOpaque() {
    return semant == ConstituentSemantics::RefOpaque;
  }

  /// Array appears in a context where it is passed as a VALUE argument.
  inline bool isValueAttribute() {
    return semant == ConstituentSemantics::ByValueArg;
  }

  /// Can the loops over the expression be unordered?
  inline bool isUnordered() const { return unordered; }

  void setUnordered(bool b) { unordered = b; }

  inline bool isPointerAssignment() const { return lbounds.has_value(); }

  inline bool isBoundsSpec() const {
    return isPointerAssignment() && !ubounds.has_value();
  }

  inline bool isBoundsRemap() const {
    return isPointerAssignment() && ubounds.has_value();
  }

  void setPointerAssignmentBounds(
      const llvm::SmallVector<mlir::Value> &lbs,
      std::optional<llvm::SmallVector<mlir::Value>> ubs) {
    lbounds = lbs;
    ubounds = ubs;
  }

  void setLoweredProcRef(const Fortran::evaluate::ProcedureRef *procRef) {
    loweredProcRef = procRef;
  }

  Fortran::lower::AbstractConverter &converter;
  fir::FirOpBuilder &builder;
  Fortran::lower::StatementContext &stmtCtx;
  bool elementCtx = false;
  Fortran::lower::SymMap &symMap;
  /// The continuation to generate code to update the destination.
  std::optional<CC> ccStoreToDest;
  std::optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
  std::optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
      ccLoadDest;
  /// The destination is the loaded array into which the results will be
  /// merged.
  fir::ArrayLoadOp destination;
  /// The shape of the destination.
  llvm::SmallVector<mlir::Value> destShape;
  /// List of arrays in the expression that have been loaded.
  llvm::SmallVector<ArrayOperand> arrayOperands;
  /// If there is a user-defined iteration space, explicitShape will hold the
  /// information from the front end.
  Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
  Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
  ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
  /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only
  /// occur in an explicit iteration space.
  std::optional<llvm::SmallVector<mlir::Value>> lbounds;
  std::optional<llvm::SmallVector<mlir::Value>> ubounds;
  // Can the array expression be evaluated in any order?
  // Will be set to false if any of the expression parts prevent this.
  bool unordered = true;
  // ProcedureRef currently being lowered. Used to retrieve the iteration shape
  // in elemental context with passed object.
  const Fortran::evaluate::ProcedureRef *loweredProcRef = nullptr;
};
} // namespace

fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
  return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
}

fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
  return ScalarExprLowering{loc, converter, symMap, stmtCtx,
                            /*inInitializer=*/true}
      .genval(expr);
}

fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
  return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr);
}

fir::ExtendedValue Fortran::lower::createInitializerAddress(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
  return ScalarExprLowering(loc, converter, symMap, stmtCtx,
                            /*inInitializer=*/true)
      .gen(expr);
}

void Fortran::lower::createSomeArrayAssignment(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
             rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
  ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
}

void Fortran::lower::createSomeArrayAssignment(
    Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
    const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
             rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
  ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
}
void Fortran::lower::createSomeArrayAssignment(
    Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
    const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
             llvm::dbgs() << "assign expression: " << rhs << '\n';);
  ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
}

void Fortran::lower::createAnyMaskedArrayAssignment(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
    Fortran::lower::ExplicitIterSpace &explicitSpace,
    Fortran::lower::ImplicitIterSpace &implicitSpace,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
             rhs.AsFortran(llvm::dbgs() << "assign expression: ")
             << " given the explicit iteration space:\n"
             << explicitSpace << "\n and implied mask conditions:\n"
             << implicitSpace << '\n';);
  ArrayExprLowering::lowerAnyMaskedArrayAssignment(
      converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
}

void Fortran::lower::createAllocatableArrayAssignment(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
    Fortran::lower::ExplicitIterSpace &explicitSpace,
    Fortran::lower::ImplicitIterSpace &implicitSpace,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
             rhs.AsFortran(llvm::dbgs() << "assign expression: ")
             << " given the explicit iteration space:\n"
             << explicitSpace << "\n and implied mask conditions:\n"
             << implicitSpace << '\n';);
  ArrayExprLowering::lowerAllocatableArrayAssignment(
      converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
}

void Fortran::lower::createArrayOfPointerAssignment(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
    Fortran::lower::ExplicitIterSpace &explicitSpace,
    Fortran::lower::ImplicitIterSpace &implicitSpace,
    const llvm::SmallVector<mlir::Value> &lbounds,
    std::optional<llvm::SmallVector<mlir::Value>> ubounds,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n';
             rhs.AsFortran(llvm::dbgs() << "assign expression: ")
             << " given the explicit iteration space:\n"
             << explicitSpace << "\n and implied mask conditions:\n"
             << implicitSpace << '\n';);
  assert(explicitSpace.isActive() && "must be in FORALL construct");
  ArrayExprLowering::lowerArrayOfPointerAssignment(
      converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace,
      lbounds, ubounds);
}

fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
  return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
                                                    expr);
}

void Fortran::lower::createLazyArrayTempValue(
    Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
  ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr,
                                              raggedHeader);
}

fir::ExtendedValue
Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
                                   const Fortran::lower::SomeExpr &expr,
                                   Fortran::lower::SymMap &symMap,
                                   Fortran::lower::StatementContext &stmtCtx) {
  LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
  return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
                                                      stmtCtx, expr);
}

fir::MutableBoxValue Fortran::lower::createMutableBox(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
  // MutableBox lowering StatementContext does not need to be propagated
  // to the caller because the result value is a variable, not a temporary
  // expression. The StatementContext clean-up can occur before using the
  // resulting MutableBoxValue. Variables of all other types are handled in the
  // bridge.
  Fortran::lower::StatementContext dummyStmtCtx;
  return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
      .genMutableBoxValue(expr);
}

bool Fortran::lower::isParentComponent(const Fortran::lower::SomeExpr &expr) {
  if (const Fortran::semantics::Symbol * symbol{GetLastSymbol(expr)}) {
    if (symbol->test(Fortran::semantics::Symbol::Flag::ParentComp))
      return true;
  }
  return false;
}

// Handling special case where the last component is referring to the
// parent component.
//
// TYPE t
//   integer :: a
// END TYPE
// TYPE, EXTENDS(t) :: t2
//   integer :: b
// END TYPE
// TYPE(t2) :: y(2)
// TYPE(t2) :: a
// y(:)%t  ! just need to update the box with a slice pointing to the first
//         ! component of `t`.
// a%t     ! simple conversion to TYPE(t).
fir::ExtendedValue Fortran::lower::updateBoxForParentComponent(
    Fortran::lower::AbstractConverter &converter, fir::ExtendedValue box,
    const Fortran::lower::SomeExpr &expr) {
  mlir::Location loc = converter.getCurrentLocation();
  auto &builder = converter.getFirOpBuilder();
  mlir::Value boxBase = fir::getBase(box);
  mlir::Operation *op = boxBase.getDefiningOp();
  mlir::Type actualTy = converter.genType(expr);

  if (op) {
    if (auto embox = mlir::dyn_cast<fir::EmboxOp>(op)) {
      auto newBox = builder.create<fir::EmboxOp>(
          loc, fir::BoxType::get(actualTy), embox.getMemref(), embox.getShape(),
          embox.getSlice(), embox.getTypeparams());
      return fir::substBase(box, newBox);
    }
    if (auto rebox = mlir::dyn_cast<fir::ReboxOp>(op)) {
      auto newBox = builder.create<fir::ReboxOp>(
          loc, fir::BoxType::get(actualTy), rebox.getBox(), rebox.getShape(),
          rebox.getSlice());
      return fir::substBase(box, newBox);
    }
  }

  mlir::Value empty;
  mlir::ValueRange emptyRange;
  return builder.create<fir::ReboxOp>(loc, fir::BoxType::get(actualTy), boxBase,
                                      /*shape=*/empty,
                                      /*slice=*/empty);
}

fir::ExtendedValue Fortran::lower::createBoxValue(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
    Fortran::lower::StatementContext &stmtCtx) {
  if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) &&
      !Fortran::evaluate::HasVectorSubscript(expr)) {
    fir::ExtendedValue result =
        Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx);
    if (isParentComponent(expr))
      result = updateBoxForParentComponent(converter, result, expr);
    return result;
  }
  fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress(
      loc, converter, expr, symMap, stmtCtx);
  fir::ExtendedValue result = fir::BoxValue(
      converter.getFirOpBuilder().createBox(loc, addr, addr.isPolymorphic()));
  if (isParentComponent(expr))
    result = updateBoxForParentComponent(converter, result, expr);
  return result;
}

mlir::Value Fortran::lower::createSubroutineCall(
    AbstractConverter &converter, const evaluate::ProcedureRef &call,
    ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace,
    SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) {
  mlir::Location loc = converter.getCurrentLocation();

  if (isUserDefAssignment) {
    assert(call.arguments().size() == 2);
    const auto *lhs = call.arguments()[0].value().UnwrapExpr();
    const auto *rhs = call.arguments()[1].value().UnwrapExpr();
    assert(lhs && rhs &&
           "user defined assignment arguments must be expressions");
    if (call.IsElemental() && lhs->Rank() > 0) {
      // Elemental user defined assignment has special requirements to deal with
      // LHS/RHS overlaps. See 10.2.1.5 p2.
      ArrayExprLowering::lowerElementalUserAssignment(
          converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace,
          call);
    } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) {
      // Scalar defined assignment (elemental or not) in a FORALL context.
      mlir::func::FuncOp func =
          Fortran::lower::CallerInterface(call, converter).getFuncOp();
      ArrayExprLowering::lowerScalarUserAssignment(
          converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs);
    } else if (explicitIterSpace.isActive()) {
      // TODO: need to array fetch/modify sub-arrays?
      TODO(loc, "non elemental user defined array assignment inside FORALL");
    } else {
      if (!implicitIterSpace.empty())
        fir::emitFatalError(
            loc,
            "C1032: user defined assignment inside WHERE must be elemental");
      // Non elemental user defined assignment outside of FORALL and WHERE.
      // FIXME: The non elemental user defined assignment case with array
      // arguments must be take into account potential overlap. So far the front
      // end does not add parentheses around the RHS argument in the call as it
      // should according to 15.4.3.4.3 p2.
      Fortran::lower::createSomeExtendedExpression(
          loc, converter, toEvExpr(call), symMap, stmtCtx);
    }
    return {};
  }

  assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() &&
         "subroutine calls are not allowed inside WHERE and FORALL");

  if (isElementalProcWithArrayArgs(call)) {
    ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx,
                                                toEvExpr(call));
    return {};
  }
  // Simple subroutine call, with potential alternate return.
  auto res = Fortran::lower::createSomeExtendedExpression(
      loc, converter, toEvExpr(call), symMap, stmtCtx);
  return fir::getBase(res);
}

template <typename A>
fir::ArrayLoadOp genArrayLoad(mlir::Location loc,
                              Fortran::lower::AbstractConverter &converter,
                              fir::FirOpBuilder &builder, const A *x,
                              Fortran::lower::SymMap &symMap,
                              Fortran::lower::StatementContext &stmtCtx) {
  auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x);
  mlir::Value addr = fir::getBase(exv);
  mlir::Value shapeOp = builder.createShape(loc, exv);
  mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
  return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp,
                                          /*slice=*/mlir::Value{},
                                          fir::getTypeParams(exv));
}
template <>
fir::ArrayLoadOp
genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
             fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x,
             Fortran::lower::SymMap &symMap,
             Fortran::lower::StatementContext &stmtCtx) {
  if (x->base().IsSymbol())
    return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap,
                        stmtCtx);
  return genArrayLoad(loc, converter, builder, &x->base().GetComponent(),
                      symMap, stmtCtx);
}

void Fortran::lower::createArrayLoads(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) {
  std::size_t counter = esp.getCounter();
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  mlir::Location loc = converter.getCurrentLocation();
  Fortran::lower::StatementContext &stmtCtx = esp.stmtContext();
  // Gen the fir.array_load ops.
  auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp {
    return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx);
  };
  if (esp.lhsBases[counter]) {
    auto &base = *esp.lhsBases[counter];
    auto load = std::visit(genLoad, base);
    esp.initialArgs.push_back(load);
    esp.resetInnerArgs();
    esp.bindLoad(base, load);
  }
  for (const auto &base : esp.rhsBases[counter])
    esp.bindLoad(base, std::visit(genLoad, base));
}

void Fortran::lower::createArrayMergeStores(
    Fortran::lower::AbstractConverter &converter,
    Fortran::lower::ExplicitIterSpace &esp) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  mlir::Location loc = converter.getCurrentLocation();
  builder.setInsertionPointAfter(esp.getOuterLoop());
  // Gen the fir.array_merge_store ops for all LHS arrays.
  for (auto i : llvm::enumerate(esp.getOuterLoop().getResults()))
    if (std::optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) {
      fir::ArrayLoadOp load = *ldOpt;
      builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(),
                                             load.getMemref(), load.getSlice(),
                                             load.getTypeparams());
    }
  if (esp.loopCleanup) {
    (*esp.loopCleanup)(builder);
    esp.loopCleanup = std::nullopt;
  }
  esp.initialArgs.clear();
  esp.innerArgs.clear();
  esp.outerLoop = std::nullopt;
  esp.resetBindings();
  esp.incrementCounter();
}