summaryrefslogtreecommitdiff
path: root/flang/lib/Optimizer/Transforms/RewriteLoop.cpp
blob: a28aecfab93e2d7950deaf945870e583e954640f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//===-- RewriteLoop.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/CommandLine.h"

using namespace fir;
using namespace mlir;

namespace {

// Conversion of fir control ops to more primitive control-flow.
//
// FIR loops that cannot be converted to the affine dialect will remain as
// `fir.do_loop` operations.  These can be converted to control-flow operations.

/// Convert `fir.do_loop` to CFG
class CfgLoopConv : public mlir::OpRewritePattern<fir::DoLoopOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
      : mlir::OpRewritePattern<fir::DoLoopOp>(ctx),
        forceLoopToExecuteOnce(forceLoopToExecuteOnce) {}

  mlir::LogicalResult
  matchAndRewrite(DoLoopOp loop,
                  mlir::PatternRewriter &rewriter) const override {
    auto loc = loop.getLoc();

    // Create the start and end blocks that will wrap the DoLoopOp with an
    // initalizer and an end point
    auto *initBlock = rewriter.getInsertionBlock();
    auto initPos = rewriter.getInsertionPoint();
    auto *endBlock = rewriter.splitBlock(initBlock, initPos);

    // Split the first DoLoopOp block in two parts. The part before will be the
    // conditional block since it already has the induction variable and
    // loop-carried values as arguments.
    auto *conditionalBlock = &loop.getRegion().front();
    conditionalBlock->addArgument(rewriter.getIndexType(), loc);
    auto *firstBlock =
        rewriter.splitBlock(conditionalBlock, conditionalBlock->begin());
    auto *lastBlock = &loop.getRegion().back();

    // Move the blocks from the DoLoopOp between initBlock and endBlock
    rewriter.inlineRegionBefore(loop.getRegion(), endBlock);

    // Get loop values from the DoLoopOp
    auto low = loop.getLowerBound();
    auto high = loop.getUpperBound();
    assert(low && high && "must be a Value");
    auto step = loop.getStep();

    // Initalization block
    rewriter.setInsertionPointToEnd(initBlock);
    auto diff = rewriter.create<mlir::arith::SubIOp>(loc, high, low);
    auto distance = rewriter.create<mlir::arith::AddIOp>(loc, diff, step);
    mlir::Value iters =
        rewriter.create<mlir::arith::DivSIOp>(loc, distance, step);

    if (forceLoopToExecuteOnce) {
      auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
      auto cond = rewriter.create<mlir::arith::CmpIOp>(
          loc, arith::CmpIPredicate::sle, iters, zero);
      auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
      iters = rewriter.create<mlir::arith::SelectOp>(loc, cond, one, iters);
    }

    llvm::SmallVector<mlir::Value> loopOperands;
    loopOperands.push_back(low);
    auto operands = loop.getIterOperands();
    loopOperands.append(operands.begin(), operands.end());
    loopOperands.push_back(iters);

    rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopOperands);

    // Last loop block
    auto *terminator = lastBlock->getTerminator();
    rewriter.setInsertionPointToEnd(lastBlock);
    auto iv = conditionalBlock->getArgument(0);
    mlir::Value steppedIndex =
        rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
    assert(steppedIndex && "must be a Value");
    auto lastArg = conditionalBlock->getNumArguments() - 1;
    auto itersLeft = conditionalBlock->getArgument(lastArg);
    auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
    mlir::Value itersMinusOne =
        rewriter.create<mlir::arith::SubIOp>(loc, itersLeft, one);

    llvm::SmallVector<mlir::Value> loopCarried;
    loopCarried.push_back(steppedIndex);
    auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin())
                                      : terminator->operand_begin();
    loopCarried.append(begin, terminator->operand_end());
    loopCarried.push_back(itersMinusOne);
    rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopCarried);
    rewriter.eraseOp(terminator);

    // Conditional block
    rewriter.setInsertionPointToEnd(conditionalBlock);
    auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
    auto comparison = rewriter.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::sgt, itersLeft, zero);

    rewriter.create<mlir::cf::CondBranchOp>(
        loc, comparison, firstBlock, llvm::ArrayRef<mlir::Value>(), endBlock,
        llvm::ArrayRef<mlir::Value>());

    // The result of the loop operation is the values of the condition block
    // arguments except the induction variable on the last iteration.
    auto args = loop.getFinalValue()
                    ? conditionalBlock->getArguments()
                    : conditionalBlock->getArguments().drop_front();
    rewriter.replaceOp(loop, args.drop_back());
    return success();
  }

private:
  bool forceLoopToExecuteOnce;
};

/// Convert `fir.if` to control-flow
class CfgIfConv : public mlir::OpRewritePattern<fir::IfOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
      : mlir::OpRewritePattern<fir::IfOp>(ctx) {}

  mlir::LogicalResult
  matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override {
    auto loc = ifOp.getLoc();

    // Split the block containing the 'fir.if' into two parts.  The part before
    // will contain the condition, the part after will be the continuation
    // point.
    auto *condBlock = rewriter.getInsertionBlock();
    auto opPosition = rewriter.getInsertionPoint();
    auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
    mlir::Block *continueBlock;
    if (ifOp.getNumResults() == 0) {
      continueBlock = remainingOpsBlock;
    } else {
      continueBlock = rewriter.createBlock(
          remainingOpsBlock, ifOp.getResultTypes(),
          llvm::SmallVector<mlir::Location>(ifOp.getNumResults(), loc));
      rewriter.create<mlir::cf::BranchOp>(loc, remainingOpsBlock);
    }

    // Move blocks from the "then" region to the region containing 'fir.if',
    // place it before the continuation block, and branch to it.
    auto &ifOpRegion = ifOp.getThenRegion();
    auto *ifOpBlock = &ifOpRegion.front();
    auto *ifOpTerminator = ifOpRegion.back().getTerminator();
    auto ifOpTerminatorOperands = ifOpTerminator->getOperands();
    rewriter.setInsertionPointToEnd(&ifOpRegion.back());
    rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
                                        ifOpTerminatorOperands);
    rewriter.eraseOp(ifOpTerminator);
    rewriter.inlineRegionBefore(ifOpRegion, continueBlock);

    // Move blocks from the "else" region (if present) to the region containing
    // 'fir.if', place it before the continuation block and branch to it.  It
    // will be placed after the "then" regions.
    auto *otherwiseBlock = continueBlock;
    auto &otherwiseRegion = ifOp.getElseRegion();
    if (!otherwiseRegion.empty()) {
      otherwiseBlock = &otherwiseRegion.front();
      auto *otherwiseTerm = otherwiseRegion.back().getTerminator();
      auto otherwiseTermOperands = otherwiseTerm->getOperands();
      rewriter.setInsertionPointToEnd(&otherwiseRegion.back());
      rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
                                          otherwiseTermOperands);
      rewriter.eraseOp(otherwiseTerm);
      rewriter.inlineRegionBefore(otherwiseRegion, continueBlock);
    }

    rewriter.setInsertionPointToEnd(condBlock);
    rewriter.create<mlir::cf::CondBranchOp>(
        loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef<mlir::Value>(),
        otherwiseBlock, llvm::ArrayRef<mlir::Value>());
    rewriter.replaceOp(ifOp, continueBlock->getArguments());
    return success();
  }
};

/// Convert `fir.iter_while` to control-flow.
class CfgIterWhileConv : public mlir::OpRewritePattern<fir::IterWhileOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
      : mlir::OpRewritePattern<fir::IterWhileOp>(ctx) {}

  mlir::LogicalResult
  matchAndRewrite(fir::IterWhileOp whileOp,
                  mlir::PatternRewriter &rewriter) const override {
    auto loc = whileOp.getLoc();

    // Start by splitting the block containing the 'fir.do_loop' into two parts.
    // The part before will get the init code, the part after will be the end
    // point.
    auto *initBlock = rewriter.getInsertionBlock();
    auto initPosition = rewriter.getInsertionPoint();
    auto *endBlock = rewriter.splitBlock(initBlock, initPosition);

    // Use the first block of the loop body as the condition block since it is
    // the block that has the induction variable and loop-carried values as
    // arguments. Split out all operations from the first block into a new
    // block. Move all body blocks from the loop body region to the region
    // containing the loop.
    auto *conditionBlock = &whileOp.getRegion().front();
    auto *firstBodyBlock =
        rewriter.splitBlock(conditionBlock, conditionBlock->begin());
    auto *lastBodyBlock = &whileOp.getRegion().back();
    rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock);
    auto iv = conditionBlock->getArgument(0);
    auto iterateVar = conditionBlock->getArgument(1);

    // Append the induction variable stepping logic to the last body block and
    // branch back to the condition block. Loop-carried values are taken from
    // operands of the loop terminator.
    auto *terminator = lastBodyBlock->getTerminator();
    rewriter.setInsertionPointToEnd(lastBodyBlock);
    auto step = whileOp.getStep();
    mlir::Value stepped = rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
    assert(stepped && "must be a Value");

    llvm::SmallVector<mlir::Value> loopCarried;
    loopCarried.push_back(stepped);
    auto begin = whileOp.getFinalValue()
                     ? std::next(terminator->operand_begin())
                     : terminator->operand_begin();
    loopCarried.append(begin, terminator->operand_end());
    rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, loopCarried);
    rewriter.eraseOp(terminator);

    // Compute loop bounds before branching to the condition.
    rewriter.setInsertionPointToEnd(initBlock);
    auto lowerBound = whileOp.getLowerBound();
    auto upperBound = whileOp.getUpperBound();
    assert(lowerBound && upperBound && "must be a Value");

    // The initial values of loop-carried values is obtained from the operands
    // of the loop operation.
    llvm::SmallVector<mlir::Value> destOperands;
    destOperands.push_back(lowerBound);
    auto iterOperands = whileOp.getIterOperands();
    destOperands.append(iterOperands.begin(), iterOperands.end());
    rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, destOperands);

    // With the body block done, we can fill in the condition block.
    rewriter.setInsertionPointToEnd(conditionBlock);
    // The comparison depends on the sign of the step value. We fully expect
    // this expression to be folded by the optimizer or LLVM. This expression
    // is written this way so that `step == 0` always returns `false`.
    auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
    auto compl0 = rewriter.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::slt, zero, step);
    auto compl1 = rewriter.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::sle, iv, upperBound);
    auto compl2 = rewriter.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::slt, step, zero);
    auto compl3 = rewriter.create<mlir::arith::CmpIOp>(
        loc, arith::CmpIPredicate::sle, upperBound, iv);
    auto cmp0 = rewriter.create<mlir::arith::AndIOp>(loc, compl0, compl1);
    auto cmp1 = rewriter.create<mlir::arith::AndIOp>(loc, compl2, compl3);
    auto cmp2 = rewriter.create<mlir::arith::OrIOp>(loc, cmp0, cmp1);
    // Remember to AND in the early-exit bool.
    auto comparison =
        rewriter.create<mlir::arith::AndIOp>(loc, iterateVar, cmp2);
    rewriter.create<mlir::cf::CondBranchOp>(
        loc, comparison, firstBodyBlock, llvm::ArrayRef<mlir::Value>(),
        endBlock, llvm::ArrayRef<mlir::Value>());
    // The result of the loop operation is the values of the condition block
    // arguments except the induction variable on the last iteration.
    auto args = whileOp.getFinalValue()
                    ? conditionBlock->getArguments()
                    : conditionBlock->getArguments().drop_front();
    rewriter.replaceOp(whileOp, args);
    return success();
  }
};

/// Convert FIR structured control flow ops to CFG ops.
class CfgConversion : public CFGConversionBase<CfgConversion> {
public:
  void runOnOperation() override {
    auto *context = &getContext();
    mlir::RewritePatternSet patterns(context);
    patterns.insert<CfgLoopConv, CfgIfConv, CfgIterWhileConv>(
        context, forceLoopToExecuteOnce);
    mlir::ConversionTarget target(*context);
    target.addLegalDialect<mlir::AffineDialect, mlir::cf::ControlFlowDialect,
                           FIROpsDialect, mlir::func::FuncDialect>();

    // apply the patterns
    target.addIllegalOp<ResultOp, DoLoopOp, IfOp, IterWhileOp>();
    target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
    if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
                                                  std::move(patterns)))) {
      mlir::emitError(mlir::UnknownLoc::get(context),
                      "error in converting to CFG\n");
      signalPassFailure();
    }
  }
};
} // namespace

/// Convert FIR's structured control flow ops to CFG ops.  This
/// conversion enables the `createLowerToCFGPass` to transform these to CFG
/// form.
std::unique_ptr<mlir::Pass> fir::createFirToCfgPass() {
  return std::make_unique<CfgConversion>();
}