1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
//===-- runtime/matmul.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements all forms of MATMUL (Fortran 2018 16.9.124)
//
// There are two main entry points; one establishes a descriptor for the
// result and allocates it, and the other expects a result descriptor that
// points to existing storage.
//
// This implementation must handle all combinations of numeric types and
// kinds (100 - 165 cases depending on the target), plus all combinations
// of logical kinds (16). A single template undergoes many instantiations
// to cover all of the valid possibilities.
//
// Places where BLAS routines could be called are marked as TODO items.
#include "flang/Runtime/matmul.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Runtime/c-or-cpp.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include <cstring>
namespace Fortran::runtime {
// General accumulator for any type and stride; this is not used for
// contiguous numeric cases.
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
class Accumulator {
public:
using Result = AccumulationType<RCAT, RKIND>;
Accumulator(const Descriptor &x, const Descriptor &y) : x_{x}, y_{y} {}
void Accumulate(const SubscriptValue xAt[], const SubscriptValue yAt[]) {
if constexpr (RCAT == TypeCategory::Logical) {
sum_ = sum_ ||
(IsLogicalElementTrue(x_, xAt) && IsLogicalElementTrue(y_, yAt));
} else {
sum_ += static_cast<Result>(*x_.Element<XT>(xAt)) *
static_cast<Result>(*y_.Element<YT>(yAt));
}
}
Result GetResult() const { return sum_; }
private:
const Descriptor &x_, &y_;
Result sum_{};
};
// Contiguous numeric matrix*matrix multiplication
// matrix(rows,n) * matrix(n,cols) -> matrix(rows,cols)
// Straightforward algorithm:
// DO 1 I = 1, NROWS
// DO 1 J = 1, NCOLS
// RES(I,J) = 0
// DO 1 K = 1, N
// 1 RES(I,J) = RES(I,J) + X(I,K)*Y(K,J)
// With loop distribution and transposition to avoid the inner sum
// reduction and to avoid non-unit strides:
// DO 1 I = 1, NROWS
// DO 1 J = 1, NCOLS
// 1 RES(I,J) = 0
// DO 2 K = 1, N
// DO 2 J = 1, NCOLS
// DO 2 I = 1, NROWS
// 2 RES(I,J) = RES(I,J) + X(I,K)*Y(K,J) ! loop-invariant last term
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline void MatrixTimesMatrix(CppTypeFor<RCAT, RKIND> *RESTRICT product,
SubscriptValue rows, SubscriptValue cols, const XT *RESTRICT x,
const YT *RESTRICT y, SubscriptValue n) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, rows * cols * sizeof *product);
const XT *RESTRICT xp0{x};
for (SubscriptValue k{0}; k < n; ++k) {
ResultType *RESTRICT p{product};
for (SubscriptValue j{0}; j < cols; ++j) {
const XT *RESTRICT xp{xp0};
auto yv{static_cast<ResultType>(y[k + j * n])};
for (SubscriptValue i{0}; i < rows; ++i) {
*p++ += static_cast<ResultType>(*xp++) * yv;
}
}
xp0 += rows;
}
}
// Contiguous numeric matrix*vector multiplication
// matrix(rows,n) * column vector(n) -> column vector(rows)
// Straightforward algorithm:
// DO 1 J = 1, NROWS
// RES(J) = 0
// DO 1 K = 1, N
// 1 RES(J) = RES(J) + X(J,K)*Y(K)
// With loop distribution and transposition to avoid the inner
// sum reduction and to avoid non-unit strides:
// DO 1 J = 1, NROWS
// 1 RES(J) = 0
// DO 2 K = 1, N
// DO 2 J = 1, NROWS
// 2 RES(J) = RES(J) + X(J,K)*Y(K)
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline void MatrixTimesVector(CppTypeFor<RCAT, RKIND> *RESTRICT product,
SubscriptValue rows, SubscriptValue n, const XT *RESTRICT x,
const YT *RESTRICT y) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, rows * sizeof *product);
for (SubscriptValue k{0}; k < n; ++k) {
ResultType *RESTRICT p{product};
auto yv{static_cast<ResultType>(*y++)};
for (SubscriptValue j{0}; j < rows; ++j) {
*p++ += static_cast<ResultType>(*x++) * yv;
}
}
}
// Contiguous numeric vector*matrix multiplication
// row vector(n) * matrix(n,cols) -> row vector(cols)
// Straightforward algorithm:
// DO 1 J = 1, NCOLS
// RES(J) = 0
// DO 1 K = 1, N
// 1 RES(J) = RES(J) + X(K)*Y(K,J)
// With loop distribution and transposition to avoid the inner
// sum reduction and one non-unit stride (the other remains):
// DO 1 J = 1, NCOLS
// 1 RES(J) = 0
// DO 2 K = 1, N
// DO 2 J = 1, NCOLS
// 2 RES(J) = RES(J) + X(K)*Y(K,J)
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline void VectorTimesMatrix(CppTypeFor<RCAT, RKIND> *RESTRICT product,
SubscriptValue n, SubscriptValue cols, const XT *RESTRICT x,
const YT *RESTRICT y) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, cols * sizeof *product);
for (SubscriptValue k{0}; k < n; ++k) {
ResultType *RESTRICT p{product};
auto xv{static_cast<ResultType>(*x++)};
const YT *RESTRICT yp{&y[k]};
for (SubscriptValue j{0}; j < cols; ++j) {
*p++ += xv * static_cast<ResultType>(*yp);
yp += n;
}
}
}
// Implements an instance of MATMUL for given argument types.
template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT,
typename YT>
static inline void DoMatmul(
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result,
const Descriptor &x, const Descriptor &y, Terminator &terminator) {
int xRank{x.rank()};
int yRank{y.rank()};
int resRank{xRank + yRank - 2};
if (xRank * yRank != 2 * resRank) {
terminator.Crash("MATMUL: bad argument ranks (%d * %d)", xRank, yRank);
}
SubscriptValue extent[2]{
xRank == 2 ? x.GetDimension(0).Extent() : y.GetDimension(1).Extent(),
resRank == 2 ? y.GetDimension(1).Extent() : 0};
if constexpr (IS_ALLOCATING) {
result.Establish(
RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable);
for (int j{0}; j < resRank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"MATMUL: could not allocate memory for result; STAT=%d", stat);
}
} else {
RUNTIME_CHECK(terminator, resRank == result.rank());
RUNTIME_CHECK(
terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND));
RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]);
RUNTIME_CHECK(terminator,
resRank == 1 || result.GetDimension(1).Extent() == extent[1]);
}
SubscriptValue n{x.GetDimension(xRank - 1).Extent()};
if (n != y.GetDimension(0).Extent()) {
terminator.Crash("MATMUL: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(n),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
}
using WriteResult =
CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT,
RKIND>;
if constexpr (RCAT != TypeCategory::Logical) {
if (x.IsContiguous() && y.IsContiguous() &&
(IS_ALLOCATING || result.IsContiguous())) {
// Contiguous numeric matrices
if (resRank == 2) { // M*M -> M
if (std::is_same_v<XT, YT>) {
if constexpr (std::is_same_v<XT, float>) {
// TODO: call BLAS-3 SGEMM
} else if constexpr (std::is_same_v<XT, double>) {
// TODO: call BLAS-3 DGEMM
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-3 CGEMM
} else if constexpr (std::is_same_v<XT, std::complex<double>>) {
// TODO: call BLAS-3 ZGEMM
}
}
MatrixTimesMatrix<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), extent[0], extent[1],
x.OffsetElement<XT>(), y.OffsetElement<YT>(), n);
return;
} else if (xRank == 2) { // M*V -> V
if (std::is_same_v<XT, YT>) {
if constexpr (std::is_same_v<XT, float>) {
// TODO: call BLAS-2 SGEMV(x,y)
} else if constexpr (std::is_same_v<XT, double>) {
// TODO: call BLAS-2 DGEMV(x,y)
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-2 CGEMV(x,y)
} else if constexpr (std::is_same_v<XT, std::complex<double>>) {
// TODO: call BLAS-2 ZGEMV(x,y)
}
}
MatrixTimesVector<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), extent[0], n,
x.OffsetElement<XT>(), y.OffsetElement<YT>());
return;
} else { // V*M -> V
if (std::is_same_v<XT, YT>) {
if constexpr (std::is_same_v<XT, float>) {
// TODO: call BLAS-2 SGEMV(y,x)
} else if constexpr (std::is_same_v<XT, double>) {
// TODO: call BLAS-2 DGEMV(y,x)
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-2 CGEMV(y,x)
} else if constexpr (std::is_same_v<XT, std::complex<double>>) {
// TODO: call BLAS-2 ZGEMV(y,x)
}
}
VectorTimesMatrix<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), n, extent[0],
x.OffsetElement<XT>(), y.OffsetElement<YT>());
return;
}
}
}
// General algorithms for LOGICAL and noncontiguity
SubscriptValue xAt[2], yAt[2], resAt[2];
x.GetLowerBounds(xAt);
y.GetLowerBounds(yAt);
result.GetLowerBounds(resAt);
if (resRank == 2) { // M*M -> M
SubscriptValue x1{xAt[1]}, y0{yAt[0]}, y1{yAt[1]}, res1{resAt[1]};
for (SubscriptValue i{0}; i < extent[0]; ++i) {
for (SubscriptValue j{0}; j < extent[1]; ++j) {
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
yAt[1] = y1 + j;
for (SubscriptValue k{0}; k < n; ++k) {
xAt[1] = x1 + k;
yAt[0] = y0 + k;
accumulator.Accumulate(xAt, yAt);
}
resAt[1] = res1 + j;
*result.template Element<WriteResult>(resAt) = accumulator.GetResult();
}
++resAt[0];
++xAt[0];
}
} else if (xRank == 2) { // M*V -> V
SubscriptValue x1{xAt[1]}, y0{yAt[0]};
for (SubscriptValue j{0}; j < extent[0]; ++j) {
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
for (SubscriptValue k{0}; k < n; ++k) {
xAt[1] = x1 + k;
yAt[0] = y0 + k;
accumulator.Accumulate(xAt, yAt);
}
*result.template Element<WriteResult>(resAt) = accumulator.GetResult();
++resAt[0];
++xAt[0];
}
} else { // V*M -> V
SubscriptValue x0{xAt[0]}, y0{yAt[0]};
for (SubscriptValue j{0}; j < extent[0]; ++j) {
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
for (SubscriptValue k{0}; k < n; ++k) {
xAt[0] = x0 + k;
yAt[0] = y0 + k;
accumulator.Accumulate(xAt, yAt);
}
*result.template Element<WriteResult>(resAt) = accumulator.GetResult();
++resAt[0];
++yAt[1];
}
}
}
// Maps the dynamic type information from the arguments' descriptors
// to the right instantiation of DoMatmul() for valid combinations of
// types.
template <bool IS_ALLOCATING> struct Matmul {
using ResultDescriptor =
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>;
template <TypeCategory XCAT, int XKIND> struct MM1 {
template <TypeCategory YCAT, int YKIND> struct MM2 {
void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, Terminator &terminator) const {
if constexpr (constexpr auto resultType{
GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
if constexpr (common::IsNumericTypeCategory(resultType->first) ||
resultType->first == TypeCategory::Logical) {
return DoMatmul<IS_ALLOCATING, resultType->first,
resultType->second, CppTypeFor<XCAT, XKIND>,
CppTypeFor<YCAT, YKIND>>(result, x, y, terminator);
}
}
terminator.Crash("MATMUL: bad operand types (%d(%d), %d(%d))",
static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND);
}
};
void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, Terminator &terminator, TypeCategory yCat,
int yKind) const {
ApplyType<MM2, void>(yCat, yKind, terminator, result, x, y, terminator);
}
};
void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) const {
Terminator terminator{sourceFile, line};
auto xCatKind{x.type().GetCategoryAndKind()};
auto yCatKind{y.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
ApplyType<MM1, void>(xCatKind->first, xCatKind->second, terminator, result,
x, y, terminator, yCatKind->first, yCatKind->second);
}
};
extern "C" {
void RTNAME(Matmul)(Descriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) {
Matmul<true>{}(result, x, y, sourceFile, line);
}
void RTNAME(MatmulDirect)(const Descriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) {
Matmul<false>{}(result, x, y, sourceFile, line);
}
} // extern "C"
} // namespace Fortran::runtime
|