summaryrefslogtreecommitdiff
path: root/flang/runtime/matmul-transpose.cpp
blob: 345e3d8b41ac3301d7ea6949ae5922d9b4fd7485 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//===-- runtime/matmul-transpose.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Implements a fused matmul-transpose operation
//
// There are two main entry points; one establishes a descriptor for the
// result and allocates it, and the other expects a result descriptor that
// points to existing storage.
//
// This implementation must handle all combinations of numeric types and
// kinds (100 - 165 cases depending on the target), plus all combinations
// of logical kinds (16).  A single template undergoes many instantiations
// to cover all of the valid possibilities.
//
// The usefulness of this optimization should be reviewed once Matmul is swapped
// to use the faster BLAS routines.

#include "flang/Runtime/matmul-transpose.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Runtime/c-or-cpp.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include <cstring>

namespace {
using namespace Fortran::runtime;

// Contiguous numeric TRANSPOSE(matrix)*matrix multiplication
//   TRANSPOSE(matrix(n, rows)) * matrix(n,cols) ->
//             matrix(rows, n)  * matrix(n,cols) -> matrix(rows,cols)
// The transpose is implemented by swapping the indices of accesses into the LHS
//
// Straightforward algorithm:
//   DO 1 I = 1, NROWS
//    DO 1 J = 1, NCOLS
//     RES(I,J) = 0
//     DO 1 K = 1, N
//   1  RES(I,J) = RES(I,J) + X(K,I)*Y(K,J)
//
// With loop distribution and transposition to avoid the inner sum
// reduction and to avoid non-unit strides:
//   DO 1 I = 1, NROWS
//    DO 1 J = 1, NCOLS
//   1 RES(I,J) = 0
//   DO 2 J = 1, NCOLS
//    DO 2 I = 1, NROWS
//     DO 2 K = 1, N
//   2  RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) ! loop-invariant last term
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline static void MatrixTransposedTimesMatrix(
    CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
    SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
    SubscriptValue n) {
  using ResultType = CppTypeFor<RCAT, RKIND>;

  std::memset(product, 0, rows * cols * sizeof *product);
  for (SubscriptValue j{0}; j < cols; ++j) {
    for (SubscriptValue i{0}; i < rows; ++i) {
      for (SubscriptValue k{0}; k < n; ++k) {
        ResultType x_ki = static_cast<ResultType>(x[i * n + k]);
        ResultType y_kj = static_cast<ResultType>(y[j * n + k]);
        product[j * rows + i] += x_ki * y_kj;
      }
    }
  }
}

// Contiguous numeric matrix*vector multiplication
//   matrix(rows,n) * column vector(n) -> column vector(rows)
// Straightforward algorithm:
//   DO 1 I = 1, NROWS
//    RES(I) = 0
//    DO 1 K = 1, N
//   1 RES(I) = RES(I) + X(K,I)*Y(K)
// With loop distribution and transposition to avoid the inner
// sum reduction and to avoid non-unit strides:
//   DO 1 I = 1, NROWS
//   1 RES(I) = 0
//   DO 2 I = 1, NROWS
//    DO 2 K = 1, N
//   2 RES(I) = RES(I) + X(K,I)*Y(K)
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline static void MatrixTransposedTimesVector(
    CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
    SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y) {
  using ResultType = CppTypeFor<RCAT, RKIND>;
  std::memset(product, 0, rows * sizeof *product);
  for (SubscriptValue i{0}; i < rows; ++i) {
    for (SubscriptValue k{0}; k < n; ++k) {
      ResultType x_ki = static_cast<ResultType>(x[i * n + k]);
      ResultType y_k = static_cast<ResultType>(y[k]);
      product[i] += x_ki * y_k;
    }
  }
}

// Implements an instance of MATMUL for given argument types.
template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT,
    typename YT>
inline static void DoMatmulTranspose(
    std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result,
    const Descriptor &x, const Descriptor &y, Terminator &terminator) {
  int xRank{x.rank()};
  int yRank{y.rank()};
  int resRank{xRank + yRank - 2};
  if (xRank * yRank != 2 * resRank) {
    terminator.Crash("MATMUL: bad argument ranks (%d * %d)", xRank, yRank);
  }
  SubscriptValue extent[2]{x.GetDimension(1).Extent(),
      resRank == 2 ? y.GetDimension(1).Extent() : 0};
  if constexpr (IS_ALLOCATING) {
    result.Establish(
        RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable);
    for (int j{0}; j < resRank; ++j) {
      result.GetDimension(j).SetBounds(1, extent[j]);
    }
    if (int stat{result.Allocate()}) {
      terminator.Crash(
          "MATMUL: could not allocate memory for result; STAT=%d", stat);
    }
  } else {
    RUNTIME_CHECK(terminator, resRank == result.rank());
    RUNTIME_CHECK(
        terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND));
    RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]);
    RUNTIME_CHECK(terminator,
        resRank == 1 || result.GetDimension(1).Extent() == extent[1]);
  }
  SubscriptValue n{x.GetDimension(0).Extent()};
  if (n != y.GetDimension(0).Extent()) {
    terminator.Crash("MATMUL: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
        static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
        static_cast<std::intmax_t>(x.GetDimension(1).Extent()),
        static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
        static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
  }
  using WriteResult =
      CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT,
          RKIND>;
  const SubscriptValue rows{extent[0]};
  const SubscriptValue cols{extent[1]};
  if constexpr (RCAT != TypeCategory::Logical) {
    if (x.IsContiguous() && y.IsContiguous() &&
        (IS_ALLOCATING || result.IsContiguous())) {
      // Contiguous numeric matrices
      if (resRank == 2) { // M*M -> M
        MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT>(
            result.template OffsetElement<WriteResult>(), rows, cols,
            x.OffsetElement<XT>(), y.OffsetElement<YT>(), n);
        return;
      }
      if (xRank == 2) { // M*V -> V
        MatrixTransposedTimesVector<RCAT, RKIND, XT, YT>(
            result.template OffsetElement<WriteResult>(), rows, n,
            x.OffsetElement<XT>(), y.OffsetElement<YT>());
        return;
      }
      // else V*M -> V (not allowed because TRANSPOSE() is only defined for rank
      // 1 matrices
      terminator.Crash("MATMUL: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
          static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
          static_cast<std::intmax_t>(n),
          static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
          static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
      return;
    }
  }
  // General algorithms for LOGICAL and noncontiguity
  SubscriptValue xLB[2], yLB[2], resLB[2];
  x.GetLowerBounds(xLB);
  y.GetLowerBounds(yLB);
  result.GetLowerBounds(resLB);
  using ResultType = CppTypeFor<RCAT, RKIND>;
  if (resRank == 2) { // M*M -> M
    for (SubscriptValue i{0}; i < rows; ++i) {
      for (SubscriptValue j{0}; j < cols; ++j) {
        ResultType res_ij;
        if constexpr (RCAT == TypeCategory::Logical) {
          res_ij = false;
        } else {
          res_ij = 0;
        }

        for (SubscriptValue k{0}; k < n; ++k) {
          SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
          SubscriptValue yAt[2]{k + yLB[0], j + yLB[1]};
          if constexpr (RCAT == TypeCategory::Logical) {
            ResultType x_ki = IsLogicalElementTrue(x, xAt);
            ResultType y_kj = IsLogicalElementTrue(y, yAt);
            res_ij = res_ij || (x_ki && y_kj);
          } else {
            ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
            ResultType y_kj = static_cast<ResultType>(*y.Element<YT>(yAt));
            res_ij += x_ki * y_kj;
          }
        }
        SubscriptValue resAt[2]{i + resLB[0], j + resLB[1]};
        *result.template Element<WriteResult>(resAt) = res_ij;
      }
    }
  } else if (xRank == 2) { // M*V -> V
    for (SubscriptValue i{0}; i < rows; ++i) {
      ResultType res_i;
      if constexpr (RCAT == TypeCategory::Logical) {
        res_i = false;
      } else {
        res_i = 0;
      }

      for (SubscriptValue k{0}; k < n; ++k) {
        SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
        SubscriptValue yAt[1]{k + yLB[0]};
        if constexpr (RCAT == TypeCategory::Logical) {
          ResultType x_ki = IsLogicalElementTrue(x, xAt);
          ResultType y_k = IsLogicalElementTrue(y, yAt);
          res_i = res_i || (x_ki && y_k);
        } else {
          ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
          ResultType y_k = static_cast<ResultType>(*y.Element<YT>(yAt));
          res_i += x_ki * y_k;
        }
      }
      SubscriptValue resAt[1]{i + resLB[0]};
      *result.template Element<WriteResult>(resAt) = res_i;
    }
  } else { // V*M -> V
    // TRANSPOSE(V) not allowed by fortran standard
    terminator.Crash("MATMUL: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
        static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
        static_cast<std::intmax_t>(n),
        static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
        static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
  }
}

// Maps the dynamic type information from the arguments' descriptors
// to the right instantiation of DoMatmul() for valid combinations of
// types.
template <bool IS_ALLOCATING> struct MatmulTranspose {
  using ResultDescriptor =
      std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>;
  template <TypeCategory XCAT, int XKIND> struct MM1 {
    template <TypeCategory YCAT, int YKIND> struct MM2 {
      void operator()(ResultDescriptor &result, const Descriptor &x,
          const Descriptor &y, Terminator &terminator) const {
        if constexpr (constexpr auto resultType{
                          GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
          if constexpr (Fortran::common::IsNumericTypeCategory(
                            resultType->first) ||
              resultType->first == TypeCategory::Logical) {
            return DoMatmulTranspose<IS_ALLOCATING, resultType->first,
                resultType->second, CppTypeFor<XCAT, XKIND>,
                CppTypeFor<YCAT, YKIND>>(result, x, y, terminator);
          }
        }
        terminator.Crash("MATMUL: bad operand types (%d(%d), %d(%d))",
            static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND);
      }
    };
    void operator()(ResultDescriptor &result, const Descriptor &x,
        const Descriptor &y, Terminator &terminator, TypeCategory yCat,
        int yKind) const {
      ApplyType<MM2, void>(yCat, yKind, terminator, result, x, y, terminator);
    }
  };
  void operator()(ResultDescriptor &result, const Descriptor &x,
      const Descriptor &y, const char *sourceFile, int line) const {
    Terminator terminator{sourceFile, line};
    auto xCatKind{x.type().GetCategoryAndKind()};
    auto yCatKind{y.type().GetCategoryAndKind()};
    RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
    ApplyType<MM1, void>(xCatKind->first, xCatKind->second, terminator, result,
        x, y, terminator, yCatKind->first, yCatKind->second);
  }
};
} // namespace

namespace Fortran::runtime {
extern "C" {
void RTNAME(MatmulTranspose)(Descriptor &result, const Descriptor &x,
    const Descriptor &y, const char *sourceFile, int line) {
  MatmulTranspose<true>{}(result, x, y, sourceFile, line);
}
void RTNAME(MatmulTransposeDirect)(const Descriptor &result,
    const Descriptor &x, const Descriptor &y, const char *sourceFile,
    int line) {
  MatmulTranspose<false>{}(result, x, y, sourceFile, line);
}
} // extern "C"
} // namespace Fortran::runtime