1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
//===-- Loader Implementation for AMDHSA devices --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file impelements a simple loader to run images supporting the AMDHSA
// architecture. The file launches the '_start' kernel which should be provided
// by the device application start code and call ultimately call the 'main'
// function.
//
//===----------------------------------------------------------------------===//
#include "Loader.h"
#include "Server.h"
#include <hsa/hsa.h>
#include <hsa/hsa_ext_amd.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <utility>
/// Print the error code and exit if \p code indicates an error.
static void handle_error(hsa_status_t code) {
if (code == HSA_STATUS_SUCCESS || code == HSA_STATUS_INFO_BREAK)
return;
const char *desc;
if (hsa_status_string(code, &desc) != HSA_STATUS_SUCCESS)
desc = "Unknown error";
fprintf(stderr, "%s\n", desc);
exit(EXIT_FAILURE);
}
static void handle_error(const char *msg) {
fprintf(stderr, "%s\n", msg);
exit(EXIT_FAILURE);
}
/// Generic interface for iterating using the HSA callbacks.
template <typename elem_ty, typename func_ty, typename callback_ty>
hsa_status_t iterate(func_ty func, callback_ty cb) {
auto l = [](elem_ty elem, void *data) -> hsa_status_t {
callback_ty *unwrapped = static_cast<callback_ty *>(data);
return (*unwrapped)(elem);
};
return func(l, static_cast<void *>(&cb));
}
/// Generic interface for iterating using the HSA callbacks.
template <typename elem_ty, typename func_ty, typename func_arg_ty,
typename callback_ty>
hsa_status_t iterate(func_ty func, func_arg_ty func_arg, callback_ty cb) {
auto l = [](elem_ty elem, void *data) -> hsa_status_t {
callback_ty *unwrapped = static_cast<callback_ty *>(data);
return (*unwrapped)(elem);
};
return func(func_arg, l, static_cast<void *>(&cb));
}
/// Iterate through all availible agents.
template <typename callback_ty>
hsa_status_t iterate_agents(callback_ty callback) {
return iterate<hsa_agent_t>(hsa_iterate_agents, callback);
}
/// Iterate through all availible memory pools.
template <typename callback_ty>
hsa_status_t iterate_agent_memory_pools(hsa_agent_t agent, callback_ty cb) {
return iterate<hsa_amd_memory_pool_t>(hsa_amd_agent_iterate_memory_pools,
agent, cb);
}
template <hsa_device_type_t flag>
hsa_status_t get_agent(hsa_agent_t *output_agent) {
// Find the first agent with a matching device type.
auto cb = [&](hsa_agent_t hsa_agent) -> hsa_status_t {
hsa_device_type_t type;
hsa_status_t status =
hsa_agent_get_info(hsa_agent, HSA_AGENT_INFO_DEVICE, &type);
if (status != HSA_STATUS_SUCCESS)
return status;
if (type == flag) {
// Ensure that a GPU agent supports kernel dispatch packets.
if (type == HSA_DEVICE_TYPE_GPU) {
hsa_agent_feature_t features;
status =
hsa_agent_get_info(hsa_agent, HSA_AGENT_INFO_FEATURE, &features);
if (status != HSA_STATUS_SUCCESS)
return status;
if (features & HSA_AGENT_FEATURE_KERNEL_DISPATCH)
*output_agent = hsa_agent;
} else {
*output_agent = hsa_agent;
}
return HSA_STATUS_INFO_BREAK;
}
return HSA_STATUS_SUCCESS;
};
return iterate_agents(cb);
}
/// Retrieve a global memory pool with a \p flag from the agent.
template <hsa_amd_memory_pool_global_flag_t flag>
hsa_status_t get_agent_memory_pool(hsa_agent_t agent,
hsa_amd_memory_pool_t *output_pool) {
auto cb = [&](hsa_amd_memory_pool_t memory_pool) {
uint32_t flags;
hsa_amd_segment_t segment;
if (auto err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment))
return err;
if (auto err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &flags))
return err;
if (segment != HSA_AMD_SEGMENT_GLOBAL)
return HSA_STATUS_SUCCESS;
if (flags & flag)
*output_pool = memory_pool;
return HSA_STATUS_SUCCESS;
};
return iterate_agent_memory_pools(agent, cb);
}
template <typename args_t>
hsa_status_t launch_kernel(hsa_agent_t dev_agent, hsa_executable_t executable,
hsa_amd_memory_pool_t kernargs_pool,
hsa_queue_t *queue, const LaunchParameters ¶ms,
const char *kernel_name, args_t kernel_args) {
// Look up the '_start' kernel in the loaded executable.
hsa_executable_symbol_t symbol;
if (hsa_status_t err = hsa_executable_get_symbol_by_name(
executable, kernel_name, &dev_agent, &symbol))
return err;
// Retrieve different properties of the kernel symbol used for launch.
uint64_t kernel;
uint32_t args_size;
uint32_t group_size;
uint32_t private_size;
std::pair<hsa_executable_symbol_info_t, void *> symbol_infos[] = {
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, &kernel},
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, &args_size},
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, &group_size},
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, &private_size}};
for (auto &[info, value] : symbol_infos)
if (hsa_status_t err = hsa_executable_symbol_get_info(symbol, info, value))
return err;
// Allocate space for the kernel arguments on the host and allow the GPU agent
// to access it.
void *args;
if (hsa_status_t err = hsa_amd_memory_pool_allocate(kernargs_pool, args_size,
/*flags=*/0, &args))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, args);
// Initialie all the arguments (explicit and implicit) to zero, then set the
// explicit arguments to the values created above.
std::memset(args, 0, args_size);
std::memcpy(args, &kernel_args, sizeof(args_t));
// Obtain a packet from the queue.
uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
while (packet_id - hsa_queue_load_read_index_scacquire(queue) >= queue->size)
;
const uint32_t mask = queue->size - 1;
hsa_kernel_dispatch_packet_t *packet =
static_cast<hsa_kernel_dispatch_packet_t *>(queue->base_address) +
(packet_id & mask);
// Set up the packet for exeuction on the device. We currently only launch
// with one thread on the device, forcing the rest of the wavefront to be
// masked off.
std::memset(packet, 0, sizeof(hsa_kernel_dispatch_packet_t));
packet->setup = (1 + (params.num_blocks_y * params.num_threads_y != 1) +
(params.num_blocks_z * params.num_threads_z != 1))
<< HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
packet->workgroup_size_x = params.num_threads_x;
packet->workgroup_size_y = params.num_threads_y;
packet->workgroup_size_z = params.num_threads_z;
packet->grid_size_x = params.num_blocks_x * params.num_threads_x;
packet->grid_size_y = params.num_blocks_y * params.num_threads_y;
packet->grid_size_z = params.num_blocks_z * params.num_threads_z;
packet->private_segment_size = private_size;
packet->group_segment_size = group_size;
packet->kernel_object = kernel;
packet->kernarg_address = args;
// Create a signal to indicate when this packet has been completed.
if (hsa_status_t err =
hsa_signal_create(1, 0, nullptr, &packet->completion_signal))
handle_error(err);
// Initialize the packet header and set the doorbell signal to begin execution
// by the HSA runtime.
uint16_t setup = packet->setup;
uint16_t header =
(HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE) |
(HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_SCACQUIRE_FENCE_SCOPE) |
(HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_SCRELEASE_FENCE_SCOPE);
__atomic_store_n(&packet->header, header | (setup << 16), __ATOMIC_RELEASE);
hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
// Wait until the kernel has completed execution on the device. Periodically
// check the RPC client for work to be performed on the server.
while (hsa_signal_wait_scacquire(
packet->completion_signal, HSA_SIGNAL_CONDITION_EQ, 0,
/*timeout_hint=*/1024, HSA_WAIT_STATE_ACTIVE) != 0)
handle_server();
// Destroy the resources acquired to launch the kernel and return.
if (hsa_status_t err = hsa_amd_memory_pool_free(args))
handle_error(err);
if (hsa_status_t err = hsa_signal_destroy(packet->completion_signal))
handle_error(err);
return HSA_STATUS_SUCCESS;
}
int load(int argc, char **argv, char **envp, void *image, size_t size,
const LaunchParameters ¶ms) {
// Initialize the HSA runtime used to communicate with the device.
if (hsa_status_t err = hsa_init())
handle_error(err);
// Register a callback when the device encounters a memory fault.
if (hsa_status_t err = hsa_amd_register_system_event_handler(
[](const hsa_amd_event_t *event, void *) -> hsa_status_t {
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT)
return HSA_STATUS_ERROR;
return HSA_STATUS_SUCCESS;
},
nullptr))
handle_error(err);
// Obtain an agent for the device and host to use the HSA memory model.
hsa_agent_t dev_agent;
hsa_agent_t host_agent;
if (hsa_status_t err = get_agent<HSA_DEVICE_TYPE_GPU>(&dev_agent))
handle_error(err);
if (hsa_status_t err = get_agent<HSA_DEVICE_TYPE_CPU>(&host_agent))
handle_error(err);
// Load the code object's ISA information and executable data segments.
hsa_code_object_t object;
if (hsa_status_t err = hsa_code_object_deserialize(image, size, "", &object))
handle_error(err);
hsa_executable_t executable;
if (hsa_status_t err = hsa_executable_create_alt(
HSA_PROFILE_FULL, HSA_DEFAULT_FLOAT_ROUNDING_MODE_ZERO, "",
&executable))
handle_error(err);
if (hsa_status_t err =
hsa_executable_load_code_object(executable, dev_agent, object, ""))
handle_error(err);
// No modifications to the executable are allowed after this point.
if (hsa_status_t err = hsa_executable_freeze(executable, ""))
handle_error(err);
// Check the validity of the loaded executable. If the agents ISA features do
// not match the executable's code object it will fail here.
uint32_t result;
if (hsa_status_t err = hsa_executable_validate(executable, &result))
handle_error(err);
if (result)
handle_error(HSA_STATUS_ERROR);
// Obtain memory pools to exchange data between the host and the device. The
// fine-grained pool acts as pinned memory on the host for DMA transfers to
// the device, the coarse-grained pool is for allocations directly on the
// device, and the kernerl-argument pool is for executing the kernel.
hsa_amd_memory_pool_t kernargs_pool;
hsa_amd_memory_pool_t finegrained_pool;
hsa_amd_memory_pool_t coarsegrained_pool;
if (hsa_status_t err =
get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT>(
host_agent, &kernargs_pool))
handle_error(err);
if (hsa_status_t err =
get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED>(
host_agent, &finegrained_pool))
handle_error(err);
if (hsa_status_t err =
get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED>(
dev_agent, &coarsegrained_pool))
handle_error(err);
// Allocate fine-grained memory on the host to hold the pointer array for the
// copied argv and allow the GPU agent to access it.
auto allocator = [&](uint64_t size) -> void * {
void *dev_ptr = nullptr;
if (hsa_status_t err = hsa_amd_memory_pool_allocate(finegrained_pool, size,
/*flags=*/0, &dev_ptr))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, dev_ptr);
return dev_ptr;
};
void *dev_argv = copy_argument_vector(argc, argv, allocator);
if (!dev_argv)
handle_error("Failed to allocate device argv");
// Allocate fine-grained memory on the host to hold the pointer array for the
// copied environment array and allow the GPU agent to access it.
void *dev_envp = copy_environment(envp, allocator);
if (!dev_envp)
handle_error("Failed to allocate device environment");
// Allocate space for the return pointer and initialize it to zero.
void *dev_ret;
if (hsa_status_t err =
hsa_amd_memory_pool_allocate(coarsegrained_pool, sizeof(int),
/*flags=*/0, &dev_ret))
handle_error(err);
hsa_amd_memory_fill(dev_ret, 0, sizeof(int));
// Allocate finegrained memory for the RPC server and client to share.
uint64_t port_size = __llvm_libc::rpc::default_port_count;
uint32_t wavefront_size = 0;
if (hsa_status_t err = hsa_agent_get_info(
dev_agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size))
handle_error(err);
uint64_t rpc_shared_buffer_size =
__llvm_libc::rpc::Server::allocation_size(port_size, wavefront_size);
void *rpc_shared_buffer;
if (hsa_status_t err =
hsa_amd_memory_pool_allocate(finegrained_pool, rpc_shared_buffer_size,
/*flags=*/0, &rpc_shared_buffer))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, rpc_shared_buffer);
// Initialize the RPC server's buffer for host-device communication.
server.reset(port_size, wavefront_size, rpc_shared_buffer);
// Obtain a queue with the minimum (power of two) size, used to send commands
// to the HSA runtime and launch execution on the device.
uint64_t queue_size;
if (hsa_status_t err = hsa_agent_get_info(
dev_agent, HSA_AGENT_INFO_QUEUE_MIN_SIZE, &queue_size))
handle_error(err);
hsa_queue_t *queue = nullptr;
if (hsa_status_t err =
hsa_queue_create(dev_agent, queue_size, HSA_QUEUE_TYPE_MULTI, nullptr,
nullptr, UINT32_MAX, UINT32_MAX, &queue))
handle_error(err);
LaunchParameters single_threaded_params = {1, 1, 1, 1, 1, 1};
begin_args_t init_args = {argc, dev_argv, dev_envp, rpc_shared_buffer};
if (hsa_status_t err =
launch_kernel(dev_agent, executable, kernargs_pool, queue,
single_threaded_params, "_begin.kd", init_args))
handle_error(err);
start_args_t args = {argc, dev_argv, dev_envp, dev_ret};
if (hsa_status_t err = launch_kernel(dev_agent, executable, kernargs_pool,
queue, params, "_start.kd", args))
handle_error(err);
// Create a memory signal and copy the return value back from the device into
// a new buffer.
hsa_signal_t memory_signal;
if (hsa_status_t err = hsa_signal_create(1, 0, nullptr, &memory_signal))
handle_error(err);
void *host_ret;
if (hsa_status_t err =
hsa_amd_memory_pool_allocate(finegrained_pool, sizeof(int),
/*flags=*/0, &host_ret))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, host_ret);
if (hsa_status_t err =
hsa_amd_memory_async_copy(host_ret, host_agent, dev_ret, dev_agent,
sizeof(int), 0, nullptr, memory_signal))
handle_error(err);
while (hsa_signal_wait_scacquire(memory_signal, HSA_SIGNAL_CONDITION_EQ, 0,
UINT64_MAX, HSA_WAIT_STATE_ACTIVE) != 0)
;
// Save the return value and perform basic clean-up.
int ret = *static_cast<int *>(host_ret);
end_args_t fini_args = {ret};
if (hsa_status_t err =
launch_kernel(dev_agent, executable, kernargs_pool, queue,
single_threaded_params, "_end.kd", fini_args))
handle_error(err);
// Free the memory allocated for the device.
if (hsa_status_t err = hsa_amd_memory_pool_free(dev_argv))
handle_error(err);
if (hsa_status_t err = hsa_amd_memory_pool_free(dev_ret))
handle_error(err);
if (hsa_status_t err = hsa_amd_memory_pool_free(rpc_shared_buffer))
handle_error(err);
if (hsa_status_t err = hsa_amd_memory_pool_free(host_ret))
handle_error(err);
if (hsa_status_t err = hsa_signal_destroy(memory_signal))
handle_error(err);
if (hsa_status_t err = hsa_queue_destroy(queue))
handle_error(err);
if (hsa_status_t err = hsa_executable_destroy(executable))
handle_error(err);
if (hsa_status_t err = hsa_code_object_destroy(object))
handle_error(err);
if (hsa_status_t err = hsa_shut_down())
handle_error(err);
return ret;
}
|