summaryrefslogtreecommitdiff
path: root/libc/src/time/time_utils.cpp
blob: b25b737d1f8d0ac73ef8b2a38dff7214fca0b7ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//===-- Implementation of mktime function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/time/time_utils.h"
#include "src/__support/common.h"

#include <limits.h>

namespace __llvm_libc {
namespace time_utils {

using __llvm_libc::time_utils::TimeConstants;

static int64_t computeRemainingYears(int64_t daysPerYears,
                                     int64_t quotientYears,
                                     int64_t *remainingDays) {
  int64_t years = *remainingDays / daysPerYears;
  if (years == quotientYears)
    years--;
  *remainingDays -= years * daysPerYears;
  return years;
}

// First, divide "total_seconds" by the number of seconds in a day to get the
// number of days since Jan 1 1970. The remainder will be used to calculate the
// number of Hours, Minutes and Seconds.
//
// Then, adjust that number of days by a constant to be the number of days
// since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This
// makes it easier to count how many leap years have passed using division.
//
// While calculating numbers of years in the days, the following algorithm
// subdivides the days into the number of 400 years, the number of 100 years and
// the number of 4 years. These numbers of cycle years are used in calculating
// leap day. This is similar to the algorithm used in  getNumOfLeapYearsBefore()
// and isLeapYear(). Then compute the total number of years in days from these
// subdivided units.
//
// Compute the number of months from the remaining days. Finally, adjust years
// to be 1900 and months to be from January.
int64_t update_from_seconds(int64_t total_seconds, struct tm *tm) {
  // Days in month starting from March in the year 2000.
  static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31,
                                     30,           31, 30, 31, 31, 29};

  if (sizeof(time_t) == 4) {
    if (total_seconds < 0x80000000)
      return time_utils::out_of_range();
    if (total_seconds > 0x7FFFFFFF)
      return time_utils::out_of_range();
  } else {
    if (total_seconds <
            INT_MIN * static_cast<int64_t>(
                          TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR) ||
        total_seconds >
            INT_MAX * static_cast<int64_t>(
                          TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR))
      return time_utils::out_of_range();
  }

  int64_t seconds =
      total_seconds - TimeConstants::SECONDS_UNTIL2000_MARCH_FIRST;
  int64_t days = seconds / TimeConstants::SECONDS_PER_DAY;
  int64_t remainingSeconds = seconds % TimeConstants::SECONDS_PER_DAY;
  if (remainingSeconds < 0) {
    remainingSeconds += TimeConstants::SECONDS_PER_DAY;
    days--;
  }

  int64_t wday = (TimeConstants::WEEK_DAY_OF2000_MARCH_FIRST + days) %
                 TimeConstants::DAYS_PER_WEEK;
  if (wday < 0)
    wday += TimeConstants::DAYS_PER_WEEK;

  // Compute the number of 400 year cycles.
  int64_t numOfFourHundredYearCycles = days / TimeConstants::DAYS_PER400_YEARS;
  int64_t remainingDays = days % TimeConstants::DAYS_PER400_YEARS;
  if (remainingDays < 0) {
    remainingDays += TimeConstants::DAYS_PER400_YEARS;
    numOfFourHundredYearCycles--;
  }

  // The remaining number of years after computing the number of
  // "four hundred year cycles" will be 4 hundred year cycles or less in 400
  // years.
  int64_t numOfHundredYearCycles = computeRemainingYears(
      TimeConstants::DAYS_PER100_YEARS, 4, &remainingDays);

  // The remaining number of years after computing the number of
  // "hundred year cycles" will be 25 four year cycles or less in 100 years.
  int64_t numOfFourYearCycles =
      computeRemainingYears(TimeConstants::DAYS_PER4_YEARS, 25, &remainingDays);

  // The remaining number of years after computing the number of
  // "four year cycles" will be 4 one year cycles or less in 4 years.
  int64_t remainingYears = computeRemainingYears(
      TimeConstants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays);

  // Calculate number of years from year 2000.
  int64_t years = remainingYears + 4 * numOfFourYearCycles +
                  100 * numOfHundredYearCycles +
                  400LL * numOfFourHundredYearCycles;

  int leapDay =
      !remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles);

  // We add 31 and 28 for the number of days in January and February, since our
  // starting point was March 1st.
  int64_t yday = remainingDays + 31 + 28 + leapDay;
  if (yday >= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay)
    yday -= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay;

  int64_t months = 0;
  while (daysInMonth[months] <= remainingDays) {
    remainingDays -= daysInMonth[months];
    months++;
  }

  if (months >= TimeConstants::MONTHS_PER_YEAR - 2) {
    months -= TimeConstants::MONTHS_PER_YEAR;
    years++;
  }

  if (years > INT_MAX || years < INT_MIN)
    return time_utils::out_of_range();

  // All the data (years, month and remaining days) was calculated from
  // March, 2000. Thus adjust the data to be from January, 1900.
  tm->tm_year = years + 2000 - TimeConstants::TIME_YEAR_BASE;
  tm->tm_mon = months + 2;
  tm->tm_mday = remainingDays + 1;
  tm->tm_wday = wday;
  tm->tm_yday = yday;

  tm->tm_hour = remainingSeconds / TimeConstants::SECONDS_PER_HOUR;
  tm->tm_min = remainingSeconds / TimeConstants::SECONDS_PER_MIN %
               TimeConstants::SECONDS_PER_MIN;
  tm->tm_sec = remainingSeconds % TimeConstants::SECONDS_PER_MIN;
  // TODO(rtenneti): Need to handle timezone and update of tm_isdst.
  tm->tm_isdst = 0;

  return 0;
}

} // namespace time_utils
} // namespace __llvm_libc