summaryrefslogtreecommitdiff
path: root/flang/lib/Semantics/check-call.cpp
blob: 2d1c167249061fee0753e19c29f8d65daf09fb4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
//===-- lib/Semantics/check-call.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "check-call.h"
#include "definable.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <map>
#include <string>

using namespace Fortran::parser::literals;
namespace characteristics = Fortran::evaluate::characteristics;

namespace Fortran::semantics {

static void CheckImplicitInterfaceArg(evaluate::ActualArgument &arg,
    parser::ContextualMessages &messages, evaluate::FoldingContext &context) {
  auto restorer{
      messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
  if (auto kw{arg.keyword()}) {
    messages.Say(*kw,
        "Keyword '%s=' may not appear in a reference to a procedure with an implicit interface"_err_en_US,
        *kw);
  }
  if (auto type{arg.GetType()}) {
    if (type->IsAssumedType()) {
      messages.Say(
          "Assumed type argument requires an explicit interface"_err_en_US);
    } else if (type->IsPolymorphic()) {
      messages.Say(
          "Polymorphic argument requires an explicit interface"_err_en_US);
    } else if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(type)}) {
      if (!derived->parameters().empty()) {
        messages.Say(
            "Parameterized derived type argument requires an explicit interface"_err_en_US);
      }
    }
  }
  if (const auto *expr{arg.UnwrapExpr()}) {
    if (IsBOZLiteral(*expr)) {
      messages.Say("BOZ argument requires an explicit interface"_err_en_US);
    } else if (evaluate::IsNullPointer(*expr)) {
      messages.Say(
          "Null pointer argument requires an explicit interface"_err_en_US);
    } else if (auto named{evaluate::ExtractNamedEntity(*expr)}) {
      const Symbol &symbol{named->GetLastSymbol()};
      if (symbol.Corank() > 0) {
        messages.Say(
            "Coarray argument requires an explicit interface"_err_en_US);
      }
      if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
        if (details->IsAssumedRank()) {
          messages.Say(
              "Assumed rank argument requires an explicit interface"_err_en_US);
        }
      }
      if (symbol.attrs().test(Attr::ASYNCHRONOUS)) {
        messages.Say(
            "ASYNCHRONOUS argument requires an explicit interface"_err_en_US);
      }
      if (symbol.attrs().test(Attr::VOLATILE)) {
        messages.Say(
            "VOLATILE argument requires an explicit interface"_err_en_US);
      }
    } else if (auto argChars{characteristics::DummyArgument::FromActual(
                   "actual argument", *expr, context)}) {
      const auto *argProcDesignator{
          std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
      if (const auto *argProcSymbol{
              argProcDesignator ? argProcDesignator->GetSymbol() : nullptr}) {
        if (!argChars->IsTypelessIntrinsicDummy() && argProcDesignator &&
            argProcDesignator->IsElemental()) { // C1533
          evaluate::SayWithDeclaration(messages, *argProcSymbol,
              "Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
              argProcSymbol->name());
        } else if (const auto *subp{argProcSymbol->GetUltimate()
                                        .detailsIf<SubprogramDetails>()}) {
          if (subp->stmtFunction()) {
            evaluate::SayWithDeclaration(messages, *argProcSymbol,
                "Statement function '%s' may not be passed as an actual argument"_err_en_US,
                argProcSymbol->name());
          }
        }
      }
    }
  }
}

// When a CHARACTER actual argument is known to be short,
// we extend it on the right with spaces and a warning if
// possible.  When it is long, and not required to be equal,
// the usage conforms to the standard and no warning is needed.
static void CheckCharacterActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::DummyDataObject &dummy,
    characteristics::TypeAndShape &actualType,
    evaluate::FoldingContext &context, parser::ContextualMessages &messages) {
  if (dummy.type.type().category() == TypeCategory::Character &&
      actualType.type().category() == TypeCategory::Character &&
      dummy.type.type().kind() == actualType.type().kind()) {
    if (dummy.type.LEN() && actualType.LEN()) {
      auto dummyLength{
          ToInt64(Fold(context, common::Clone(*dummy.type.LEN())))};
      auto actualLength{
          ToInt64(Fold(context, common::Clone(*actualType.LEN())))};
      if (dummyLength && actualLength && *actualLength != *dummyLength) {
        if (dummy.attrs.test(
                characteristics::DummyDataObject::Attr::Allocatable) ||
            dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer) ||
            dummy.type.attrs().test(
                characteristics::TypeAndShape::Attr::AssumedRank) ||
            dummy.type.attrs().test(
                characteristics::TypeAndShape::Attr::AssumedShape)) {
          // See 15.5.2.4 paragraph 4., 15.5.2.5.
          messages.Say(
              "Actual argument variable length '%jd' does not match the expected length '%jd'"_err_en_US,
              *actualLength, *dummyLength);
        } else if (*actualLength < *dummyLength) {
          if (evaluate::IsVariable(actual)) {
            messages.Say(
                "Actual argument variable length '%jd' is less than expected length '%jd'"_warn_en_US,
                *actualLength, *dummyLength);
          } else {
            messages.Say(
                "Actual argument expression length '%jd' is less than expected length '%jd'"_warn_en_US,
                *actualLength, *dummyLength);
            auto converted{ConvertToType(dummy.type.type(), std::move(actual))};
            CHECK(converted);
            actual = std::move(*converted);
            actualType.set_LEN(SubscriptIntExpr{*dummyLength});
          }
        }
      }
    }
  }
}

// Automatic conversion of different-kind INTEGER scalar actual
// argument expressions (not variables) to INTEGER scalar dummies.
// We return nonstandard INTEGER(8) results from intrinsic functions
// like SIZE() by default in order to facilitate the use of large
// arrays.  Emit a warning when downconverting.
static void ConvertIntegerActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::TypeAndShape &dummyType,
    characteristics::TypeAndShape &actualType,
    parser::ContextualMessages &messages) {
  if (dummyType.type().category() == TypeCategory::Integer &&
      actualType.type().category() == TypeCategory::Integer &&
      dummyType.type().kind() != actualType.type().kind() &&
      GetRank(dummyType.shape()) == 0 && GetRank(actualType.shape()) == 0 &&
      !evaluate::IsVariable(actual)) {
    auto converted{
        evaluate::ConvertToType(dummyType.type(), std::move(actual))};
    CHECK(converted);
    actual = std::move(*converted);
    if (dummyType.type().kind() < actualType.type().kind()) {
      messages.Say(
          "Actual argument scalar expression of type INTEGER(%d) was converted to smaller dummy argument type INTEGER(%d)"_port_en_US,
          actualType.type().kind(), dummyType.type().kind());
    }
    actualType = dummyType;
  }
}

static bool DefersSameTypeParameters(
    const DerivedTypeSpec &actual, const DerivedTypeSpec &dummy) {
  for (const auto &pair : actual.parameters()) {
    const ParamValue &actualValue{pair.second};
    const ParamValue *dummyValue{dummy.FindParameter(pair.first)};
    if (!dummyValue || (actualValue.isDeferred() != dummyValue->isDeferred())) {
      return false;
    }
  }
  return true;
}

static void CheckExplicitDataArg(const characteristics::DummyDataObject &dummy,
    const std::string &dummyName, evaluate::Expr<evaluate::SomeType> &actual,
    characteristics::TypeAndShape &actualType, bool isElemental,
    evaluate::FoldingContext &context, const Scope *scope,
    const evaluate::SpecificIntrinsic *intrinsic,
    bool allowActualArgumentConversions) {

  // Basic type & rank checking
  parser::ContextualMessages &messages{context.messages()};
  CheckCharacterActual(actual, dummy, actualType, context, messages);
  bool dummyIsAllocatable{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable)};
  bool dummyIsPointer{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)};
  bool dummyIsAllocatableOrPointer{dummyIsAllocatable || dummyIsPointer};
  allowActualArgumentConversions &= !dummyIsAllocatableOrPointer;
  if (allowActualArgumentConversions) {
    ConvertIntegerActual(actual, dummy.type, actualType, messages);
  }
  bool typesCompatible{
      (dummy.ignoreTKR.test(common::IgnoreTKR::Type) &&
          (dummy.type.type().category() == TypeCategory::Derived ||
              actualType.type().category() == TypeCategory::Derived ||
              dummy.type.type().category() != actualType.type().category())) ||
      (dummy.ignoreTKR.test(common::IgnoreTKR::Kind) &&
          dummy.type.type().category() == actualType.type().category()) ||
      dummy.type.type().IsTkCompatibleWith(actualType.type())};
  if (!typesCompatible && dummy.type.Rank() == 0 &&
      allowActualArgumentConversions) {
    // Extension: pass Hollerith literal to scalar as if it had been BOZ
    if (auto converted{
            evaluate::HollerithToBOZ(context, actual, dummy.type.type())}) {
      messages.Say(
          "passing Hollerith or character literal as if it were BOZ"_port_en_US);
      actual = *converted;
      actualType.type() = dummy.type.type();
      typesCompatible = true;
    }
  }
  if (typesCompatible) {
    if (isElemental) {
    } else if (dummy.type.attrs().test(
                   characteristics::TypeAndShape::Attr::AssumedRank)) {
    } else if (dummy.ignoreTKR.test(common::IgnoreTKR::Rank)) {
    } else if (dummy.type.Rank() > 0 && !dummyIsAllocatableOrPointer &&
        !dummy.type.attrs().test(
            characteristics::TypeAndShape::Attr::AssumedShape) &&
        !dummy.type.attrs().test(
            characteristics::TypeAndShape::Attr::DeferredShape) &&
        (actualType.Rank() > 0 || IsArrayElement(actual))) {
      // Sequence association (15.5.2.11) applies -- rank need not match
      // if the actual argument is an array or array element designator,
      // and the dummy is an array, but not assumed-shape or an INTENT(IN)
      // pointer that's standing in for an assumed-shape dummy.
    } else {
      // Let CheckConformance accept actual scalars; storage association
      // cases are checked here below.
      CheckConformance(messages, dummy.type.shape(), actualType.shape(),
          dummyIsAllocatableOrPointer
              ? evaluate::CheckConformanceFlags::None
              : evaluate::CheckConformanceFlags::RightScalarExpandable,
          "dummy argument", "actual argument");
    }
  } else {
    const auto &len{actualType.LEN()};
    messages.Say(
        "Actual argument type '%s' is not compatible with dummy argument type '%s'"_err_en_US,
        actualType.type().AsFortran(len ? len->AsFortran() : ""),
        dummy.type.type().AsFortran());
  }

  bool actualIsPolymorphic{actualType.type().IsPolymorphic()};
  bool dummyIsPolymorphic{dummy.type.type().IsPolymorphic()};
  bool actualIsCoindexed{ExtractCoarrayRef(actual).has_value()};
  bool actualIsAssumedSize{actualType.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedSize)};
  bool dummyIsAssumedSize{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedSize)};
  bool dummyIsAsynchronous{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Asynchronous)};
  bool dummyIsVolatile{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Volatile)};
  bool dummyIsValue{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Value)};

  if (actualIsPolymorphic && dummyIsPolymorphic &&
      actualIsCoindexed) { // 15.5.2.4(2)
    messages.Say(
        "Coindexed polymorphic object may not be associated with a polymorphic %s"_err_en_US,
        dummyName);
  }
  if (actualIsPolymorphic && !dummyIsPolymorphic &&
      actualIsAssumedSize) { // 15.5.2.4(2)
    messages.Say(
        "Assumed-size polymorphic array may not be associated with a monomorphic %s"_err_en_US,
        dummyName);
  }

  // Derived type actual argument checks
  const Symbol *actualFirstSymbol{evaluate::GetFirstSymbol(actual)};
  bool actualIsAsynchronous{
      actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::ASYNCHRONOUS)};
  bool actualIsVolatile{
      actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::VOLATILE)};
  if (const auto *derived{evaluate::GetDerivedTypeSpec(actualType.type())}) {
    if (dummy.type.type().IsAssumedType()) {
      if (!derived->parameters().empty()) { // 15.5.2.4(2)
        messages.Say(
            "Actual argument associated with TYPE(*) %s may not have a parameterized derived type"_err_en_US,
            dummyName);
      }
      if (const Symbol *
          tbp{FindImmediateComponent(*derived, [](const Symbol &symbol) {
            return symbol.has<ProcBindingDetails>();
          })}) { // 15.5.2.4(2)
        evaluate::SayWithDeclaration(messages, *tbp,
            "Actual argument associated with TYPE(*) %s may not have type-bound procedure '%s'"_err_en_US,
            dummyName, tbp->name());
      }
      auto finals{FinalsForDerivedTypeInstantiation(*derived)};
      if (!finals.empty()) { // 15.5.2.4(2)
        SourceName name{finals.front()->name()};
        if (auto *msg{messages.Say(
                "Actual argument associated with TYPE(*) %s may not have derived type '%s' with FINAL subroutine '%s'"_err_en_US,
                dummyName, derived->typeSymbol().name(), name)}) {
          msg->Attach(name, "FINAL subroutine '%s' in derived type '%s'"_en_US,
              name, derived->typeSymbol().name());
        }
      }
    }
    if (actualIsCoindexed) {
      if (dummy.intent != common::Intent::In && !dummyIsValue) {
        if (auto bad{
                FindAllocatableUltimateComponent(*derived)}) { // 15.5.2.4(6)
          evaluate::SayWithDeclaration(messages, *bad,
              "Coindexed actual argument with ALLOCATABLE ultimate component '%s' must be associated with a %s with VALUE or INTENT(IN) attributes"_err_en_US,
              bad.BuildResultDesignatorName(), dummyName);
        }
      }
      if (auto coarrayRef{evaluate::ExtractCoarrayRef(actual)}) { // C1537
        const Symbol &coarray{coarrayRef->GetLastSymbol()};
        if (const DeclTypeSpec * type{coarray.GetType()}) {
          if (const DerivedTypeSpec * derived{type->AsDerived()}) {
            if (auto bad{semantics::FindPointerUltimateComponent(*derived)}) {
              evaluate::SayWithDeclaration(messages, coarray,
                  "Coindexed object '%s' with POINTER ultimate component '%s' cannot be associated with %s"_err_en_US,
                  coarray.name(), bad.BuildResultDesignatorName(), dummyName);
            }
          }
        }
      }
    }
    if (actualIsVolatile != dummyIsVolatile) { // 15.5.2.4(22)
      if (auto bad{semantics::FindCoarrayUltimateComponent(*derived)}) {
        evaluate::SayWithDeclaration(messages, *bad,
            "VOLATILE attribute must match for %s when actual argument has a coarray ultimate component '%s'"_err_en_US,
            dummyName, bad.BuildResultDesignatorName());
      }
    }
  }

  // Rank and shape checks
  const auto *actualLastSymbol{evaluate::GetLastSymbol(actual)};
  if (actualLastSymbol) {
    actualLastSymbol = &ResolveAssociations(*actualLastSymbol);
  }
  const ObjectEntityDetails *actualLastObject{actualLastSymbol
          ? actualLastSymbol->detailsIf<ObjectEntityDetails>()
          : nullptr};
  int actualRank{evaluate::GetRank(actualType.shape())};
  bool actualIsPointer{evaluate::IsObjectPointer(actual, context)};
  bool dummyIsAssumedRank{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedRank)};
  if (dummy.type.attrs().test(
          characteristics::TypeAndShape::Attr::AssumedShape)) {
    // 15.5.2.4(16)
    if (actualRank == 0) {
      messages.Say(
          "Scalar actual argument may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    }
    if (actualIsAssumedSize && actualLastSymbol) {
      evaluate::SayWithDeclaration(messages, *actualLastSymbol,
          "Assumed-size array may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    }
  } else if (actualRank == 0 && dummy.type.Rank() > 0 &&
      !dummyIsAllocatableOrPointer) {
    // Actual is scalar, dummy is an array.  15.5.2.4(14), 15.5.2.11
    if (actualIsCoindexed) {
      messages.Say(
          "Coindexed scalar actual argument must be associated with a scalar %s"_err_en_US,
          dummyName);
    }
    bool actualIsArrayElement{IsArrayElement(actual)};
    bool actualIsCKindCharacter{
        actualType.type().category() == TypeCategory::Character &&
        actualType.type().kind() == 1};
    if (!actualIsCKindCharacter) {
      if (!actualIsArrayElement &&
          !(dummy.type.type().IsAssumedType() && dummyIsAssumedSize) &&
          !dummyIsAssumedRank &&
          !dummy.ignoreTKR.test(common::IgnoreTKR::Rank)) {
        messages.Say(
            "Whole scalar actual argument may not be associated with a %s array"_err_en_US,
            dummyName);
      }
      if (actualIsPolymorphic) {
        messages.Say(
            "Polymorphic scalar may not be associated with a %s array"_err_en_US,
            dummyName);
      }
      if (actualIsArrayElement && actualLastSymbol &&
          IsPointer(*actualLastSymbol)) {
        messages.Say(
            "Element of pointer array may not be associated with a %s array"_err_en_US,
            dummyName);
      }
      if (actualLastSymbol && IsAssumedShape(*actualLastSymbol)) {
        messages.Say(
            "Element of assumed-shape array may not be associated with a %s array"_err_en_US,
            dummyName);
      }
    }
  }
  if (actualLastObject && actualLastObject->IsCoarray() &&
      IsAllocatable(*actualLastSymbol) && dummy.intent == common::Intent::Out &&
      !(intrinsic &&
          evaluate::AcceptsIntentOutAllocatableCoarray(
              intrinsic->name))) { // C846
    messages.Say(
        "ALLOCATABLE coarray '%s' may not be associated with INTENT(OUT) %s"_err_en_US,
        actualLastSymbol->name(), dummyName);
  }

  // Definability
  const char *reason{nullptr};
  if (dummy.intent == common::Intent::Out) {
    reason = "INTENT(OUT)";
  } else if (dummy.intent == common::Intent::InOut) {
    reason = "INTENT(IN OUT)";
  }
  if (reason && scope) {
    // Problems with polymorphism are caught in the callee's definition.
    DefinabilityFlags flags{DefinabilityFlag::PolymorphicOkInPure};
    if (isElemental || dummyIsValue) { // 15.5.2.4(21)
      flags.set(DefinabilityFlag::VectorSubscriptIsOk);
    }
    if (actualIsPointer && dummyIsPointer) { // 19.6.8
      flags.set(DefinabilityFlag::PointerDefinition);
    }
    if (auto whyNot{WhyNotDefinable(messages.at(), *scope, flags, actual)}) {
      if (auto *msg{messages.Say(
              "Actual argument associated with %s %s is not definable"_err_en_US,
              reason, dummyName)}) {
        msg->Attach(std::move(*whyNot));
      }
    }
  }

  // technically legal but worth emitting a warning
  // llvm-project issue #58973: constant actual argument passed in where dummy
  // argument is marked volatile
  bool actualIsVariable{evaluate::IsVariable(actual)};
  if (dummyIsVolatile && !actualIsVariable) {
    messages.Say(
        "actual argument associated with VOLATILE %s is not a variable"_warn_en_US,
        dummyName);
  }

  // Cases when temporaries might be needed but must not be permitted.
  bool actualIsContiguous{IsSimplyContiguous(actual, context)};
  bool dummyIsAssumedShape{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedShape)};
  bool dummyIsContiguous{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Contiguous)};
  if ((actualIsAsynchronous || actualIsVolatile) &&
      (dummyIsAsynchronous || dummyIsVolatile) && !dummyIsValue) {
    if (actualIsCoindexed) { // C1538
      messages.Say(
          "Coindexed ASYNCHRONOUS or VOLATILE actual argument may not be associated with %s with ASYNCHRONOUS or VOLATILE attributes unless VALUE"_err_en_US,
          dummyName);
    }
    if (actualRank > 0 && !actualIsContiguous) {
      if (dummyIsContiguous ||
          !(dummyIsAssumedShape || dummyIsAssumedRank ||
              (actualIsPointer && dummyIsPointer))) { // C1539 & C1540
        messages.Say(
            "ASYNCHRONOUS or VOLATILE actual argument that is not simply contiguous may not be associated with a contiguous %s"_err_en_US,
            dummyName);
      }
    }
  }

  // 15.5.2.6 -- dummy is ALLOCATABLE
  bool actualIsAllocatable{evaluate::IsAllocatableDesignator(actual)};
  if (dummyIsAllocatable) {
    if (!actualIsAllocatable) {
      messages.Say(
          "ALLOCATABLE %s must be associated with an ALLOCATABLE actual argument"_err_en_US,
          dummyName);
    }
    if (actualIsAllocatable && actualIsCoindexed &&
        dummy.intent != common::Intent::In) {
      messages.Say(
          "ALLOCATABLE %s must have INTENT(IN) to be associated with a coindexed actual argument"_err_en_US,
          dummyName);
    }
    if (!actualIsCoindexed && actualLastSymbol &&
        actualLastSymbol->Corank() != dummy.type.corank()) {
      messages.Say(
          "ALLOCATABLE %s has corank %d but actual argument has corank %d"_err_en_US,
          dummyName, dummy.type.corank(), actualLastSymbol->Corank());
    }
  }

  // 15.5.2.7 -- dummy is POINTER
  if (dummyIsPointer) {
    if (actualIsPointer || dummy.intent == common::Intent::In) {
      if (scope) {
        semantics::CheckPointerAssignment(
            context, messages.at(), dummyName, dummy, actual, *scope);
      }
    } else if (!actualIsPointer) {
      messages.Say(
          "Actual argument associated with POINTER %s must also be POINTER unless INTENT(IN)"_err_en_US,
          dummyName);
    }
  }

  // 15.5.2.5 -- actual & dummy are both POINTER or both ALLOCATABLE
  if ((actualIsPointer && dummyIsPointer) ||
      (actualIsAllocatable && dummyIsAllocatable)) {
    bool actualIsUnlimited{actualType.type().IsUnlimitedPolymorphic()};
    bool dummyIsUnlimited{dummy.type.type().IsUnlimitedPolymorphic()};
    if (actualIsUnlimited != dummyIsUnlimited) {
      if (typesCompatible) {
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both must be so"_err_en_US);
      }
    } else if (dummyIsPolymorphic != actualIsPolymorphic) {
      if (dummy.intent == common::Intent::In && typesCompatible) {
        // extension: allow with warning, rule is only relevant for definables
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both should be so"_port_en_US);
      } else {
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both must be so"_err_en_US);
      }
    } else if (!actualIsUnlimited && typesCompatible) {
      if (!actualType.type().IsTkCompatibleWith(dummy.type.type())) {
        if (dummy.intent == common::Intent::In) {
          // extension: allow with warning, rule is only relevant for definables
          messages.Say(
              "POINTER or ALLOCATABLE dummy and actual arguments should have the same declared type and kind"_port_en_US);
        } else {
          messages.Say(
              "POINTER or ALLOCATABLE dummy and actual arguments must have the same declared type and kind"_err_en_US);
        }
      }
      // 15.5.2.5(4)
      const auto *derived{evaluate::GetDerivedTypeSpec(actualType.type())};
      if ((derived &&
              !DefersSameTypeParameters(*derived,
                  *evaluate::GetDerivedTypeSpec(dummy.type.type()))) ||
          dummy.type.type().HasDeferredTypeParameter() !=
              actualType.type().HasDeferredTypeParameter()) {
        messages.Say(
            "Dummy and actual arguments must defer the same type parameters when POINTER or ALLOCATABLE"_err_en_US);
      }
    }
  }

  // 15.5.2.8 -- coarray dummy arguments
  if (dummy.type.corank() > 0) {
    if (actualType.corank() == 0) {
      messages.Say(
          "Actual argument associated with coarray %s must be a coarray"_err_en_US,
          dummyName);
    }
    if (dummyIsVolatile) {
      if (!actualIsVolatile) {
        messages.Say(
            "non-VOLATILE coarray may not be associated with VOLATILE coarray %s"_err_en_US,
            dummyName);
      }
    } else {
      if (actualIsVolatile) {
        messages.Say(
            "VOLATILE coarray may not be associated with non-VOLATILE coarray %s"_err_en_US,
            dummyName);
      }
    }
    if (actualRank == dummy.type.Rank() && !actualIsContiguous) {
      if (dummyIsContiguous) {
        messages.Say(
            "Actual argument associated with a CONTIGUOUS coarray %s must be simply contiguous"_err_en_US,
            dummyName);
      } else if (!dummyIsAssumedShape && !dummyIsAssumedRank) {
        messages.Say(
            "Actual argument associated with coarray %s (not assumed shape or rank) must be simply contiguous"_err_en_US,
            dummyName);
      }
    }
  }

  // NULL(MOLD=) checking for non-intrinsic procedures
  bool dummyIsOptional{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Optional)};
  bool actualIsNull{evaluate::IsNullPointer(actual)};
  if (!intrinsic && !dummyIsPointer && !dummyIsOptional && actualIsNull) {
    messages.Say(
        "Actual argument associated with %s may not be null pointer %s"_err_en_US,
        dummyName, actual.AsFortran());
  }

  // Warn about dubious actual argument association with a TARGET dummy argument
  if (dummy.attrs.test(characteristics::DummyDataObject::Attr::Target)) {
    bool actualIsTemp{!actualIsVariable || HasVectorSubscript(actual) ||
        evaluate::ExtractCoarrayRef(actual)};
    if (actualIsTemp) {
      messages.Say(
          "Any pointer associated with TARGET %s during this call will not be associated with the value of '%s' afterwards"_warn_en_US,
          dummyName, actual.AsFortran());
    } else {
      auto actualSymbolVector{GetSymbolVector(actual)};
      if (!evaluate::GetLastTarget(actualSymbolVector)) {
        messages.Say(
            "Any pointer associated with TARGET %s during this call must not be used afterwards, as '%s' is not a target"_warn_en_US,
            dummyName, actual.AsFortran());
      }
    }
  }
}

static void CheckProcedureArg(evaluate::ActualArgument &arg,
    const characteristics::Procedure &proc,
    const characteristics::DummyProcedure &dummy, const std::string &dummyName,
    evaluate::FoldingContext &context) {
  parser::ContextualMessages &messages{context.messages()};
  auto restorer{
      messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
  const characteristics::Procedure &interface { dummy.procedure.value() };
  if (const auto *expr{arg.UnwrapExpr()}) {
    bool dummyIsPointer{
        dummy.attrs.test(characteristics::DummyProcedure::Attr::Pointer)};
    const auto *argProcDesignator{
        std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
    const auto *argProcSymbol{
        argProcDesignator ? argProcDesignator->GetSymbol() : nullptr};
    if (argProcSymbol) {
      if (const auto *subp{
              argProcSymbol->GetUltimate().detailsIf<SubprogramDetails>()}) {
        if (subp->stmtFunction()) {
          evaluate::SayWithDeclaration(messages, *argProcSymbol,
              "Statement function '%s' may not be passed as an actual argument"_err_en_US,
              argProcSymbol->name());
          return;
        }
      } else if (argProcSymbol->has<ProcBindingDetails>()) {
        evaluate::SayWithDeclaration(messages, *argProcSymbol,
            "Procedure binding '%s' passed as an actual argument"_port_en_US,
            argProcSymbol->name());
      }
    }
    if (auto argChars{characteristics::DummyArgument::FromActual(
            "actual argument", *expr, context)}) {
      if (!argChars->IsTypelessIntrinsicDummy()) {
        if (auto *argProc{
                std::get_if<characteristics::DummyProcedure>(&argChars->u)}) {
          characteristics::Procedure &argInterface{argProc->procedure.value()};
          argInterface.attrs.reset(
              characteristics::Procedure::Attr::NullPointer);
          if (!argProcSymbol || argProcSymbol->attrs().test(Attr::INTRINSIC)) {
            // It's ok to pass ELEMENTAL unrestricted intrinsic functions.
            argInterface.attrs.reset(
                characteristics::Procedure::Attr::Elemental);
          } else if (argInterface.attrs.test(
                         characteristics::Procedure::Attr::Elemental)) {
            if (argProcSymbol) { // C1533
              evaluate::SayWithDeclaration(messages, *argProcSymbol,
                  "Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
                  argProcSymbol->name());
              return; // avoid piling on with checks below
            } else {
              argInterface.attrs.reset(
                  characteristics::Procedure::Attr::NullPointer);
            }
          }
          if (interface.HasExplicitInterface()) {
            std::string whyNot;
            if (!interface.IsCompatibleWith(argInterface, &whyNot)) {
              // 15.5.2.9(1): Explicit interfaces must match
              if (argInterface.HasExplicitInterface()) {
                messages.Say(
                    "Actual procedure argument has interface incompatible with %s: %s"_err_en_US,
                    dummyName, whyNot);
                return;
              } else if (proc.IsPure()) {
                messages.Say(
                    "Actual procedure argument for %s of a PURE procedure must have an explicit interface"_err_en_US,
                    dummyName);
              } else {
                messages.Say(
                    "Actual procedure argument has an implicit interface "
                    "which is not known to be compatible with %s which has an "
                    "explicit interface"_warn_en_US,
                    dummyName);
              }
            }
          } else { // 15.5.2.9(2,3)
            if (interface.IsSubroutine() && argInterface.IsFunction()) {
              messages.Say(
                  "Actual argument associated with procedure %s is a function but must be a subroutine"_err_en_US,
                  dummyName);
            } else if (interface.IsFunction()) {
              if (argInterface.IsFunction()) {
                std::string whyNot;
                if (!interface.functionResult->IsCompatibleWith(
                        *argInterface.functionResult, &whyNot)) {
                  messages.Say(
                      "Actual argument function associated with procedure %s is not compatible: %s"_err_en_US,
                      dummyName, whyNot);
                }
              } else if (argInterface.IsSubroutine()) {
                messages.Say(
                    "Actual argument associated with procedure %s is a subroutine but must be a function"_err_en_US,
                    dummyName);
              }
            }
          }
        } else {
          messages.Say(
              "Actual argument associated with procedure %s is not a procedure"_err_en_US,
              dummyName);
        }
      } else if (IsNullPointer(*expr)) {
        if (!dummyIsPointer &&
            !dummy.attrs.test(
                characteristics::DummyProcedure::Attr::Optional)) {
          messages.Say(
              "Actual argument associated with procedure %s is a null pointer"_err_en_US,
              dummyName);
        }
      } else {
        messages.Say(
            "Actual argument associated with procedure %s is typeless"_err_en_US,
            dummyName);
      }
    }
    if (dummyIsPointer && dummy.intent != common::Intent::In) {
      const Symbol *last{GetLastSymbol(*expr)};
      if (last && IsProcedurePointer(*last)) {
        if (dummy.intent != common::Intent::Default &&
            IsIntentIn(last->GetUltimate())) { // 19.6.8
          messages.Say(
              "Actual argument associated with procedure pointer %s may not be INTENT(IN)"_err_en_US,
              dummyName);
        }
      } else if (!(dummy.intent == common::Intent::Default &&
                     IsNullProcedurePointer(*expr))) {
        // 15.5.2.9(5) -- dummy procedure POINTER
        // Interface compatibility has already been checked above
        messages.Say(
            "Actual argument associated with procedure pointer %s must be a POINTER unless INTENT(IN)"_err_en_US,
            dummyName);
      }
    }
  } else {
    messages.Say(
        "Assumed-type argument may not be forwarded as procedure %s"_err_en_US,
        dummyName);
  }
}

// Allow BOZ literal actual arguments when they can be converted to a known
// dummy argument type
static void ConvertBOZLiteralArg(
    evaluate::ActualArgument &arg, const evaluate::DynamicType &type) {
  if (auto *expr{arg.UnwrapExpr()}) {
    if (IsBOZLiteral(*expr)) {
      if (auto converted{evaluate::ConvertToType(type, SomeExpr{*expr})}) {
        arg = std::move(*converted);
      }
    }
  }
}

static void CheckExplicitInterfaceArg(evaluate::ActualArgument &arg,
    const characteristics::DummyArgument &dummy,
    const characteristics::Procedure &proc, evaluate::FoldingContext &context,
    const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic,
    bool allowActualArgumentConversions) {
  auto &messages{context.messages()};
  std::string dummyName{"dummy argument"};
  if (!dummy.name.empty()) {
    dummyName += " '"s + parser::ToLowerCaseLetters(dummy.name) + "='";
  }
  auto restorer{
      messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
  auto checkActualArgForLabel = [&](evaluate::ActualArgument &arg) {
    if (arg.isAlternateReturn()) {
      messages.Say(
          "Alternate return label '%d' cannot be associated with %s"_err_en_US,
          arg.GetLabel(), dummyName);
      return true;
    } else {
      return false;
    }
  };
  common::visit(
      common::visitors{
          [&](const characteristics::DummyDataObject &object) {
            if (!checkActualArgForLabel(arg)) {
              ConvertBOZLiteralArg(arg, object.type.type());
              if (auto *expr{arg.UnwrapExpr()}) {
                if (auto type{characteristics::TypeAndShape::Characterize(
                        *expr, context)}) {
                  arg.set_dummyIntent(object.intent);
                  bool isElemental{
                      object.type.Rank() == 0 && proc.IsElemental()};
                  CheckExplicitDataArg(object, dummyName, *expr, *type,
                      isElemental, context, scope, intrinsic,
                      allowActualArgumentConversions);
                } else if (object.type.type().IsTypelessIntrinsicArgument() &&
                    IsBOZLiteral(*expr)) {
                  // ok
                } else if (object.type.type().IsTypelessIntrinsicArgument() &&
                    evaluate::IsNullObjectPointer(*expr)) {
                  // ok, ASSOCIATED(NULL())
                } else if ((object.attrs.test(characteristics::DummyDataObject::
                                    Attr::Pointer) ||
                               object.attrs.test(characteristics::
                                       DummyDataObject::Attr::Optional)) &&
                    evaluate::IsNullObjectPointer(*expr)) {
                  // ok, FOO(NULL())
                } else if (object.attrs.test(characteristics::DummyDataObject::
                                   Attr::Allocatable) &&
                    evaluate::IsNullPointer(*expr)) {
                  // Unsupported extension that more or less naturally falls
                  // out of other Fortran implementations that pass separate
                  // base address and descriptor address physical arguments
                  messages.Say(
                      "Null actual argument '%s' may not be associated with allocatable %s"_err_en_US,
                      expr->AsFortran(), dummyName);
                } else {
                  messages.Say(
                      "Actual argument '%s' associated with %s is not a variable or typed expression"_err_en_US,
                      expr->AsFortran(), dummyName);
                }
              } else {
                const Symbol &assumed{DEREF(arg.GetAssumedTypeDummy())};
                if (!object.type.type().IsAssumedType()) {
                  messages.Say(
                      "Assumed-type '%s' may be associated only with an assumed-type %s"_err_en_US,
                      assumed.name(), dummyName);
                } else if (object.type.attrs().test(evaluate::characteristics::
                                   TypeAndShape::Attr::AssumedRank) &&
                    !IsAssumedShape(assumed) &&
                    !evaluate::IsAssumedRank(assumed)) {
                  messages.Say( // C711
                      "Assumed-type '%s' must be either assumed shape or assumed rank to be associated with assumed rank %s"_err_en_US,
                      assumed.name(), dummyName);
                }
              }
            }
          },
          [&](const characteristics::DummyProcedure &dummy) {
            if (!checkActualArgForLabel(arg)) {
              CheckProcedureArg(arg, proc, dummy, dummyName, context);
            }
          },
          [&](const characteristics::AlternateReturn &) {
            // All semantic checking is done elsewhere
          },
      },
      dummy.u);
}

static void RearrangeArguments(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, parser::ContextualMessages &messages) {
  CHECK(proc.HasExplicitInterface());
  if (actuals.size() < proc.dummyArguments.size()) {
    actuals.resize(proc.dummyArguments.size());
  } else if (actuals.size() > proc.dummyArguments.size()) {
    messages.Say(
        "Too many actual arguments (%zd) passed to procedure that expects only %zd"_err_en_US,
        actuals.size(), proc.dummyArguments.size());
  }
  std::map<std::string, evaluate::ActualArgument> kwArgs;
  bool anyKeyword{false};
  int which{1};
  for (auto &x : actuals) {
    if (!x) {
    } else if (x->keyword()) {
      auto emplaced{
          kwArgs.try_emplace(x->keyword()->ToString(), std::move(*x))};
      if (!emplaced.second) {
        messages.Say(*x->keyword(),
            "Argument keyword '%s=' appears on more than one effective argument in this procedure reference"_err_en_US,
            *x->keyword());
      }
      x.reset();
      anyKeyword = true;
    } else if (anyKeyword) {
      messages.Say(x ? x->sourceLocation() : std::nullopt,
          "Actual argument #%d without a keyword may not follow any actual argument with a keyword"_err_en_US,
          which);
    }
    ++which;
  }
  if (!kwArgs.empty()) {
    int index{0};
    for (const auto &dummy : proc.dummyArguments) {
      if (!dummy.name.empty()) {
        auto iter{kwArgs.find(dummy.name)};
        if (iter != kwArgs.end()) {
          evaluate::ActualArgument &x{iter->second};
          if (actuals[index]) {
            messages.Say(*x.keyword(),
                "Keyword argument '%s=' has already been specified positionally (#%d) in this procedure reference"_err_en_US,
                *x.keyword(), index + 1);
          } else {
            actuals[index] = std::move(x);
          }
          kwArgs.erase(iter);
        }
      }
      ++index;
    }
    for (auto &bad : kwArgs) {
      evaluate::ActualArgument &x{bad.second};
      messages.Say(*x.keyword(),
          "Argument keyword '%s=' is not recognized for this procedure reference"_err_en_US,
          *x.keyword());
    }
  }
}

// 15.8.1(3) -- In a reference to an elemental procedure, if any argument is an
// array, each actual argument that corresponds to an INTENT(OUT) or
// INTENT(INOUT) dummy argument shall be an array. The actual argument to an
// ELEMENTAL procedure must conform.
static bool CheckElementalConformance(parser::ContextualMessages &messages,
    const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
    evaluate::FoldingContext &context) {
  std::optional<evaluate::Shape> shape;
  std::string shapeName;
  int index{0};
  bool hasArrayArg{false};
  for (const auto &arg : actuals) {
    if (arg && !arg->isAlternateReturn() && arg->Rank() > 0) {
      hasArrayArg = true;
      break;
    }
  }
  for (const auto &arg : actuals) {
    const auto &dummy{proc.dummyArguments.at(index++)};
    if (arg) {
      if (const auto *expr{arg->UnwrapExpr()}) {
        if (auto argShape{evaluate::GetShape(context, *expr)}) {
          if (GetRank(*argShape) > 0) {
            std::string argName{"actual argument ("s + expr->AsFortran() +
                ") corresponding to dummy argument #" + std::to_string(index) +
                " ('" + dummy.name + "')"};
            if (shape) {
              auto tristate{evaluate::CheckConformance(messages, *shape,
                  *argShape, evaluate::CheckConformanceFlags::None,
                  shapeName.c_str(), argName.c_str())};
              if (tristate && !*tristate) {
                return false;
              }
            } else {
              shape = std::move(argShape);
              shapeName = argName;
            }
          } else if ((dummy.GetIntent() == common::Intent::Out ||
                         dummy.GetIntent() == common::Intent::InOut) &&
              hasArrayArg) {
            messages.Say(
                "In an elemental procedure reference with at least one array argument, actual argument %s that corresponds to an INTENT(OUT) or INTENT(INOUT) dummy argument must be an array"_err_en_US,
                expr->AsFortran());
          }
        }
      }
    }
  }
  return true;
}

// ASSOCIATED (16.9.16)
static void CheckAssociated(evaluate::ActualArguments &arguments,
    evaluate::FoldingContext &context, const Scope *scope) {
  bool ok{true};
  if (arguments.size() < 2) {
    return;
  }
  if (const auto &pointerArg{arguments[0]}) {
    if (const auto *pointerExpr{pointerArg->UnwrapExpr()}) {
      const Symbol *pointerSymbol{GetLastSymbol(*pointerExpr)};
      if (pointerSymbol && !IsPointer(*pointerSymbol)) {
        evaluate::AttachDeclaration(
            context.messages().Say(pointerArg->sourceLocation(),
                "POINTER= argument of ASSOCIATED() must be a POINTER"_err_en_US),
            *pointerSymbol);
        return;
      }
      if (const auto &targetArg{arguments[1]}) {
        // The standard requires that the POINTER= argument be a valid LHS for
        // a pointer assignment when the TARGET= argument is present.  This,
        // perhaps unintentionally, excludes function results, including NULL(),
        // from being used there, as well as INTENT(IN) dummy pointers.
        // Allow this usage as a benign extension with a portability warning.
        if (!evaluate::ExtractDataRef(*pointerExpr) &&
            !evaluate::IsProcedurePointer(*pointerExpr)) {
          context.messages().Say(pointerArg->sourceLocation(),
              "POINTER= argument of ASSOCIATED() should be a pointer"_port_en_US);
        } else if (scope) {
          if (auto whyNot{WhyNotDefinable(pointerArg->sourceLocation().value_or(
                                              context.messages().at()),
                  *scope,
                  DefinabilityFlags{DefinabilityFlag::PointerDefinition},
                  *pointerExpr)}) {
            if (auto *msg{context.messages().Say(pointerArg->sourceLocation(),
                    "POINTER= argument of ASSOCIATED() would not be a valid left-hand side of a pointer assignment statement"_port_en_US)}) {
              msg->Attach(std::move(*whyNot));
            }
          }
        }
        const auto *targetExpr{targetArg->UnwrapExpr()};
        if (targetExpr && pointerSymbol) {
          std::optional<characteristics::Procedure> pointerProc, targetProc;
          const auto *targetProcDesignator{
              evaluate::UnwrapExpr<evaluate::ProcedureDesignator>(*targetExpr)};
          const Symbol *targetSymbol{GetLastSymbol(*targetExpr)};
          bool isCall{false};
          std::string targetName;
          if (const auto *targetProcRef{// target is a function call
                  std::get_if<evaluate::ProcedureRef>(&targetExpr->u)}) {
            if (auto targetRefedChars{characteristics::Procedure::Characterize(
                    *targetProcRef, context)}) {
              targetProc = *targetRefedChars;
              targetName = targetProcRef->proc().GetName() + "()";
              isCall = true;
            }
          } else if (targetProcDesignator) {
            targetProc = characteristics::Procedure::Characterize(
                *targetProcDesignator, context);
            targetName = targetProcDesignator->GetName();
          } else if (targetSymbol) {
            if (IsProcedure(*targetSymbol)) {
              // proc that's not a call
              targetProc = characteristics::Procedure::Characterize(
                  *targetSymbol, context);
            }
            targetName = targetSymbol->name().ToString();
          }
          if (pointerSymbol && IsProcedure(*pointerSymbol)) {
            pointerProc = characteristics::Procedure::Characterize(
                *pointerSymbol, context);
          }
          if (pointerProc) {
            if (targetProc) {
              // procedure pointer and procedure target
              std::string whyNot;
              const evaluate::SpecificIntrinsic *specificIntrinsic{nullptr};
              if (targetProcDesignator) {
                specificIntrinsic =
                    targetProcDesignator->GetSpecificIntrinsic();
              }
              if (std::optional<parser::MessageFixedText> msg{
                      CheckProcCompatibility(isCall, pointerProc, &*targetProc,
                          specificIntrinsic, whyNot)}) {
                msg->set_severity(parser::Severity::Warning);
                evaluate::AttachDeclaration(
                    context.messages().Say(std::move(*msg),
                        "pointer '" + pointerSymbol->name().ToString() + "'",
                        targetName, whyNot),
                    *pointerSymbol);
              }
            } else if (!IsNullProcedurePointer(*targetExpr)) {
              // procedure pointer and object target
              evaluate::AttachDeclaration(
                  context.messages().Say(
                      "POINTER= argument '%s' is a procedure pointer but the TARGET= argument '%s' is not a procedure or procedure pointer"_err_en_US,
                      pointerSymbol->name(), targetName),
                  *pointerSymbol);
            }
          } else if (targetProc) {
            // object pointer and procedure target
            evaluate::AttachDeclaration(
                context.messages().Say(
                    "POINTER= argument '%s' is an object pointer but the TARGET= argument '%s' is a procedure designator"_err_en_US,
                    pointerSymbol->name(), targetName),
                *pointerSymbol);
          } else if (targetSymbol) {
            // object pointer and target
            SymbolVector symbols{GetSymbolVector(*targetExpr)};
            CHECK(!symbols.empty());
            if (!evaluate::GetLastTarget(symbols)) {
              parser::Message *msg{context.messages().Say(
                  targetArg->sourceLocation(),
                  "TARGET= argument '%s' must have either the POINTER or the TARGET attribute"_err_en_US,
                  targetExpr->AsFortran())};
              for (SymbolRef ref : symbols) {
                msg = evaluate::AttachDeclaration(msg, *ref);
              }
            } else if (HasVectorSubscript(*targetExpr) ||
                ExtractCoarrayRef(*targetExpr)) {
              context.messages().Say(targetArg->sourceLocation(),
                  "TARGET= argument '%s' may not have a vector subscript or coindexing"_err_en_US,
                  targetExpr->AsFortran());
            }
            if (const auto pointerType{pointerArg->GetType()}) {
              if (const auto targetType{targetArg->GetType()}) {
                ok = pointerType->IsTkCompatibleWith(*targetType);
              }
            }
          }
        }
      }
    }
  } else {
    // No arguments to ASSOCIATED()
    ok = false;
  }
  if (!ok) {
    context.messages().Say(
        "Arguments of ASSOCIATED() must be a POINTER and an optional valid target"_err_en_US);
  }
}

// TRANSFER (16.9.193)
static void CheckTransferOperandType(parser::ContextualMessages &messages,
    const evaluate::DynamicType &type, const char *which) {
  if (type.IsPolymorphic()) {
    messages.Say("%s of TRANSFER is polymorphic"_warn_en_US, which);
  } else if (!type.IsUnlimitedPolymorphic() &&
      type.category() == TypeCategory::Derived) {
    DirectComponentIterator directs{type.GetDerivedTypeSpec()};
    if (auto bad{std::find_if(directs.begin(), directs.end(), IsDescriptor)};
        bad != directs.end()) {
      evaluate::SayWithDeclaration(messages, *bad,
          "%s of TRANSFER contains allocatable or pointer component %s"_warn_en_US,
          which, bad.BuildResultDesignatorName());
    }
  }
}

static void CheckTransfer(evaluate::ActualArguments &arguments,
    evaluate::FoldingContext &context, const Scope *scope) {
  if (arguments.size() >= 2) {
    if (auto source{characteristics::TypeAndShape::Characterize(
            arguments[0], context)}) {
      CheckTransferOperandType(context.messages(), source->type(), "Source");
      if (auto mold{characteristics::TypeAndShape::Characterize(
              arguments[1], context)}) {
        CheckTransferOperandType(context.messages(), mold->type(), "Mold");
        if (mold->Rank() > 0 &&
            evaluate::ToInt64(
                evaluate::Fold(
                    context, mold->MeasureElementSizeInBytes(context, false)))
                    .value_or(1) == 0) {
          if (auto sourceSize{evaluate::ToInt64(evaluate::Fold(
                  context, source->MeasureSizeInBytes(context)))}) {
            if (*sourceSize > 0) {
              context.messages().Say(
                  "Element size of MOLD= array may not be zero when SOURCE= is not empty"_err_en_US);
            }
          } else {
            context.messages().Say(
                "Element size of MOLD= array may not be zero unless SOURCE= is empty"_warn_en_US);
          }
        }
      }
    }
    if (arguments.size() > 2) { // SIZE=
      if (const Symbol *
          whole{UnwrapWholeSymbolOrComponentDataRef(arguments[2])}) {
        if (IsOptional(*whole)) {
          context.messages().Say(
              "SIZE= argument may not be the optional dummy argument '%s'"_err_en_US,
              whole->name());
        } else if (IsAllocatableOrPointer(*whole)) {
          context.messages().Say(
              "SIZE= argument that is allocatable or pointer must be present at execution; parenthesize to silence this warning"_warn_en_US);
        }
      }
    }
  }
}

static void CheckSpecificIntrinsic(evaluate::ActualArguments &arguments,
    evaluate::FoldingContext &context, const Scope *scope,
    const evaluate::SpecificIntrinsic &intrinsic) {
  if (intrinsic.name == "associated") {
    CheckAssociated(arguments, context, scope);
  } else if (intrinsic.name == "transfer") {
    CheckTransfer(arguments, context, scope);
  }
}

static parser::Messages CheckExplicitInterface(
    const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
    const evaluate::FoldingContext &context, const Scope *scope,
    const evaluate::SpecificIntrinsic *intrinsic,
    bool allowActualArgumentConversions) {
  parser::Messages buffer;
  parser::ContextualMessages messages{context.messages().at(), &buffer};
  RearrangeArguments(proc, actuals, messages);
  evaluate::FoldingContext localContext{context, messages};
  if (!buffer.empty()) {
    return buffer;
  }
  int index{0};
  for (auto &actual : actuals) {
    const auto &dummy{proc.dummyArguments.at(index++)};
    if (actual) {
      CheckExplicitInterfaceArg(*actual, dummy, proc, localContext, scope,
          intrinsic, allowActualArgumentConversions);
    } else if (!dummy.IsOptional()) {
      if (dummy.name.empty()) {
        messages.Say(
            "Dummy argument #%d is not OPTIONAL and is not associated with "
            "an actual argument in this procedure reference"_err_en_US,
            index);
      } else {
        messages.Say("Dummy argument '%s=' (#%d) is not OPTIONAL and is not "
                     "associated with an actual argument in this procedure "
                     "reference"_err_en_US,
            dummy.name, index);
      }
    }
  }
  if (proc.IsElemental() && !buffer.AnyFatalError()) {
    CheckElementalConformance(messages, proc, actuals, localContext);
  }
  if (intrinsic) {
    CheckSpecificIntrinsic(actuals, localContext, scope, *intrinsic);
  }
  return buffer;
}

bool CheckInterfaceForGeneric(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, const evaluate::FoldingContext &context,
    bool allowActualArgumentConversions) {
  return proc.HasExplicitInterface() &&
      !CheckExplicitInterface(proc, actuals, context, nullptr, nullptr,
          allowActualArgumentConversions)
           .AnyFatalError();
}

bool CheckArgumentIsConstantExprInRange(
    const evaluate::ActualArguments &actuals, int index, int lowerBound,
    int upperBound, parser::ContextualMessages &messages) {
  CHECK(index >= 0 && static_cast<unsigned>(index) < actuals.size());

  const std::optional<evaluate::ActualArgument> &argOptional{actuals[index]};
  if (!argOptional) {
    DIE("Actual argument should have value");
    return false;
  }

  const evaluate::ActualArgument &arg{argOptional.value()};
  const evaluate::Expr<evaluate::SomeType> *argExpr{arg.UnwrapExpr()};
  CHECK(argExpr != nullptr);

  if (!IsConstantExpr(*argExpr)) {
    messages.Say("Actual argument #%d must be a constant expression"_err_en_US,
        index + 1);
    return false;
  }

  // This does not imply that the kind of the argument is 8. The kind
  // for the intrinsic's argument should have been check prior. This is just
  // a conversion so that we can read the constant value.
  auto scalarValue{evaluate::ToInt64(argExpr)};
  CHECK(scalarValue.has_value());

  if (*scalarValue < lowerBound || *scalarValue > upperBound) {
    messages.Say(
        "Argument #%d must be a constant expression in range %d-%d"_err_en_US,
        index + 1, lowerBound, upperBound);
    return false;
  }
  return true;
}

bool CheckPPCIntrinsic(const Symbol &generic, const Symbol &specific,
    const evaluate::ActualArguments &actuals,
    evaluate::FoldingContext &context) {
  parser::ContextualMessages &messages{context.messages()};

  if (specific.name() == "__ppc_mtfsf") {
    return CheckArgumentIsConstantExprInRange(actuals, 0, 0, 7, messages);
  }
  if (specific.name() == "__ppc_mtfsfi") {
    return CheckArgumentIsConstantExprInRange(actuals, 0, 0, 7, messages) &&
        CheckArgumentIsConstantExprInRange(actuals, 1, 0, 15, messages);
  }
  return false;
}

bool CheckArguments(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, evaluate::FoldingContext &context,
    const Scope &scope, bool treatingExternalAsImplicit,
    const evaluate::SpecificIntrinsic *intrinsic) {
  bool explicitInterface{proc.HasExplicitInterface()};
  parser::ContextualMessages &messages{context.messages()};
  if (!explicitInterface || treatingExternalAsImplicit) {
    parser::Messages buffer;
    {
      auto restorer{messages.SetMessages(buffer)};
      for (auto &actual : actuals) {
        if (actual) {
          CheckImplicitInterfaceArg(*actual, messages, context);
        }
      }
    }
    if (!buffer.empty()) {
      if (auto *msgs{messages.messages()}) {
        msgs->Annex(std::move(buffer));
      }
      return false; // don't pile on
    }
  }
  if (explicitInterface) {
    auto buffer{CheckExplicitInterface(
        proc, actuals, context, &scope, intrinsic, true)};
    if (!buffer.empty()) {
      if (treatingExternalAsImplicit) {
        if (auto *msg{messages.Say(
                "If the procedure's interface were explicit, this reference would be in error"_warn_en_US)}) {
          buffer.AttachTo(*msg, parser::Severity::Because);
        }
      }
      if (auto *msgs{messages.messages()}) {
        msgs->Annex(std::move(buffer));
      }
      return false;
    }
  }
  return true;
}
} // namespace Fortran::semantics