summaryrefslogtreecommitdiff
path: root/libc/src/__support/UInt.h
blob: a702aaad827b2584407651431b0973b89753cfc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//===-- A class to manipulate wide integers. --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_SUPPORT_UINT_H
#define LLVM_LIBC_SRC_SUPPORT_UINT_H

#include "src/__support/CPP/array.h"
#include "src/__support/CPP/limits.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/builtin_wrappers.h"
#include "src/__support/integer_utils.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/number_pair.h"

#include <stddef.h> // For size_t
#include <stdint.h>

namespace __llvm_libc::cpp {

template <size_t Bits> struct UInt {

  static_assert(Bits > 0 && Bits % 64 == 0,
                "Number of bits in UInt should be a multiple of 64.");
  static constexpr size_t WORDCOUNT = Bits / 64;
  uint64_t val[WORDCOUNT]{};

  static constexpr uint64_t MASK32 = 0xFFFFFFFFu;

  static constexpr uint64_t low(uint64_t v) { return v & MASK32; }
  static constexpr uint64_t high(uint64_t v) { return (v >> 32) & MASK32; }

  constexpr UInt() = default;

  constexpr UInt(const UInt<Bits> &other) = default;

  template <size_t OtherBits> constexpr UInt(const UInt<OtherBits> &other) {
    if (OtherBits >= Bits) {
      for (size_t i = 0; i < WORDCOUNT; ++i)
        val[i] = other[i];
    } else {
      size_t i = 0;
      for (; i < OtherBits / 64; ++i)
        val[i] = other[i];
      for (; i < WORDCOUNT; ++i)
        val[i] = 0;
    }
  }

  // Construct a UInt from a C array.
  template <size_t N, enable_if_t<N <= WORDCOUNT, int> = 0>
  constexpr UInt(const uint64_t (&nums)[N]) {
    size_t min_wordcount = N < WORDCOUNT ? N : WORDCOUNT;
    size_t i = 0;
    for (; i < min_wordcount; ++i)
      val[i] = nums[i];

    // If nums doesn't completely fill val, then fill the rest with zeroes.
    for (; i < WORDCOUNT; ++i)
      val[i] = 0;
  }

  // Initialize the first word to |v| and the rest to 0.
  constexpr UInt(uint64_t v) {
    val[0] = v;
    for (size_t i = 1; i < WORDCOUNT; ++i) {
      val[i] = 0;
    }
  }
  constexpr explicit UInt(const cpp::array<uint64_t, WORDCOUNT> &words) {
    for (size_t i = 0; i < WORDCOUNT; ++i)
      val[i] = words[i];
  }

  constexpr explicit operator uint64_t() const { return val[0]; }

  constexpr explicit operator uint32_t() const {
    return uint32_t(uint64_t(*this));
  }

  constexpr explicit operator uint16_t() const {
    return uint16_t(uint64_t(*this));
  }

  constexpr explicit operator uint8_t() const {
    return uint8_t(uint64_t(*this));
  }

  constexpr explicit operator bool() const { return !is_zero(); }

  UInt<Bits> &operator=(const UInt<Bits> &other) = default;

  constexpr bool is_zero() const {
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      if (val[i] != 0)
        return false;
    }
    return true;
  }

  // Add x to this number and store the result in this number.
  // Returns the carry value produced by the addition operation.
  constexpr uint64_t add(const UInt<Bits> &x) {
    SumCarry<uint64_t> s{0, 0};
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      s = add_with_carry(val[i], x.val[i], s.carry);
      val[i] = s.sum;
    }
    return s.carry;
  }

  UInt<Bits> operator+(const UInt<Bits> &other) const {
    UInt<Bits> result;
    SumCarry<uint64_t> s{0, 0};
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      s = add_with_carry(val[i], other.val[i], s.carry);
      result.val[i] = s.sum;
    }
    return result;
  }

  // This will only apply when initializing a variable from constant values, so
  // it will always use the constexpr version of add_with_carry.
  constexpr UInt<Bits> operator+(UInt<Bits> &&other) const {
    UInt<Bits> result;
    SumCarry<uint64_t> s{0, 0};
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      s = add_with_carry_const(val[i], other.val[i], s.carry);
      result.val[i] = s.sum;
    }
    return result;
  }

  constexpr UInt<Bits> &operator+=(const UInt<Bits> &other) {
    add(other); // Returned carry value is ignored.
    return *this;
  }

  // Subtract x to this number and store the result in this number.
  // Returns the carry value produced by the subtraction operation.
  constexpr uint64_t sub(const UInt<Bits> &x) {
    DiffBorrow<uint64_t> d{0, 0};
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      d = sub_with_borrow(val[i], x.val[i], d.borrow);
      val[i] = d.diff;
    }
    return d.borrow;
  }

  UInt<Bits> operator-(const UInt<Bits> &other) const {
    UInt<Bits> result;
    DiffBorrow<uint64_t> d{0, 0};
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      d = sub_with_borrow(val[i], other.val[i], d.borrow);
      result.val[i] = d.diff;
    }
    return result;
  }

  constexpr UInt<Bits> operator-(UInt<Bits> &&other) const {
    UInt<Bits> result;
    DiffBorrow<uint64_t> d{0, 0};
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      d = sub_with_borrow_const(val[i], other.val[i], d.borrow);
      result.val[i] = d.diff;
    }
    return result;
  }

  constexpr UInt<Bits> &operator-=(const UInt<Bits> &other) {
    // TODO(lntue): Set overflow flag / errno when carry is true.
    sub(other);
    return *this;
  }

  // Multiply this number with x and store the result in this number. It is
  // implemented using the long multiplication algorithm by splitting the
  // 64-bit words of this number and |x| in to 32-bit halves but peforming
  // the operations using 64-bit numbers. This ensures that we don't lose the
  // carry bits.
  // Returns the carry value produced by the multiplication operation.
  constexpr uint64_t mul(uint64_t x) {
    UInt<128> partial_sum(0);
    uint64_t carry = 0;
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      NumberPair<uint64_t> prod = full_mul(val[i], x);
      UInt<128> tmp({prod.lo, prod.hi});
      carry += partial_sum.add(tmp);
      val[i] = partial_sum.val[0];
      partial_sum.val[0] = partial_sum.val[1];
      partial_sum.val[1] = carry;
      carry = 0;
    }
    return partial_sum.val[1];
  }

  constexpr UInt<Bits> operator*(const UInt<Bits> &other) const {
    if constexpr (WORDCOUNT == 1) {
      return {val[0] * other.val[0]};
    } else {
      UInt<Bits> result(0);
      UInt<128> partial_sum(0);
      uint64_t carry = 0;
      for (size_t i = 0; i < WORDCOUNT; ++i) {
        for (size_t j = 0; j <= i; j++) {
          NumberPair<uint64_t> prod = full_mul(val[j], other.val[i - j]);
          UInt<128> tmp({prod.lo, prod.hi});
          carry += partial_sum.add(tmp);
        }
        result.val[i] = partial_sum.val[0];
        partial_sum.val[0] = partial_sum.val[1];
        partial_sum.val[1] = carry;
        carry = 0;
      }
      return result;
    }
  }

  // Return the full product.
  template <size_t OtherBits>
  constexpr UInt<Bits + OtherBits> ful_mul(const UInt<OtherBits> &other) const {
    UInt<Bits + OtherBits> result(0);
    UInt<128> partial_sum(0);
    uint64_t carry = 0;
    constexpr size_t OTHER_WORDCOUNT = UInt<OtherBits>::WORDCOUNT;
    for (size_t i = 0; i <= WORDCOUNT + OTHER_WORDCOUNT - 2; ++i) {
      const size_t lower_idx =
          i < OTHER_WORDCOUNT ? 0 : i - OTHER_WORDCOUNT + 1;
      const size_t upper_idx = i < WORDCOUNT ? i : WORDCOUNT - 1;
      for (size_t j = lower_idx; j <= upper_idx; ++j) {
        NumberPair<uint64_t> prod = full_mul(val[j], other.val[i - j]);
        UInt<128> tmp({prod.lo, prod.hi});
        carry += partial_sum.add(tmp);
      }
      result.val[i] = partial_sum.val[0];
      partial_sum.val[0] = partial_sum.val[1];
      partial_sum.val[1] = carry;
      carry = 0;
    }
    result.val[WORDCOUNT + OTHER_WORDCOUNT - 1] = partial_sum.val[0];
    return result;
  }

  // Fast hi part of the full product.  The normal product `operator*` returns
  // `Bits` least significant bits of the full product, while this function will
  // approximate `Bits` most significant bits of the full product with errors
  // bounded by:
  //   0 <= (a.full_mul(b) >> Bits) - a.quick_mul_hi(b)) <= WORDCOUNT - 1.
  //
  // An example usage of this is to quickly (but less accurately) compute the
  // product of (normalized) mantissas of floating point numbers:
  //   (mant_1, mant_2) -> quick_mul_hi -> normalize leading bit
  // is much more efficient than:
  //   (mant_1, mant_2) -> ful_mul -> normalize leading bit
  //                    -> convert back to same Bits width by shifting/rounding,
  // especially for higher precisions.
  //
  // Performance summary:
  //   Number of 64-bit x 64-bit -> 128-bit multiplications performed.
  //   Bits  WORDCOUNT  ful_mul  quick_mul_hi  Error bound
  //    128      2         4           3            1
  //    196      3         9           6            2
  //    256      4        16          10            3
  //    512      8        64          36            7
  constexpr UInt<Bits> quick_mul_hi(const UInt<Bits> &other) const {
    UInt<Bits> result(0);
    UInt<128> partial_sum(0);
    uint64_t carry = 0;
    // First round of accumulation for those at WORDCOUNT - 1 in the full
    // product.
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      NumberPair<uint64_t> prod =
          full_mul(val[i], other.val[WORDCOUNT - 1 - i]);
      UInt<128> tmp({prod.lo, prod.hi});
      carry += partial_sum.add(tmp);
    }
    for (size_t i = WORDCOUNT; i < 2 * WORDCOUNT - 1; ++i) {
      partial_sum.val[0] = partial_sum.val[1];
      partial_sum.val[1] = carry;
      carry = 0;
      for (size_t j = i - WORDCOUNT + 1; j < WORDCOUNT; ++j) {
        NumberPair<uint64_t> prod = full_mul(val[j], other.val[i - j]);
        UInt<128> tmp({prod.lo, prod.hi});
        carry += partial_sum.add(tmp);
      }
      result.val[i - WORDCOUNT] = partial_sum.val[0];
    }
    result.val[WORDCOUNT - 1] = partial_sum.val[1];
    return result;
  }

  // pow takes a power and sets this to its starting value to that power. Zero
  // to the zeroth power returns 1.
  constexpr void pow_n(uint64_t power) {
    UInt<Bits> result = 1;
    UInt<Bits> cur_power = *this;

    while (power > 0) {
      if ((power % 2) > 0) {
        result = result * cur_power;
      }
      power = power >> 1;
      cur_power *= cur_power;
    }
    *this = result;
  }

  // div takes another UInt of the same size and divides this by it. The value
  // of this will be set to the quotient, and the return value is the remainder.
  constexpr optional<UInt<Bits>> div(const UInt<Bits> &other) {
    UInt<Bits> remainder(0);
    if (*this < other) {
      remainder = *this;
      *this = UInt<Bits>(0);
      return remainder;
    }
    if (other == 1) {
      return remainder;
    }
    if (other == 0) {
      return nullopt;
    }

    UInt<Bits> quotient(0);
    UInt<Bits> subtractor = other;
    int cur_bit = subtractor.clz() - this->clz();
    subtractor.shift_left(cur_bit);

    for (; cur_bit >= 0 && *this > 0; --cur_bit, subtractor.shift_right(1)) {
      if (*this >= subtractor) {
        this->sub(subtractor);
        quotient = quotient | (UInt<Bits>(1) << cur_bit);
      }
    }
    remainder = *this;
    *this = quotient;
    return remainder;
  }

  // Efficiently perform UInt / (x * 2^e), where x is a 32-bit unsigned integer,
  // and return the remainder.
  // The main idea is as follow:
  //   Let q = y / (x * 2^e) be the quotient, and
  //       r = y % (x * 2^e) be the remainder.
  //   First, notice that:
  //     r % (2^e) = y % (2^e),
  // so we just need to focus on all the bits of y that is >= 2^e.
  //   To speed up the shift-and-add steps, we only use x as the divisor, and
  // performing 32-bit shiftings instead of bit-by-bit shiftings.
  //   Since the remainder of each division step < x < 2^32, the computation of
  // each step is now properly contained within uint64_t.
  //   And finally we perform some extra alignment steps for the remaining bits.
  constexpr optional<UInt<Bits>> div_uint32_times_pow_2(uint32_t x, size_t e) {
    UInt<Bits> remainder(0);

    if (x == 0) {
      return nullopt;
    }
    if (e >= Bits) {
      remainder = *this;
      *this = UInt<Bits>(0);
      return remainder;
    }

    UInt<Bits> quotient(0);
    uint64_t x64 = static_cast<uint64_t>(x);
    // lower64 = smallest multiple of 64 that is >= e.
    size_t lower64 = ((e >> 6) + ((e & 63) != 0)) << 6;
    // lower_pos is the index of the closest 64-bit chunk >= 2^e.
    size_t lower_pos = lower64 / 64;
    // Keep track of current remainder mod x * 2^(32*i)
    uint64_t rem = 0;
    // pos is the index of the current 64-bit chunk that we are processing.
    size_t pos = WORDCOUNT;

    for (size_t q_pos = WORDCOUNT - lower_pos; q_pos > 0; --q_pos) {
      // q_pos is 1 + the index of the current 64-bit chunk of the quotient
      // being processed.
      // Performing the division / modulus with divisor:
      //   x * 2^(64*q_pos - 32),
      // i.e. using the upper 32-bit of the current 64-bit chunk.
      rem <<= 32;
      rem += val[--pos] >> 32;
      uint64_t q_tmp = rem / x64;
      rem %= x64;

      // Performing the division / modulus with divisor:
      //   x * 2^(64*(q_pos - 1)),
      // i.e. using the lower 32-bit of the current 64-bit chunk.
      rem <<= 32;
      rem += val[pos] & MASK32;
      quotient.val[q_pos - 1] = (q_tmp << 32) + rem / x64;
      rem %= x64;
    }

    // So far, what we have is:
    //   quotient = y / (x * 2^lower64), and
    //        rem = (y % (x * 2^lower64)) / 2^lower64.
    // If (lower64 > e), we will need to perform an extra adjustment of the
    // quotient and remainder, namely:
    //   y / (x * 2^e) = [ y / (x * 2^lower64) ] * 2^(lower64 - e) +
    //                   + (rem * 2^(lower64 - e)) / x
    //   (y % (x * 2^e)) / 2^e = (rem * 2^(lower64 - e)) % x
    size_t last_shift = lower64 - e;

    if (last_shift > 0) {
      // quotient * 2^(lower64 - e)
      quotient <<= last_shift;
      uint64_t q_tmp = 0;
      uint64_t d = val[--pos];
      if (last_shift >= 32) {
        // The shifting (rem * 2^(lower64 - e)) might overflow uint64_t, so we
        // perform a 32-bit shift first.
        rem <<= 32;
        rem += d >> 32;
        d &= MASK32;
        q_tmp = rem / x64;
        rem %= x64;
        last_shift -= 32;
      } else {
        // Only use the upper 32-bit of the current 64-bit chunk.
        d >>= 32;
      }

      if (last_shift > 0) {
        rem <<= 32;
        rem += d;
        q_tmp <<= last_shift;
        x64 <<= 32 - last_shift;
        q_tmp += rem / x64;
        rem %= x64;
      }

      quotient.val[0] += q_tmp;

      if (lower64 - e <= 32) {
        // The remainder rem * 2^(lower64 - e) might overflow to the higher
        // 64-bit chunk.
        if (pos < WORDCOUNT - 1) {
          remainder[pos + 1] = rem >> 32;
        }
        remainder[pos] = (rem << 32) + (val[pos] & MASK32);
      } else {
        remainder[pos] = rem;
      }

    } else {
      remainder[pos] = rem;
    }

    // Set the remaining lower bits of the remainder.
    for (; pos > 0; --pos) {
      remainder[pos - 1] = val[pos - 1];
    }

    *this = quotient;
    return remainder;
  }

  constexpr UInt<Bits> operator/(const UInt<Bits> &other) const {
    UInt<Bits> result(*this);
    result.div(other);
    return result;
  }

  constexpr UInt<Bits> operator%(const UInt<Bits> &other) const {
    UInt<Bits> result(*this);
    return *result.div(other);
  }

  constexpr UInt<Bits> &operator*=(const UInt<Bits> &other) {
    *this = *this * other;
    return *this;
  }

  constexpr uint64_t clz() {
    uint64_t leading_zeroes = 0;
    for (size_t i = WORDCOUNT; i > 0; --i) {
      if (val[i - 1] == 0) {
        leading_zeroes += sizeof(uint64_t) * 8;
      } else {
        leading_zeroes += unsafe_clz(val[i - 1]);
        break;
      }
    }
    return leading_zeroes;
  }

  constexpr void shift_left(size_t s) {
#ifdef __SIZEOF_INT128__
    if constexpr (Bits == 128) {
      // Use builtin 128 bits if available;
      if (s >= 128) {
        val[0] = 0;
        val[1] = 0;
        return;
      }
      __uint128_t tmp = __uint128_t(val[0]) + (__uint128_t(val[1]) << 64);
      tmp <<= s;
      val[0] = uint64_t(tmp);
      val[1] = uint64_t(tmp >> 64);
      return;
    }
#endif // __SIZEOF_INT128__
    if (LIBC_UNLIKELY(s == 0))
      return;

    const size_t drop = s / 64;  // Number of words to drop
    const size_t shift = s % 64; // Bits to shift in the remaining words.
    size_t i = WORDCOUNT;

    if (drop < WORDCOUNT) {
      i = WORDCOUNT - 1;
      if (shift > 0) {
        for (size_t j = WORDCOUNT - 1 - drop; j > 0; --i, --j) {
          val[i] = (val[j] << shift) | (val[j - 1] >> (64 - shift));
        }
        val[i] = val[0] << shift;
      } else {
        for (size_t j = WORDCOUNT - 1 - drop; j > 0; --i, --j) {
          val[i] = val[j];
        }
        val[i] = val[0];
      }
    }

    for (size_t j = 0; j < i; ++j) {
      val[j] = 0;
    }
  }

  constexpr UInt<Bits> operator<<(size_t s) const {
    UInt<Bits> result(*this);
    result.shift_left(s);
    return result;
  }

  constexpr UInt<Bits> &operator<<=(size_t s) {
    shift_left(s);
    return *this;
  }

  constexpr void shift_right(size_t s) {
#ifdef __SIZEOF_INT128__
    if constexpr (Bits == 128) {
      // Use builtin 128 bits if available;
      if (s >= 128) {
        val[0] = 0;
        val[1] = 0;
        return;
      }
      __uint128_t tmp = __uint128_t(val[0]) + (__uint128_t(val[1]) << 64);
      tmp >>= s;
      val[0] = uint64_t(tmp);
      val[1] = uint64_t(tmp >> 64);
      return;
    }
#endif // __SIZEOF_INT128__

    if (LIBC_UNLIKELY(s == 0))
      return;
    const size_t drop = s / 64;  // Number of words to drop
    const size_t shift = s % 64; // Bit shift in the remaining words.

    size_t i = 0;

    if (drop < WORDCOUNT) {
      if (shift > 0) {
        for (size_t j = drop; j < WORDCOUNT - 1; ++i, ++j) {
          val[i] = (val[j] >> shift) | (val[j + 1] << (64 - shift));
        }
        val[i] = val[WORDCOUNT - 1] >> shift;
        ++i;
      } else {
        for (size_t j = drop; j < WORDCOUNT; ++i, ++j) {
          val[i] = val[j];
        }
      }
    }

    for (; i < WORDCOUNT; ++i) {
      val[i] = 0;
    }
  }

  constexpr UInt<Bits> operator>>(size_t s) const {
    UInt<Bits> result(*this);
    result.shift_right(s);
    return result;
  }

  constexpr UInt<Bits> &operator>>=(size_t s) {
    shift_right(s);
    return *this;
  }

  constexpr UInt<Bits> operator&(const UInt<Bits> &other) const {
    UInt<Bits> result;
    for (size_t i = 0; i < WORDCOUNT; ++i)
      result.val[i] = val[i] & other.val[i];
    return result;
  }

  constexpr UInt<Bits> &operator&=(const UInt<Bits> &other) {
    for (size_t i = 0; i < WORDCOUNT; ++i)
      val[i] &= other.val[i];
    return *this;
  }

  constexpr UInt<Bits> operator|(const UInt<Bits> &other) const {
    UInt<Bits> result;
    for (size_t i = 0; i < WORDCOUNT; ++i)
      result.val[i] = val[i] | other.val[i];
    return result;
  }

  constexpr UInt<Bits> &operator|=(const UInt<Bits> &other) {
    for (size_t i = 0; i < WORDCOUNT; ++i)
      val[i] |= other.val[i];
    return *this;
  }

  constexpr UInt<Bits> operator^(const UInt<Bits> &other) const {
    UInt<Bits> result;
    for (size_t i = 0; i < WORDCOUNT; ++i)
      result.val[i] = val[i] ^ other.val[i];
    return result;
  }

  constexpr UInt<Bits> &operator^=(const UInt<Bits> &other) {
    for (size_t i = 0; i < WORDCOUNT; ++i)
      val[i] ^= other.val[i];
    return *this;
  }

  constexpr UInt<Bits> operator~() const {
    UInt<Bits> result;
    for (size_t i = 0; i < WORDCOUNT; ++i)
      result.val[i] = ~val[i];
    return result;
  }

  constexpr bool operator==(const UInt<Bits> &other) const {
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      if (val[i] != other.val[i])
        return false;
    }
    return true;
  }

  constexpr bool operator!=(const UInt<Bits> &other) const {
    for (size_t i = 0; i < WORDCOUNT; ++i) {
      if (val[i] != other.val[i])
        return true;
    }
    return false;
  }

  constexpr bool operator>(const UInt<Bits> &other) const {
    for (size_t i = WORDCOUNT; i > 0; --i) {
      uint64_t word = val[i - 1];
      uint64_t other_word = other.val[i - 1];
      if (word > other_word)
        return true;
      else if (word < other_word)
        return false;
    }
    // Equal
    return false;
  }

  constexpr bool operator>=(const UInt<Bits> &other) const {
    for (size_t i = WORDCOUNT; i > 0; --i) {
      uint64_t word = val[i - 1];
      uint64_t other_word = other.val[i - 1];
      if (word > other_word)
        return true;
      else if (word < other_word)
        return false;
    }
    // Equal
    return true;
  }

  constexpr bool operator<(const UInt<Bits> &other) const {
    for (size_t i = WORDCOUNT; i > 0; --i) {
      uint64_t word = val[i - 1];
      uint64_t other_word = other.val[i - 1];
      if (word > other_word)
        return false;
      else if (word < other_word)
        return true;
    }
    // Equal
    return false;
  }

  constexpr bool operator<=(const UInt<Bits> &other) const {
    for (size_t i = WORDCOUNT; i > 0; --i) {
      uint64_t word = val[i - 1];
      uint64_t other_word = other.val[i - 1];
      if (word > other_word)
        return false;
      else if (word < other_word)
        return true;
    }
    // Equal
    return true;
  }

  constexpr UInt<Bits> &operator++() {
    UInt<Bits> one(1);
    add(one);
    return *this;
  }

  // Return the i-th 64-bit word of the number.
  constexpr const uint64_t &operator[](size_t i) const { return val[i]; }

  // Return the i-th 64-bit word of the number.
  constexpr uint64_t &operator[](size_t i) { return val[i]; }

  uint64_t *data() { return val; }

  const uint64_t *data() const { return val; }
};

// Provides limits of UInt<128>.
template <> class numeric_limits<UInt<128>> {
public:
  static constexpr UInt<128> max() { return ~UInt<128>(0); }
  static constexpr UInt<128> min() { return 0; }
};

// Provides is_integral of UInt<128>, UInt<192>, UInt<256>.
template <size_t Bits> struct is_integral<UInt<Bits>> : public cpp::true_type {
  static_assert(Bits > 0 && Bits % 64 == 0,
                "Number of bits in UInt should be a multiple of 64.");
};

// Provides is_unsigned of UInt<128>, UInt<192>, UInt<256>.
template <size_t Bits> struct is_unsigned<UInt<Bits>> : public cpp::true_type {
  static_assert(Bits > 0 && Bits % 64 == 0,
                "Number of bits in UInt should be a multiple of 64.");
};

} // namespace __llvm_libc::cpp

#endif // LLVM_LIBC_SRC_SUPPORT_UINT_H