summaryrefslogtreecommitdiff
path: root/libc/src/string/memory_utils/utils.h
blob: 5c7b360ad108f207546019f07289f10178abb105 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//===-- Memory utils --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_MEMORY_UTILS_UTILS_H
#define LLVM_LIBC_SRC_MEMORY_UTILS_UTILS_H

#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/cstddef.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/macros/attributes.h"          //LIBC_INLINE
#include "src/__support/macros/config.h"              // LIBC_HAS_BUILTIN

#include <stddef.h> // size_t
#include <stdint.h> // intptr_t / uintptr_t

namespace __llvm_libc {

// Allows compile time error reporting in `if constexpr` branches.
template <bool flag = false>
static void deferred_static_assert(const char *msg) {
  static_assert(flag, "compilation error");
  (void)msg;
}

// Return whether `value` is zero or a power of two.
static constexpr bool is_power2_or_zero(size_t value) {
  return (value & (value - 1U)) == 0;
}

// Return whether `value` is a power of two.
static constexpr bool is_power2(size_t value) {
  return value && is_power2_or_zero(value);
}

// Compile time version of log2 that handles 0.
static constexpr size_t log2(size_t value) {
  return (value == 0 || value == 1) ? 0 : 1 + log2(value / 2);
}

// Returns the first power of two preceding value or value if it is already a
// power of two (or 0 when value is 0).
static constexpr size_t le_power2(size_t value) {
  return value == 0 ? value : 1ULL << log2(value);
}

// Returns the first power of two following value or value if it is already a
// power of two (or 0 when value is 0).
static constexpr size_t ge_power2(size_t value) {
  return is_power2_or_zero(value) ? value : 1ULL << (log2(value) + 1);
}

// Returns the number of bytes to substract from ptr to get to the previous
// multiple of alignment. If ptr is already aligned returns 0.
template <size_t alignment> uintptr_t distance_to_align_down(const void *ptr) {
  static_assert(is_power2(alignment), "alignment must be a power of 2");
  return reinterpret_cast<uintptr_t>(ptr) & (alignment - 1U);
}

// Returns the number of bytes to add to ptr to get to the next multiple of
// alignment. If ptr is already aligned returns 0.
template <size_t alignment> uintptr_t distance_to_align_up(const void *ptr) {
  static_assert(is_power2(alignment), "alignment must be a power of 2");
  // The logic is not straightforward and involves unsigned modulo arithmetic
  // but the generated code is as fast as it can be.
  return -reinterpret_cast<uintptr_t>(ptr) & (alignment - 1U);
}

// Returns the number of bytes to add to ptr to get to the next multiple of
// alignment. If ptr is already aligned returns alignment.
template <size_t alignment>
uintptr_t distance_to_next_aligned(const void *ptr) {
  return alignment - distance_to_align_down<alignment>(ptr);
}

// Returns the same pointer but notifies the compiler that it is aligned.
template <size_t alignment, typename T> static T *assume_aligned(T *ptr) {
  return reinterpret_cast<T *>(__builtin_assume_aligned(ptr, alignment));
}

#if LIBC_HAS_BUILTIN(__builtin_memcpy_inline)
#define LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE
#endif

#if LIBC_HAS_BUILTIN(__builtin_memset_inline)
#define LLVM_LIBC_HAS_BUILTIN_MEMSET_INLINE
#endif

// Performs a constant count copy.
template <size_t Size>
LIBC_INLINE void memcpy_inline(void *__restrict dst,
                               const void *__restrict src) {
#ifdef LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE
  __builtin_memcpy_inline(dst, src, Size);
#else
  for (size_t i = 0; i < Size; ++i)
    static_cast<char *>(dst)[i] = static_cast<const char *>(src)[i];
#endif
}

using Ptr = cpp::byte *;        // Pointer to raw data.
using CPtr = const cpp::byte *; // Const pointer to raw data.

// This type makes sure that we don't accidentally promote an integral type to
// another one. It is only constructible from the exact T type.
template <typename T> struct StrictIntegralType {
  static_assert(cpp::is_integral_v<T>);

  // Can only be constructed from a T.
  template <typename U, cpp::enable_if_t<cpp::is_same_v<U, T>, bool> = 0>
  StrictIntegralType(U value) : value(value) {}

  // Allows using the type in an if statement.
  explicit operator bool() const { return value; }

  // If type is unsigned (bcmp) we allow bitwise OR operations.
  StrictIntegralType operator|(const StrictIntegralType &Rhs) const {
    static_assert(!cpp::is_signed_v<T>);
    return value | Rhs.value;
  }

  // For interation with the C API we allow explicit conversion back to the
  // `int` type.
  explicit operator int() const {
    // bit_cast makes sure that T and int have the same size.
    return cpp::bit_cast<int>(value);
  }

  // Helper to get the zero value.
  LIBC_INLINE static constexpr StrictIntegralType ZERO() { return {T(0)}; }

private:
  T value;
};

using MemcmpReturnType = StrictIntegralType<int32_t>;
using BcmpReturnType = StrictIntegralType<uint32_t>;

// Loads bytes from memory (possibly unaligned) and materializes them as
// type.
template <typename T> LIBC_INLINE T load(CPtr ptr) {
  T Out;
  memcpy_inline<sizeof(T)>(&Out, ptr);
  return Out;
}

// Stores a value of type T in memory (possibly unaligned).
template <typename T> LIBC_INLINE void store(Ptr ptr, T value) {
  memcpy_inline<sizeof(T)>(ptr, &value);
}

// Advances the pointers p1 and p2 by offset bytes and decrease count by the
// same amount.
template <typename T1, typename T2>
LIBC_INLINE void adjust(ptrdiff_t offset, T1 *__restrict &p1,
                        T2 *__restrict &p2, size_t &count) {
  p1 += offset;
  p2 += offset;
  count -= offset;
}

// Advances p1 and p2 so p1 gets aligned to the next SIZE bytes boundary
// and decrease count by the same amount.
// We make sure the compiler knows about the adjusted pointer alignment.
template <size_t SIZE, typename T1, typename T2>
void align_p1_to_next_boundary(T1 *__restrict &p1, T2 *__restrict &p2,
                               size_t &count) {
  adjust(distance_to_next_aligned<SIZE>(p1), p1, p2, count);
  p1 = assume_aligned<SIZE>(p1);
}

// Same as align_p1_to_next_boundary above but with a single pointer instead.
template <size_t SIZE, typename T1>
void align_to_next_boundary(T1 *&p1, size_t &count) {
  CPtr dummy;
  align_p1_to_next_boundary<SIZE>(p1, dummy, count);
}

// An enum class that discriminates between the first and second pointer.
enum class Arg { P1, P2, Dst = P1, Src = P2 };

// Same as align_p1_to_next_boundary but allows for aligning p2 instead of p1.
// Precondition: &p1 != &p2
template <size_t SIZE, Arg AlignOn, typename T1, typename T2>
void align_to_next_boundary(T1 *__restrict &p1, T2 *__restrict &p2,
                            size_t &count) {
  if constexpr (AlignOn == Arg::P1)
    align_p1_to_next_boundary<SIZE>(p1, p2, count);
  else if constexpr (AlignOn == Arg::P2)
    align_p1_to_next_boundary<SIZE>(p2, p1, count); // swapping p1 and p2.
  else
    deferred_static_assert("AlignOn must be either Arg::P1 or Arg::P2");
}

} // namespace __llvm_libc

#endif // LLVM_LIBC_SRC_MEMORY_UTILS_UTILS_H