summaryrefslogtreecommitdiff
path: root/libcxx/test/std/algorithms/alg.modifying.operations/alg.partitions/ranges_partition_point.pass.cpp
blob: 932e833aa499dafe3903edf124340fd1825627cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// UNSUPPORTED: c++03, c++11, c++14, c++17

// <algorithm>

// template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
//          indirect_unary_predicate<projected<I, Proj>> Pred>
//   constexpr I partition_point(I first, S last, Pred pred, Proj proj = {});                       // Since C++20
//
// template<forward_range R, class Proj = identity,
//          indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
//   constexpr borrowed_iterator_t<R>
//     partition_point(R&& r, Pred pred, Proj proj = {});                                           // Since C++20

#include <algorithm>
#include <array>
#include <concepts>
#include <functional>
#include <ranges>
#include <utility>

#include "almost_satisfies_types.h"
#include "test_iterators.h"

struct UnaryPred { bool operator()(int) const; };

// Test constraints of the (iterator, sentinel) overload.
// ======================================================

template <class Iter = int*, class Sent = int*, class Pred = UnaryPred>
concept HasPartitionPointIter =
    requires(Iter&& iter, Sent&& sent, Pred&& pred) {
      std::ranges::partition_point(std::forward<Iter>(iter), std::forward<Sent>(sent), std::forward<Pred>(pred));
    };

static_assert(HasPartitionPointIter<int*, int*, UnaryPred>);

// !forward_iterator<I>
static_assert(!HasPartitionPointIter<ForwardIteratorNotDerivedFrom>);
static_assert(!HasPartitionPointIter<ForwardIteratorNotIncrementable>);

// !sentinel_for<S, I>
static_assert(!HasPartitionPointIter<int*, SentinelForNotSemiregular>);
static_assert(!HasPartitionPointIter<int*, SentinelForNotWeaklyEqualityComparableWith>);

// !indirect_unary_predicate<projected<I, Proj>>
static_assert(!HasPartitionPointIter<int*, int*, IndirectUnaryPredicateNotPredicate>);
static_assert(!HasPartitionPointIter<int*, int*, IndirectUnaryPredicateNotCopyConstructible>);

// Test constraints of the (range) overload.
// =========================================

template <class Range, class Pred>
concept HasPartitionPointRange =
    requires(Range&& range, Pred&& pred) {
      std::ranges::partition_point(std::forward<Range>(range), std::forward<Pred>(pred));
    };

template <class T>
using R = UncheckedRange<T>;

static_assert(HasPartitionPointRange<R<int*>, UnaryPred>);

// !forward_range<R>
static_assert(!HasPartitionPointRange<ForwardRangeNotDerivedFrom, UnaryPred>);
static_assert(!HasPartitionPointRange<ForwardRangeNotIncrementable, UnaryPred>);

// !indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
static_assert(!HasPartitionPointRange<R<int*>, IndirectUnaryPredicateNotPredicate>);
static_assert(!HasPartitionPointRange<R<int*>, IndirectUnaryPredicateNotCopyConstructible>);

template <class Iter, class Sent, std::size_t N, class Pred>
constexpr void test_one(std::array<int, N> input, Pred pred, std::size_t partition_point) {
  assert(std::ranges::is_partitioned(input, pred));

  auto begin = Iter(input.data());
  auto end = Sent(Iter(input.data() + input.size()));
  auto neg_pred = [&](int x) { return !pred(x); };

  { // (iterator, sentinel) overload.
    std::same_as<Iter> decltype(auto) result = std::ranges::partition_point(begin, end, pred);

    assert(base(result) == input.data() + partition_point);
    assert(std::ranges::all_of(begin, result, pred));
    assert(std::ranges::all_of(result, end, neg_pred));
  }

  { // (range) overload.
    auto range = std::ranges::subrange(begin, end);
    std::same_as<Iter> decltype(auto) result = std::ranges::partition_point(range, pred);

    assert(base(result) == input.data() + partition_point);
    assert(std::ranges::all_of(begin, result, pred));
    assert(std::ranges::all_of(result, end, neg_pred));
  }
}

template <class Iter, class Sent>
constexpr void test_iterators_2() {
  auto is_odd = [](int x) { return x % 2 != 0; };

  // Empty sequence.
  test_one<Iter, Sent, 0>({}, is_odd, 0);
  // 1-element sequence, the element satisfies the predicate.
  test_one<Iter, Sent, 1>({1}, is_odd, 1);
  // 1-element sequence, the element doesn't satisfy the predicate.
  test_one<Iter, Sent, 1>({2}, is_odd, 0);
  // 2-element sequence.
  test_one<Iter, Sent, 2>({1, 2}, is_odd, 1);
  // 3-element sequence.
  test_one<Iter, Sent, 3>({3, 1, 2}, is_odd, 2);
  // Longer sequence.
  test_one<Iter, Sent, 8>({1, 3, 11, 5, 6, 2, 8, 4}, is_odd, 4);
  // Longer sequence with duplicates.
  test_one<Iter, Sent, 8>({1, 3, 3, 4, 6, 2, 8, 2}, is_odd, 3);
  // All elements are the same and satisfy the predicate.
  test_one<Iter, Sent, 3>({1, 1, 1}, is_odd, 3);
  // All elements are the same and don't satisfy the predicate.
  test_one<Iter, Sent, 3>({2, 2, 2}, is_odd, 0);
  // All non-satisfying and all satisfying elements are the same.
  test_one<Iter, Sent, 6>({1, 1, 1, 2, 2, 2}, is_odd, 3);

  auto is_negative = [](int x) { return x < 0; };
  // Different comparator.
  test_one<Iter, Sent, 5>({-3, -6, 5, 7, 2}, is_negative, 2);
}

template <class Iter>
constexpr void test_iterators_1() {
  test_iterators_2<Iter, Iter>();
  test_iterators_2<Iter, sentinel_wrapper<Iter>>();
}

constexpr void test_iterators() {
  test_iterators_1<forward_iterator<int*>>();
  test_iterators_1<bidirectional_iterator<int*>>();
  test_iterators_1<random_access_iterator<int*>>();
  test_iterators_1<contiguous_iterator<int*>>();
  test_iterators_1<int*>();
}

constexpr bool test() {
  test_iterators();

  { // A custom projection works.
    const std::array in = {1, 3, 4, 6, 8};
    auto is_odd = [](int x) { return x % 2 != 0; };
    auto x2 = [](int x) { return x * 2; };
    auto expected_no_proj = in.begin() + 2;
    auto expected_with_proj = in.begin();

    { // (iterator, sentinel) overload.
      auto result_no_proj = std::ranges::partition_point(in.begin(), in.end(), is_odd);
      assert(result_no_proj == expected_no_proj);
      auto result_with_proj = std::ranges::partition_point(in.begin(), in.end(), is_odd, x2);
      assert(result_with_proj == expected_with_proj);
    }

    { // (range) overload.
      auto result_no_proj = std::ranges::partition_point(in, is_odd);
      assert(result_no_proj == expected_no_proj);
      auto result_with_proj = std::ranges::partition_point(in, is_odd, x2);
      assert(result_with_proj == expected_with_proj);
    }
  }

  return true;
}

int main(int, char**) {
  test();
  static_assert(test());

  return 0;
}