summaryrefslogtreecommitdiff
path: root/flang/lib/Optimizer/HLFIR/Transforms/ConvertToFIR.cpp
blob: 0225ac3631b9ee517e30f7be0a83f3005d8dbce9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//===- ConvertToFIR.cpp - Convert HLFIR to FIR ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines a pass to lower HLFIR to FIR
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Assign.h"
#include "flang/Optimizer/Builder/Runtime/Inquiry.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/Transforms/DialectConversion.h"

namespace hlfir {
#define GEN_PASS_DEF_CONVERTHLFIRTOFIR
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir

using namespace mlir;

static mlir::Value genAllocatableTempFromSourceBox(mlir::Location loc,
                                                   fir::FirOpBuilder &builder,
                                                   mlir::Value sourceBox) {
  assert(sourceBox.getType().isa<fir::BaseBoxType>() &&
         "must be a base box type");
  // Use the runtime to make a quick and dirty temp with the rhs value.
  // Overkill for scalar rhs that could be done in much more clever ways.
  // Note that temp descriptor must have the allocatable flag set so that
  // the runtime will allocate it with the shape and type parameters of
  // the RHS.
  // This has the huge benefit of dealing with all cases, including
  // polymorphic entities.
  mlir::Type fromHeapType = fir::HeapType::get(
      fir::unwrapRefType(sourceBox.getType().cast<fir::BoxType>().getEleTy()));
  mlir::Type fromBoxHeapType = fir::BoxType::get(fromHeapType);
  auto fromMutableBox = builder.createTemporary(loc, fromBoxHeapType);
  mlir::Value unallocatedBox =
      fir::factory::createUnallocatedBox(builder, loc, fromBoxHeapType, {});
  builder.create<fir::StoreOp>(loc, unallocatedBox, fromMutableBox);
  fir::runtime::genAssign(builder, loc, fromMutableBox, sourceBox);
  mlir::Value copy = builder.create<fir::LoadOp>(loc, fromMutableBox);
  return copy;
}

namespace {
/// May \p lhs alias with \p rhs?
/// TODO: implement HLFIR alias analysis.
class AssignOpConversion : public mlir::OpRewritePattern<hlfir::AssignOp> {
public:
  explicit AssignOpConversion(mlir::MLIRContext *ctx) : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::AssignOp assignOp,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = assignOp->getLoc();
    hlfir::Entity lhs(assignOp.getLhs());
    hlfir::Entity rhs(assignOp.getRhs());
    auto module = assignOp->getParentOfType<mlir::ModuleOp>();
    fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));

    if (rhs.getType().isa<hlfir::ExprType>()) {
      mlir::emitError(loc, "hlfir must be bufferized with --bufferize-hlfir "
                           "pass before being converted to FIR");
      return mlir::failure();
    }
    auto [rhsExv, rhsCleanUp] =
        hlfir::translateToExtendedValue(loc, builder, rhs);
    auto [lhsExv, lhsCleanUp] =
        hlfir::translateToExtendedValue(loc, builder, lhs);
    assert(!lhsCleanUp && !rhsCleanUp &&
           "variable to fir::ExtendedValue must not require cleanup");

    auto emboxRHS = [&](fir::ExtendedValue &rhsExv) -> mlir::Value {
      // There may be overlap between lhs and rhs. The runtime is able to detect
      // and to make a copy of the rhs before modifying the lhs if needed.
      // The code below relies on this and does not do any compile time alias
      // analysis.
      const bool rhsIsValue = fir::isa_trivial(fir::getBase(rhsExv).getType());
      if (rhsIsValue) {
        // createBox can only be called for fir::ExtendedValue that are
        // already in memory. Place the integer/real/complex/logical scalar
        // in memory.
        // The RHS might be i1, which is not supported for emboxing.
        // If LHS is not polymorphic, we may cast the RHS to the LHS type
        // before emboxing. If LHS is polymorphic we have to figure out
        // the data type for RHS emboxing anyway.
        // It is probably a good idea to make sure that the data type
        // of the RHS is always a valid Fortran storage data type.
        // For the time being, just handle i1 explicitly here.
        mlir::Type rhsType = rhs.getFortranElementType();
        mlir::Value rhsVal = fir::getBase(rhsExv);
        if (rhsType == builder.getI1Type()) {
          rhsType = fir::LogicalType::get(builder.getContext(), 4);
          rhsVal = builder.createConvert(loc, rhsType, rhsVal);
        }
        mlir::Value temp = builder.create<fir::AllocaOp>(loc, rhsType);
        builder.create<fir::StoreOp>(loc, rhsVal, temp);
        rhsExv = temp;
      }
      return fir::getBase(builder.createBox(loc, rhsExv));
    };

    if (assignOp.isAllocatableAssignment()) {
      // Whole allocatable assignment: use the runtime to deal with the
      // reallocation.
      mlir::Value from = emboxRHS(rhsExv);
      mlir::Value to = fir::getBase(lhsExv);
      if (assignOp.mustKeepLhsLengthInAllocatableAssignment()) {
        // Indicate the runtime that it should not reallocate in case of length
        // mismatch, and that it should use the LHS explicit/assumed length if
        // allocating/reallocation the LHS.
        fir::runtime::genAssignExplicitLengthCharacter(builder, loc, to, from);
      } else if (lhs.isPolymorphic()) {
        // Indicate the runtime that the LHS must have the RHS dynamic type
        // after the assignment.
        fir::runtime::genAssignPolymorphic(builder, loc, to, from);
      } else {
        fir::runtime::genAssign(builder, loc, to, from);
      }
    } else if (lhs.isArray()) {
      // Use the runtime for simplicity. An optimization pass will be added to
      // inline array assignment when profitable.
      mlir::Value from = emboxRHS(rhsExv);
      mlir::Value to = fir::getBase(builder.createBox(loc, lhsExv));
      // This is not a whole allocatable assignment: the runtime will not
      // reallocate and modify "toMutableBox" even if it is taking it by
      // reference.
      auto toMutableBox = builder.createTemporary(loc, to.getType());
      builder.create<fir::StoreOp>(loc, to, toMutableBox);
      fir::runtime::genAssign(builder, loc, toMutableBox, from);
    } else {
      // Assume overlap does not matter for scalar (dealt with memmove for
      // characters).
      // This is not true if this is a derived type with "recursive" allocatable
      // components, in which case an overlap would matter because the LHS
      // reallocation, if any, may modify the RHS component value before it is
      // copied into the LHS.
      if (fir::isRecordWithAllocatableMember(lhs.getFortranElementType()))
        TODO(loc, "assignment with allocatable components");
      fir::factory::genScalarAssignment(builder, loc, lhsExv, rhsExv);
    }
    rewriter.eraseOp(assignOp);
    return mlir::success();
  }
};

class CopyInOpConversion : public mlir::OpRewritePattern<hlfir::CopyInOp> {
public:
  explicit CopyInOpConversion(mlir::MLIRContext *ctx) : OpRewritePattern{ctx} {}

  struct CopyInResult {
    mlir::Value addr;
    mlir::Value wasCopied;
  };

  static CopyInResult genNonOptionalCopyIn(mlir::Location loc,
                                           fir::FirOpBuilder &builder,
                                           hlfir::CopyInOp copyInOp) {
    mlir::Value inputVariable = copyInOp.getVar();
    mlir::Type resultAddrType = copyInOp.getCopiedIn().getType();
    mlir::Value isContiguous =
        fir::runtime::genIsContiguous(builder, loc, inputVariable);
    mlir::Value addr =
        builder
            .genIfOp(loc, {resultAddrType}, isContiguous,
                     /*withElseRegion=*/true)
            .genThen(
                [&]() { builder.create<fir::ResultOp>(loc, inputVariable); })
            .genElse([&] {
              // Create temporary on the heap. Note that the runtime is used and
              // that is desired: since the data copy happens under a runtime
              // check (for IsContiguous) the copy loops can hardly provide any
              // value to optimizations, instead, the optimizer just wastes
              // compilation time on these loops.
              mlir::Value temp =
                  genAllocatableTempFromSourceBox(loc, builder, inputVariable);
              // Get rid of allocatable flag in the fir.box.
              temp = builder.create<fir::ReboxOp>(loc, resultAddrType, temp,
                                                  /*shape=*/mlir::Value{},
                                                  /*slice=*/mlir::Value{});
              builder.create<fir::ResultOp>(loc, temp);
            })
            .getResults()[0];
    return {addr, builder.genNot(loc, isContiguous)};
  }

  static CopyInResult genOptionalCopyIn(mlir::Location loc,
                                        fir::FirOpBuilder &builder,
                                        hlfir::CopyInOp copyInOp) {
    mlir::Type resultAddrType = copyInOp.getCopiedIn().getType();
    mlir::Value isPresent = copyInOp.getVarIsPresent();
    auto res =
        builder
            .genIfOp(loc, {resultAddrType, builder.getI1Type()}, isPresent,
                     /*withElseRegion=*/true)
            .genThen([&]() {
              CopyInResult res = genNonOptionalCopyIn(loc, builder, copyInOp);
              builder.create<fir::ResultOp>(
                  loc, mlir::ValueRange{res.addr, res.wasCopied});
            })
            .genElse([&] {
              mlir::Value absent =
                  builder.create<fir::AbsentOp>(loc, resultAddrType);
              builder.create<fir::ResultOp>(
                  loc, mlir::ValueRange{absent, isPresent});
            })
            .getResults();
    return {res[0], res[1]};
  }

  mlir::LogicalResult
  matchAndRewrite(hlfir::CopyInOp copyInOp,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = copyInOp.getLoc();
    auto module = copyInOp->getParentOfType<mlir::ModuleOp>();
    fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
    CopyInResult result = copyInOp.getVarIsPresent()
                              ? genOptionalCopyIn(loc, builder, copyInOp)
                              : genNonOptionalCopyIn(loc, builder, copyInOp);
    rewriter.replaceOp(copyInOp, {result.addr, result.wasCopied});
    return mlir::success();
  }
};

class CopyOutOpConversion : public mlir::OpRewritePattern<hlfir::CopyOutOp> {
public:
  explicit CopyOutOpConversion(mlir::MLIRContext *ctx)
      : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::CopyOutOp copyOutOp,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = copyOutOp.getLoc();
    auto module = copyOutOp->getParentOfType<mlir::ModuleOp>();
    fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));

    builder.genIfThen(loc, copyOutOp.getWasCopied())
        .genThen([&]() {
          mlir::Value temp = copyOutOp.getTemp();
          if (mlir::Value var = copyOutOp.getVar()) {
            auto mutableBox = builder.createTemporary(loc, var.getType());
            builder.create<fir::StoreOp>(loc, var, mutableBox);
            // Generate Assign() call to copy data from the temporary
            // to the variable. Note that in case the actual argument
            // is ALLOCATABLE/POINTER the Assign() implementation
            // should not engage its reallocation, because the temporary
            // is rank, shape and type compatible with it (it was created
            // from the variable).
            fir::runtime::genAssign(builder, loc, mutableBox, temp);
          }
          mlir::Type heapType =
              fir::HeapType::get(fir::dyn_cast_ptrOrBoxEleTy(temp.getType()));
          mlir::Value tempAddr =
              builder.create<fir::BoxAddrOp>(loc, heapType, temp);
          builder.create<fir::FreeMemOp>(loc, tempAddr);
        })
        .end();
    rewriter.eraseOp(copyOutOp);
    return mlir::success();
  }
};

class DeclareOpConversion : public mlir::OpRewritePattern<hlfir::DeclareOp> {
public:
  explicit DeclareOpConversion(mlir::MLIRContext *ctx)
      : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::DeclareOp declareOp,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = declareOp->getLoc();
    mlir::Value memref = declareOp.getMemref();
    fir::FortranVariableFlagsAttr fortranAttrs;
    if (auto attrs = declareOp.getFortranAttrs())
      fortranAttrs =
          fir::FortranVariableFlagsAttr::get(rewriter.getContext(), *attrs);
    auto firBase = rewriter
                       .create<fir::DeclareOp>(
                           loc, memref.getType(), memref, declareOp.getShape(),
                           declareOp.getTypeparams(), declareOp.getUniqName(),
                           fortranAttrs)
                       .getResult();
    mlir::Value hlfirBase;
    mlir::Type hlfirBaseType = declareOp.getBase().getType();
    if (hlfirBaseType.isa<fir::BaseBoxType>()) {
      auto module = declareOp->getParentOfType<mlir::ModuleOp>();
      fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
      // Helper to generate the hlfir fir.box with the local lower bounds and
      // type parameters.
      auto genHlfirBox = [&]() -> mlir::Value {
        if (!firBase.getType().isa<fir::BaseBoxType>()) {
          llvm::SmallVector<mlir::Value> typeParams;
          auto maybeCharType =
              fir::unwrapSequenceType(fir::unwrapPassByRefType(hlfirBaseType))
                  .dyn_cast<fir::CharacterType>();
          if (!maybeCharType || maybeCharType.hasDynamicLen())
            typeParams.append(declareOp.getTypeparams().begin(),
                              declareOp.getTypeparams().end());
          return builder.create<fir::EmboxOp>(
              loc, hlfirBaseType, firBase, declareOp.getShape(),
              /*slice=*/mlir::Value{}, typeParams);
        } else {
          // Rebox so that lower bounds are correct.
          return builder.create<fir::ReboxOp>(loc, hlfirBaseType, firBase,
                                              declareOp.getShape(),
                                              /*slice=*/mlir::Value{});
        }
      };
      if (!mlir::cast<fir::FortranVariableOpInterface>(declareOp.getOperation())
               .isOptional()) {
        hlfirBase = genHlfirBox();
      } else {
        // Need to conditionally rebox/embox the optional: the input fir.box
        // may be null and the rebox would be illegal. It is also important to
        // preserve the optional aspect: the hlfir fir.box should be null if
        // the entity is absent so that later fir.is_present on the hlfir base
        // are valid.
        mlir::Value isPresent =
            builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), firBase);
        hlfirBase = builder
                        .genIfOp(loc, {hlfirBaseType}, isPresent,
                                 /*withElseRegion=*/true)
                        .genThen([&] {
                          builder.create<fir::ResultOp>(loc, genHlfirBox());
                        })
                        .genElse([&]() {
                          mlir::Value absent =
                              builder.create<fir::AbsentOp>(loc, hlfirBaseType);
                          builder.create<fir::ResultOp>(loc, absent);
                        })
                        .getResults()[0];
      }
    } else if (hlfirBaseType.isa<fir::BoxCharType>()) {
      assert(declareOp.getTypeparams().size() == 1 &&
             "must contain character length");
      hlfirBase = rewriter.create<fir::EmboxCharOp>(
          loc, hlfirBaseType, firBase, declareOp.getTypeparams()[0]);
    } else {
      if (hlfirBaseType != firBase.getType()) {
        declareOp.emitOpError()
            << "unhandled HLFIR variable type '" << hlfirBaseType << "'\n";
        return mlir::failure();
      }
      hlfirBase = firBase;
    }
    rewriter.replaceOp(declareOp, {hlfirBase, firBase});
    return mlir::success();
  }
};

class DesignateOpConversion
    : public mlir::OpRewritePattern<hlfir::DesignateOp> {
public:
  explicit DesignateOpConversion(mlir::MLIRContext *ctx)
      : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::DesignateOp designate,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = designate.getLoc();
    auto module = designate->getParentOfType<mlir::ModuleOp>();
    fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));

    hlfir::Entity baseEntity(designate.getMemref());

    if (baseEntity.isMutableBox())
      TODO(loc, "hlfir::designate load of pointer or allocatable");

    mlir::Type designateResultType = designate.getResult().getType();
    llvm::SmallVector<mlir::Value> firBaseTypeParameters;
    auto [base, shape] = hlfir::genVariableFirBaseShapeAndParams(
        loc, builder, baseEntity, firBaseTypeParameters);
    mlir::Type baseEleTy = hlfir::getFortranElementType(base.getType());
    mlir::Type resultEleTy = hlfir::getFortranElementType(designateResultType);

    mlir::Value fieldIndex;
    if (designate.getComponent()) {
      mlir::Type baseRecordType = baseEntity.getFortranElementType();
      if (fir::isRecordWithTypeParameters(baseRecordType))
        TODO(loc, "hlfir.designate with a parametrized derived type base");
      fieldIndex = builder.create<fir::FieldIndexOp>(
          loc, fir::FieldType::get(builder.getContext()),
          designate.getComponent().value(), baseRecordType,
          /*typeParams=*/mlir::ValueRange{});
      if (baseEntity.isScalar()) {
        // Component refs of scalar base right away:
        // - scalar%scalar_component [substring|complex_part] or
        // - scalar%static_size_array_comp
        // - scalar%array(indices) [substring| complex part]
        mlir::Type componentType = baseEleTy.cast<fir::RecordType>().getType(
            designate.getComponent().value());
        mlir::Type coorTy = fir::ReferenceType::get(componentType);
        base = builder.create<fir::CoordinateOp>(loc, coorTy, base, fieldIndex);
        if (componentType.isa<fir::BaseBoxType>()) {
          auto variableInterface = mlir::cast<fir::FortranVariableOpInterface>(
              designate.getOperation());
          if (variableInterface.isAllocatable() ||
              variableInterface.isPointer()) {
            rewriter.replaceOp(designate, base);
            return mlir::success();
          }
          TODO(loc,
               "addressing parametrized derived type automatic components");
        }
        baseEleTy = hlfir::getFortranElementType(componentType);
        shape = designate.getComponentShape();
      } else {
        // array%component[(indices) substring|complex part] cases.
        // Component ref of array bases are dealt with below in embox/rebox.
        assert(designateResultType.isa<fir::BaseBoxType>());
      }
    }

    if (designateResultType.isa<fir::BaseBoxType>()) {
      // Generate embox or rebox.
      if (!fir::unwrapPassByRefType(designateResultType)
               .isa<fir::SequenceType>())
        TODO(loc, "addressing polymorphic arrays");
      llvm::SmallVector<mlir::Value> triples;
      llvm::SmallVector<mlir::Value> sliceFields;
      mlir::Type idxTy = builder.getIndexType();
      auto subscripts = designate.getIndices();
      if (fieldIndex && baseEntity.isArray()) {
        // array%scalar_comp or array%array_comp(indices)
        // Generate triples for array(:, :, ...).
        triples = genFullSliceTriples(builder, loc, baseEntity);
        sliceFields.push_back(fieldIndex);
        // Add indices in the field path for "array%array_comp(indices)"
        // case. The indices of components provided to the sliceOp must
        // be zero based (fir.slice has no knowledge of the component
        // lower bounds). The component lower bounds are applied here.
        if (!subscripts.empty()) {
          llvm::SmallVector<mlir::Value> lbounds = hlfir::genLowerbounds(
              loc, builder, designate.getComponentShape(), subscripts.size());
          for (auto [i, lb] : llvm::zip(subscripts, lbounds)) {
            mlir::Value iIdx = builder.createConvert(loc, idxTy, i);
            mlir::Value lbIdx = builder.createConvert(loc, idxTy, lb);
            sliceFields.emplace_back(
                builder.create<mlir::arith::SubIOp>(loc, iIdx, lbIdx));
          }
        }
      } else {
        // Otherwise, this is an array section with triplets.
        auto undef = builder.create<fir::UndefOp>(loc, idxTy);
        unsigned i = 0;
        for (auto isTriplet : designate.getIsTriplet()) {
          triples.push_back(subscripts[i++]);
          if (isTriplet) {
            triples.push_back(subscripts[i++]);
            triples.push_back(subscripts[i++]);
          } else {
            triples.push_back(undef);
            triples.push_back(undef);
          }
        }
      }
      llvm::SmallVector<mlir::Value, 2> substring;
      if (!designate.getSubstring().empty()) {
        substring.push_back(designate.getSubstring()[0]);
        mlir::Type idxTy = builder.getIndexType();
        // fir.slice op substring expects the zero based lower bound.
        mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
        substring[0] = builder.createConvert(loc, idxTy, substring[0]);
        substring[0] =
            builder.create<mlir::arith::SubIOp>(loc, substring[0], one);
        substring.push_back(designate.getTypeparams()[0]);
      }
      if (designate.getComplexPart()) {
        if (triples.empty())
          triples = genFullSliceTriples(builder, loc, baseEntity);
        sliceFields.push_back(builder.createIntegerConstant(
            loc, idxTy, *designate.getComplexPart()));
      }
      mlir::Value slice;
      if (!triples.empty())
        slice =
            builder.create<fir::SliceOp>(loc, triples, sliceFields, substring);
      else
        assert(sliceFields.empty() && substring.empty());
      llvm::SmallVector<mlir::Type> resultType{designateResultType};
      mlir::Value resultBox;
      if (base.getType().isa<fir::BaseBoxType>())
        resultBox =
            builder.create<fir::ReboxOp>(loc, resultType, base, shape, slice);
      else
        resultBox = builder.create<fir::EmboxOp>(loc, resultType, base, shape,
                                                 slice, firBaseTypeParameters);
      rewriter.replaceOp(designate, resultBox);
      return mlir::success();
    }

    // Otherwise, the result is the address of a scalar, or the address of the
    // first element of a contiguous array section with compile time constant
    // shape. The base may be an array, or a scalar.
    mlir::Type resultAddressType = designateResultType;
    if (auto boxCharType = designateResultType.dyn_cast<fir::BoxCharType>())
      resultAddressType = fir::ReferenceType::get(boxCharType.getEleTy());

    // Array element indexing.
    if (!designate.getIndices().empty()) {
      // - array(indices) [substring|complex_part] or
      // - scalar%array_comp(indices) [substring|complex_part]
      // This may be a ranked contiguous array section in which case
      // The first element address is being computed.
      llvm::SmallVector<mlir::Value> firstElementIndices;
      auto indices = designate.getIndices();
      int i = 0;
      for (auto isTriplet : designate.getIsTripletAttr().asArrayRef()) {
        // Coordinate of the first element are the index and triplets lower
        // bounds
        firstElementIndices.push_back(indices[i]);
        i = i + (isTriplet ? 3 : 1);
      }
      mlir::Type arrayCoorType = fir::ReferenceType::get(baseEleTy);
      base = builder.create<fir::ArrayCoorOp>(
          loc, arrayCoorType, base, shape,
          /*slice=*/mlir::Value{}, firstElementIndices, firBaseTypeParameters);
    }

    // Scalar substring (potentially on the previously built array element or
    // component reference).
    if (!designate.getSubstring().empty())
      base = fir::factory::CharacterExprHelper{builder, loc}.genSubstringBase(
          base, designate.getSubstring()[0], resultAddressType);

    // Scalar complex part ref
    if (designate.getComplexPart()) {
      // Sequence types should have already been handled by this point
      assert(!designateResultType.isa<fir::SequenceType>());
      auto index = builder.createIntegerConstant(loc, builder.getIndexType(),
                                                 *designate.getComplexPart());
      auto coorTy = fir::ReferenceType::get(resultEleTy);
      base = builder.create<fir::CoordinateOp>(loc, coorTy, base, index);
    }

    // Cast/embox the computed scalar address if needed.
    if (designateResultType.isa<fir::BoxCharType>()) {
      assert(designate.getTypeparams().size() == 1 &&
             "must have character length");
      auto emboxChar = builder.create<fir::EmboxCharOp>(
          loc, designateResultType, base, designate.getTypeparams()[0]);
      rewriter.replaceOp(designate, emboxChar.getResult());
    } else {
      base = builder.createConvert(loc, designateResultType, base);
      rewriter.replaceOp(designate, base);
    }
    return mlir::success();
  }

private:
  // Generates triple for full slice
  // Used for component and complex part slices when a triple is
  // not specified
  static llvm::SmallVector<mlir::Value>
  genFullSliceTriples(fir::FirOpBuilder &builder, mlir::Location loc,
                      hlfir::Entity baseEntity) {
    llvm::SmallVector<mlir::Value> triples;
    mlir::Type idxTy = builder.getIndexType();
    auto one = builder.createIntegerConstant(loc, idxTy, 1);
    for (auto [lb, ub] : hlfir::genBounds(loc, builder, baseEntity)) {
      triples.push_back(builder.createConvert(loc, idxTy, lb));
      triples.push_back(builder.createConvert(loc, idxTy, ub));
      triples.push_back(one);
    }
    return triples;
  }
};

class ParentComponentOpConversion
    : public mlir::OpRewritePattern<hlfir::ParentComponentOp> {
public:
  explicit ParentComponentOpConversion(mlir::MLIRContext *ctx)
      : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::ParentComponentOp parentComponent,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = parentComponent.getLoc();
    mlir::Type resultType = parentComponent.getType();
    if (!parentComponent.getType().isa<fir::BoxType>()) {
      mlir::Value baseAddr = parentComponent.getMemref();
      // Scalar parent component ref without any length type parameters. The
      // input may be a fir.class if it is polymorphic, since this is a scalar
      // and the output will be monomorphic, the base address can be extracted
      // from the fir.class.
      if (baseAddr.getType().isa<fir::BaseBoxType>())
        baseAddr = rewriter.create<fir::BoxAddrOp>(loc, baseAddr);
      rewriter.replaceOpWithNewOp<fir::ConvertOp>(parentComponent, resultType,
                                                  baseAddr);
      return mlir::success();
    }
    // Array parent component ref or PDTs.
    hlfir::Entity base{parentComponent.getMemref()};
    mlir::Value baseAddr = base.getBase();
    if (!baseAddr.getType().isa<fir::BaseBoxType>()) {
      // Embox cannot directly be used to address parent components: it expects
      // the output type to match the input type when there are no slices. When
      // the types have at least one component, a slice to the first element can
      // be built, and the result set to the parent component type. Just create
      // a fir.box with the base for now since this covers all cases.
      mlir::Type baseBoxType =
          fir::BoxType::get(base.getElementOrSequenceType());
      assert(!base.hasLengthParameters() &&
             "base must be a box if it has any type parameters");
      baseAddr = rewriter.create<fir::EmboxOp>(
          loc, baseBoxType, baseAddr, parentComponent.getShape(),
          /*slice=*/mlir::Value{}, /*typeParams=*/mlir::ValueRange{});
    }
    rewriter.replaceOpWithNewOp<fir::ReboxOp>(parentComponent, resultType,
                                              baseAddr,
                                              /*shape=*/mlir::Value{},
                                              /*slice=*/mlir::Value{});
    return mlir::success();
  }
};

class NoReassocOpConversion
    : public mlir::OpRewritePattern<hlfir::NoReassocOp> {
public:
  explicit NoReassocOpConversion(mlir::MLIRContext *ctx)
      : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::NoReassocOp noreassoc,
                  mlir::PatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<fir::NoReassocOp>(noreassoc,
                                                  noreassoc.getVal());
    return mlir::success();
  }
};

class NullOpConversion : public mlir::OpRewritePattern<hlfir::NullOp> {
public:
  explicit NullOpConversion(mlir::MLIRContext *ctx) : OpRewritePattern{ctx} {}

  mlir::LogicalResult
  matchAndRewrite(hlfir::NullOp nullop,
                  mlir::PatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<fir::ZeroOp>(nullop, nullop.getType());
    return mlir::success();
  }
};

class GetExtentOpConversion
    : public mlir::OpRewritePattern<hlfir::GetExtentOp> {
public:
  using mlir::OpRewritePattern<hlfir::GetExtentOp>::OpRewritePattern;

  mlir::LogicalResult
  matchAndRewrite(hlfir::GetExtentOp getExtentOp,
                  mlir::PatternRewriter &rewriter) const override {
    mlir::Value shape = getExtentOp.getShape();
    mlir::Operation *shapeOp = shape.getDefiningOp();
    // the hlfir.shape_of operation which led to the creation of this get_extent
    // operation should now have been lowered to a fir.shape operation
    if (auto s = mlir::dyn_cast_or_null<fir::ShapeOp>(shapeOp)) {
      fir::ShapeType shapeTy = shape.getType().cast<fir::ShapeType>();
      llvm::APInt dim = getExtentOp.getDim();
      uint64_t dimVal = dim.getLimitedValue(shapeTy.getRank());
      mlir::Value extent = s.getExtents()[dimVal];
      rewriter.replaceOp(getExtentOp, extent);
      return mlir::success();
    }
    return mlir::failure();
  }
};

class ConvertHLFIRtoFIR
    : public hlfir::impl::ConvertHLFIRtoFIRBase<ConvertHLFIRtoFIR> {
public:
  void runOnOperation() override {
    // TODO: like "bufferize-hlfir" pass, runtime signature may be added
    // by this pass. This requires the pass to run on the ModuleOp. It would
    // probably be more optimal to have it run on FuncOp and find a way to
    // generate the signatures in a thread safe way.
    auto module = this->getOperation();
    auto *context = &getContext();
    mlir::RewritePatternSet patterns(context);
    patterns.insert<AssignOpConversion, CopyInOpConversion, CopyOutOpConversion,
                    DeclareOpConversion, DesignateOpConversion,
                    GetExtentOpConversion, NoReassocOpConversion,
                    NullOpConversion, ParentComponentOpConversion>(context);
    mlir::ConversionTarget target(*context);
    target.addIllegalDialect<hlfir::hlfirDialect>();
    target.markUnknownOpDynamicallyLegal(
        [](mlir::Operation *) { return true; });
    if (mlir::failed(mlir::applyPartialConversion(module, target,
                                                  std::move(patterns)))) {
      mlir::emitError(mlir::UnknownLoc::get(context),
                      "failure in HLFIR to FIR conversion pass");
      signalPassFailure();
    }
  }
};

} // namespace

std::unique_ptr<mlir::Pass> hlfir::createConvertHLFIRtoFIRPass() {
  return std::make_unique<ConvertHLFIRtoFIR>();
}